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Abstract 

In this work, we combine measure non-compactness and generalised operators in the setting of partial 
order Banach spaces to provide some generalised Darbo-type fixed point theorems. We further 
demonstrate how our findings could potentially applied in reality by establishing that higher-order 
fractional delay differential equations have solutions. We back up our results with numerical 
estimations based on a realistic scenario. This work explores fixed point theory in the context of partial 
order Banach spaces and shows how it can possibly used in real-world situations through realistic 
examples and facts. 
Keywords: Darbo fixed point theorem, Fractional Dealy Differential Equation, Adomian Decomposition 
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1 Introduction 

1.1 Partially Ordered Spaces 

When we combine a complete normed vector space and a partial order relation, we get a so- 
phisticated mathematical structure called a partially ordered Banach space. This framework, 
which visually conforms to the fundamental vector space operations, allows for the identifying 
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comparison of designated items inside the space via a ”greater than” or ”less than” connection. 
More specifically, we have a field of scalars, which might be real or complex numbers, and a 
Banach space, X, built on top of it. Put X under a partial order ≤. Certain criteria must be 
satisfied before this partial order ≤ could possibly be considered compatible with the vector 
space structure and norm:If x, y, z, w ∈ E and λ ∈ R are valid, the relation ≤ on E is termed 
partial order. Let E represent any real linear vector space. 

1. (Addition to Preserve Order) For any element z in X, if x ≤ y, then x + z ≤ y + z holds 
true. 

2. (Order-Preserving Scalar Multiplication) It follows that αx ≤ αy given x ≤ y and a 
positive scalar α. 

3. (Positive Cone) All x ∈ X for which x ≥ 0 make up the positive cone, represented by the 
symbol X+. This cone must have the characteristics of being pointed, closed, and convex. 

This framework enables the detailed examination of ordered relationships by providing a struc- 
tured approach to analyze ordered systems within normed vector spaces. The partial order 
relation ≤ is defined on the real linear space E. For any two elements x, y ∈ E, they are said to 
be comparable if either x ≤ y or y ≤ x. A partially ordered normed space is a partially ordered 
set E equipped with a norm || · ||. 

A normed linear space E is called complete if the metric d induced by the norm || · || is 
defined on all of E. If a nonincreasing (or nondecreasing) sequence {xn} satisfies xn ≤ x∗ (or 
xn ≥ x∗) for every n ∈ N and converges to x∗, the space E is termed regular. 

Banas and Goebel, through their work in nonlinear analysis and its applications, introduced 
the following concepts: 
If T (E) is a relatively compact subset of E, then an operator T mapping E onto itself is said 
to be compact. Similarly, if T (S) is a relatively compact subset of E for every bounded subset 
S of E, the operator T is considered totally bounded. An operator T is termed completely 
continuous if it is both continuous and totally bounded on E. 

The set R of real numbers with the norm defined by the absolute value function and the 
usual order relation ≤ clearly demonstrates this characteristic. Similar to this, every partially 
compact subset of the space C(J, R) with the usual standard supremum norm || · || determined 
by  x (t)  = sup |x (t)| is compatible with the conventional order relation known by x ≤ y if and 

t∈j 

only if x(t) ≤ y(t) for all t ∈ J. To get fresh conclusions, we substitute the cost of monotone 
and boundedness for the operator’s bounds, closure, and convexity conditions. 

The mathematical expression of C = {υ ∈ E : υ ⩾ 0} is provided by taking the Banach space 
E with norm ||.|| with a positive cone.⟨E, .  ⟩ is a partially ordered Banach space; let ⊑ be the 
ordered relation induced by cone C. 
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1.2 Delay Differential Equation 

Dealy differential equations have diverse applications across disciplines like chemistry, biology, 
engineering, economics, and physics. For example, they describe neural communication in the 
brain, where signal transmission experiences temporal delays [7]. In ecology, DDEs model species 
growth influenced by reproductive and migratory delays. In chemistry, they analyze reactions 
where transit times between reaction sites affect outcomes [9]. Engineering applications include 
modeling feedback loops and delays in signal processing [21, 16]. 

To address higher-order DDEs, we apply generalized fixed point theorems. For example, 
the fractional delay differential equation: 

DαY(t) = G(t, Y(t), Y(β(t))), (1.1) 

where t ∈ [0, 1], n − 1 < α ≤ n, with initial conditions Yr(0) = dr for r = 0, 1, . . . , n − 1. 
Here, Y(t) is the dependent variable, G represents the governing function, and β(t) denotes the 
delayed argument. 

These generalizations demonstrate the existence of solutions for complex DDEs. By leverag- 
ing advanced fixed point theorems in partially ordered Banach spaces, this framework expands 
the utility of fixed point theory in solving intricate mathematical problems associated with delay 
equations. 

 

1.3 Some concepts of fractional derivative and integral 

First, we review the basic concepts of fractional integrals and derivatives along with their prop- 
erties. Caputo’s definition, which is extensively applied in various branches of applied mathe- 
matics, is also incorporated here [22, 23]. 

Definition 1.1. A real-valued function R(y), for y > 0, is said to belong to the space Dα if 
α ∈ R, and there exists a real number β > α, such that R(y) = yκR1(y), where R1(y) ∈ D[0, ∞]. 
Furthermore, it is in the space Dm if Rm ∈ Dα for m ∈ N ∪ {0}. 

Definition 1.2. The Riemann-Liouville fractional integral operator of order κ ≥ 0, for a func- 
tion R ∈ Dα, α ≥ −1, is defined as: 

κ  1  
∫ y 

κ−1 

 
and 

Jy R(y) = 
Γ(κ) 

(y − ξ) 
0 

R(ξ) dξ, κ > 0, y > 0, 

J 0R(y) = R(y). 

The following properties of the operator J κ are established in [20]. For R(y) ∈ Dα, α ≥ −1, 
κ, λ ≥ 0, and µ > −1, we have: 
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Dy R(y) = Jy Dy R(y) = 
Γ(m − κ) 

(y − ξ) R 

= Γ(m−κ) 0 ∂sm 

y y p! 

Γ(1 + j) j! 

p=0 

j=0 j=0 

 

 
i) J κJ λR(y) = J κ+λR(y). 

y y y 

ii) J κJ λR(y) = J λJ κR(y). 
y y y y 

iii) J κyµ = 
 Γ(µ+1)  

yκ+µ. 
y Γ(κ+µ+1) 

To address certain limitations of the Riemann-Liouville derivative, a modified fractional 
derivative, known as Caputo’s derivative, is introduced [22]. 

Definition 1.3. In the sense of Caputo’s derivative, the fractional derivative of R(y) is defined 
as: 

κ m−κ  m  1  
∫ y 

m−κ−1  m 

for m − 1 < κ ≤ m, m ∈ N, y > 0, R ∈ Dm , and DκP = 0. 
−1 y 

Definition 1.4. The Caputo time-fractional derivative operator of order κ > 0 is defined for 
any smallest integer m > κ as: 

∂κV(y, t) 
( 

 1  
∫ t

(t − s)m−κ−1 ∂
mV(y,s) ds, m − 1 < κ < m, 

 

 
The following lemma is helpful for solving problems involving these operators. 

Lemma 1.1. If m − 1 < κ < m, m ∈ N, and R ∈ Dm, α ≥ −1, then: 

DκJ κR(y) = R(y), 
y  y 

 

and  
m−1 p 

J κDκR(y) = R(y) − 
Σ 

Rp(0+) 
y 

, y > 0. 
 

Definition 1.5. The Mittag-Leffler function, denoted by Mκ(x), is defined as: 

∞ j 

M (x) = 
 x 

, κ ∈ C, Re(κ) > 0, x ∈ C. 
κ Γ(1 + κj) 

j=0 

If κ = 1, the Mittag-Leffler function reduces to the exponential function: 
∞ j ∞ j 
Σ  x  

= 
Σ x 

. 

∂tm 

0 
(ξ) dξ, 

DκV(y, t) = t ∂tκ ∂mV(y,t) , κ = m. 
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Lemma 1.2. For κ > 0, the general solution to the homogeneous equation Dκ ψ(y) = 0 is given 
by: 

ψ(y) = c0 + c1y + c2y2 + c3y3 + · · · + cm−1ym−1, 

where ci ∈ R, i = 0, 1, 2, . . . , m − 1, and m = ⌊κ⌋ + 1. 

Lemma 1.3. For κ > 0, we have: 
 

J κ Dκ ψ(y) = ψ(y) + c + c y + c y2 + c y3 + · · · + c ym−1, 
0+  0+ 0 1 2 3 m−1 

where ci ∈ R, i = 0, 1, 2, . . . , m − 1, and m = ⌊κ⌋ + 1. 

 

2 Fixed point theorems 

The term ”measure of non-compactness” is a popular mathematical approach for describing the 
extent to which a set, operator, or bounded set lacking compactness. This idea is especially 
relevant to fixed-point theorems, stability studies and partially ordered Banach spaces for 
nonlinear equations [17, 13, 1, 18, 8, 19]. Kuratowski introduced the concept of non-compactness 
measures in [13]. 

Definition 2.1. If E is a Banach space, then Kuratowski’s MNC for A ∈ E is the map α : 

M(E) → R+. 

α(A) = inf{ϵ > 0 : A finite number of sets with diameter < ϵ, can cover it}. 

 
The following formulation recalls the concept of MNC that was axiomatically provided in 

[13]. 

Definition 2.2. If α is represented by the symbol Ξ, then following characteristics are true: 

1. ker  Ξ = {C  ∈ M(E)|Ξ (C) = 0} ≠ ϕ  and  ker  Ξ ∈ N(E). 

2. If C ⊆ D then Ξ(C) ≤ Ξ(D) for all C, D ∈ E. 

3. Ξ(conv(C)) = Ξ(conv(C)) for all C ∈ E, where C¯ denotes the closure of C. 

4. Ξ(C ∪ D) = max{Ξ(C), Ξ(D)} for all C, D ∈ E. 

5. Ξ(λ1C + λ2D) ≤ λ1Ξ(C) + λ2Ξ(D) if λ1 + λ2 = 1 and λ1, λ2 ≥ 0 for all C, D ∈ E. 
 

6. If Cn is decreasing sequence of nonempty closed, bounded subset of E and lim 
n→∞ 

Ξ(Cn) = 0, 

then C∞ = 
n⩾1 

Cn is nonempty compact. 
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Definition 2.3. [6] Let A be a nonempty, convex, and closed set in Banach space E. Let 
Υ : A → A be a continuous map such that, given a nonempty set S ⊆ A, where Ξ is a MNC, 
k ∈ [0, 1) with 

Ξ(Υ(S)) ≤ kΞ(S). 

Then, at least one fixed point in A is admitted by Υ. 

To expand the finding of [19] in a partly ordered Banach space, we now review the definition 
below. The consequence of [19] is further refined in a partially ordered Banach space by recalling 
the definition below. 

Theorem 2.1. Consider ⟨E, .  , ⊑⟩ be the partially ordered Banach space having a positive cone 
C is normal. Let φ : R+ → R+ is a nondecreasing and continuous function and that ℑ : E → E 

is a monotonic increasing and continuous operator. There is also 0 < η(p, q) < 1 such that for 
0 < p < q < ∞ with 

p ⩽ ∆ (Y) + φ (∆ (Y)) ⩽ q ⇒ ∆ (ℑY) + φ (∆ (ℑY)) ⩽ η (p, q) ∆ (Y) + φ (∆ (Y)) , (2.1) 

for all non-empty subset Y of E, where ∆ being essentially the measure of noncompactness. 
Then ℑ has a fixed point ν∗ and ξ0 ⊑ ℑξ0 for ξ0 ∈ E, with the sequence ⟨ℑnξ0⟩ converges 
monotonically to ν∗. 

The consequence that follows may be obtained if we recognise the nondecreasing and con- 
tinuous function φ : R+ → R+ as φ(t) ≡ 0 in the theorem (2.1). 

Proposition 2.1. Consider ⟨E, .  , ⊑⟩ be the partially ordered Banach space having a positive 
cone C is normal. Let ℑ : E → E is a monotonic increasing and continuous operator. If there 
is 0 < η(p, q) < 1 for 0 < p < q < ∞ with 

p ⩽ ∆ (Y) ⩽ q ⇒ ∆ (ℑY) ⩽ η (p, q) ∆ (Y) , (2.2) 

for all non-empty subset Y of E, where ∆ being essentially the measure of noncompactness. 
Then ℑ has a fixed point ν∗ and ξ0 ⊑ ℑξ0 for ξ0 ∈ E, with the sequence ⟨ℑnξ0⟩ converges 
monotonically to ν∗. 

If we take ∆(X) = diam(X) in Proposition 1.1 we get next result. 

Proposition 2.2. Consider ⟨E, .  , ⊑⟩ be the partially ordered Banach space having a positive 
cone C is normal. Let ℑ : E → E is a monotonic increasing and continuous operator. If there 
is 0 < η(p, q) < 1 for 0 < p < q < ∞ with 

p ⩽ diam (Y) ⩽ q ⇒ diam (ℑY) ⩽ η (p, q) (diam (Y)) , (2.3) 

for all non-empty subset Y of E. Then ℑ has a fixed point ν∗ and ξ0 ⊑ ℑξ0 for ξ0 ∈ E, with the 
sequence ⟨ℑnξ0⟩ converges monotonically to ν∗. 
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Proof. Here is a ℑ-invariant nonempty convex closed subset B and diam(B∞) = 0, with respect 
to Propositions (2.1) and 3.2 [12]. This indicates that B∞ is a singleton set, therefore we have 
a fixed point of ℑ ≠ ϕ. 
We assume that there are two different fixed points in order to demonstrate uniqueness. We 
may define the set X = {ι, κ} after ι, κ ∈ Y. In this instance, 

diam (X) = diam (ℑX ) =  ι − κ  > 0. 

Then using (2.4) we get 

p ≤ diam (Y) ≤ q ⇒ diam (ℑY) ≤ η¯ (p, q) (diam (Y)) . 

Since diam (X) = diam (ℑX ) results to contradiction to the property of function η (p, q) < 1 
and hence ι = κ. 

Proposition 2.3. Consider ⟨E, .  , ⊑⟩ be the partially ordered Banach space having a positive 
cone C is normal. Let ℑ : E → E is a monotonic increasing and continuous operator. If there 
is 0 < η(p, q) < 1 for 0 < p < q < ∞ with 

p ≤  ϑ1 − ϑ2  ≤ q ⇒  ℑϑ1 − ℑϑ2  ≤ η (p, q) (  ϑ1 − ϑ2  ) , (2.4) 

for all ϑ1, ϑ2 ∈ E. If ξ0 ⊑ ℑξ0 for ξ0 ∈ E then ℑ has unique fixed point ν∗ and sequence ⟨ℑnξ0⟩ 
converges monotonically to ν∗. 

Proof. We consider ∆ : M → R+ by the rule ∆(X) = diam(X), where 

diam (X) = sup { ϑ1 − ϑ2  , ϑ1, ϑ2 ∈ D} , 

specifies the set X’s diameter.In the sense of Definition 2.2, it is obvious from this formulation 
that ∆ is a MNC. Now, by the virtue of equation (2.4). If 

 

 
then 

p ≤ sup 
ϑ1,ϑ2∈X 

[  ϑ1 − ϑ2  ] ≤ q, 

sup 
ϑ1,ϑ2∈X 

[ ℑϑ1 − ℑϑ2 ] ≤ sup 
ϑ1,ϑ2∈X 

ℑϑ1 − ℑϑ2 

≤ η (p, q) sup 
ϑ1,ϑ2∈X 

 

≤ η (p, q)

  

sup 

[  ϑ1 − ϑ2  ] 

 ϑ1 − ϑ2 

 ! 

. 

(2.5) 

ϑ1,ϑ2∈X 

Therefore, applying the concept of set diameter, we obtain 

p ⩽ diam (X) ⩽ q ⇒ diam (ℑX ) ⩽ η (p, q) (diam (X)) . 

Therefore, from the viewpoint of Proposition 2.2, ℑ has a fixed point. 



1177 

 
 
 
Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 8, 2024 

 

                                                                                                                                                       S. S. Handibag et al 1170-1185  

G 

∂Yr r! Γ (α + 1) 

∂Yr r! 

r=1 

r=1 

 

 
3 Solution of Delay Differential Equation 

The existence of a solution to the non-homogenus higher order delay differential equation (??) 
in the space of bounded and continuous functions defined on the interval [0, δ], represented by 
BC[0, δ], is examined in this section.In order to examine the problem (1.1), we must take into 
account the following presumptions: 

 
1. The non-negative real number λ and the monotonic increasing functions G : [0, δ] × 

BC[0, δ] × BC[0, δ] → R+ possess the following inequality: 

|G (υ, Y1 (υ) , Y1 (β (υ))) − G (υ, Y2 (υ) , Y2 (β (υ)))| 
≤ λ1 |Y1 (υ) − Y2 (υ)| + λ2 |Y1 (β (υ)) − Y2 (β (υ))| . 

 
2. There is real number MG∗ which is not negative with 

M∗ = max {G(υ, 0, 0, ..., 0); υ ∈ [0, 1]} . 

 
3. There exist a positive real number ρ, with inequality 

n−1  r + r ∗ α 

Σ ∂ Y (0 ) η  
+ 

((λ1 + λ2) ρ + MG) η 
≤ ρ. 

Theorem 3.1. Under the assumptions (1) − (3) the delay differential equation (1.1) admits at 
least one solution Y ∈ BC([0, δ]) provided (λ1 + λ2) δα < Γ (α + 1). 

Proof. It needs to be notice that the space ⟨BC[0, δ], .  , ⊑⟩ is a partially order Banach space 
with a normal positive cone C = {υ ∈ E : υ ⩾ 0} . The closed and bounded ball Bρ = {θ ∈ [0, δ] : 
||θ|| ≤ ρ} should also be taken into account. Next, define the mapping Q : BC[0, δ]×BC[0, δ] → R. 
By using the invervese differential operator on (1.1), we obtain 

 
n−1  r + r 

Q (Y (υ)) = 
Σ ∂ Y (0 ) υ  

+ Iα (G (υ, Y (υ) , Y (β (υ)))) . (3.1) 
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n−1  r + r 

n−1  r + r 

n−1  r + r 

G r!  

n−1  r + r 
G 

n−1  r + 

  ) υr α 

 

r!  

 Σ ∂ Y (0 ) υ  

r=1 
n−1 

∂X r 

r 

r! + I 

+ 

∂Yr r! 

n−1  r + r 

r=1 

 

 
We prove the operator Q is bounded. Consider υ ∈ [0, δ] then we have 

 Σ ∂ Y (0 ) υ  

  

≤ 
 Σ ∂ Y (0 ) υ  

+ |Iα (G (υ, Y (υ) , Y (β (υ))) − G (υ, 0, 0) + G (υ, 0, 0))| 
∂Yr r! 

r=1 
  

≤
 Σ ∂ Y (0 ) υ  

+ |Iα (|G (υ, Y (υ) , Y (β (υ))) − G (υ, 0, 0)| + |G (υ, 0, 0)|)| 
∂Yr r! 

r=1 
  

+ Iαλ1 |Y (υ)| + λ2 |Y (β (υ))| + M∗  
 
r=1 

∂Yr   

≤
 Σ ∂ Y (0 ) υ  

+

 
(λ1 + λ2) Y  + M∗

 
ηα 

r=1 
∂Yr r!  Γ (α + 1)  

(3.2) 
where M∗ = sup{χ (θ, 0, 0, 0, 0) : θ ∈ [0, δ]}. Next we prove Q satisfies the assumptions of 
Proposition 2.3. Since, the function G is monotnic increasing this leads to Q being also a non- 
decreasing and continuous mapping on BC[0, δ]. 
Now, from the equation (3.2) and assumption (3) we conformed that Q non-decreasing and 
continuous mapping on Bρ. 

Next, we prove that Q satisfies the inequality (2.4). Consider X , Y ∈ Bρ, we obtain 

  
Σ ∂ X(0 ) υr α 

 − 
Σ ∂ Y(0 

+ I  (G (υ, Y (υ) , Y (β (υ))))  

≤ Iα (|G (υ, X (υ) , X (β (υ))) − G (υ, Y (υ) , Y (β (υ)))|) 

≤ Iα (λ1 |X (υ) − Y (υ)| + λ2 |X (β (υ)) − Y (β (υ))|) . 

This inequality is true for all υ ∈ [0, δ]. Therefore we obtain 

 λ1

  

sup |X (υ) − Y (υ)|

! 

 

sup 
υ∈[0,δ] 

|Q (X (υ)) − Q (Y (υ))| ≤ Iα 
 +λ2 

υ∈[0,δ] 
 

sup 
υ∈[0,δ] 

 
|X (β (υ)) − Y (β (υ))| 

! 
 
. (3.4) 

Hence 
 QX − QY  ≤ η (p, q) X − Y  . (3.5) 

r=1 
∂Yr 

≤ 

  

|Q (Y (υ))| ≤ + |Iα (G (υ, Y (υ) , Y (β (υ))))| 

|Q (X (υ)) − Q (Y (υ))| ≤ 
(G (υ, X (υ) , X (β (υ)))) 

(3.3) 

, 
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Γ(α+1) 

n−1  r + r 

+ G  = 1 − 1 + 

2 Γ (2.5 + 1) 2 Γ (2.5 + 1) 

 

 

where η (p, q) = (λ1+λ2)δα 

. All the conditions of proposition 2.3 are stisfied. Hence the operator 

Q has a fixed point which is the solution of (1.1). 

 
4 Numerical Illustrations 

Example 4.1. 
DαY (υ) = −Y (υ) − Y (υ − 0.3) + e−υ+0.3,  2 < α ≤ 3 (4.1) 

with Y (0) = 1, Y(1) (0) = −1, Y(2) (0) = 1 and Y (υ) = e−υ, υ ≤ 0. 

If we take 
G (υ, Y (υ) , Y (β (υ))) = −Y (υ) − Y (υ − 0.3) + e−υ+0.3, 

in equation (1.1) we get equation (4.1). 
Also, 

 
 
 

 
where λ1 = λ2 = 1. 
Further 

|G (υ, Y1 (υ) , Y1 (β (υ))) − G (υ, Y2 (υ) , Y2 (β (υ)))| 

≤ |−Y1 (υ) − Y1 (υ − 0.3) + Y2 (υ) + Y2 (υ − 0.3)| 

≤ |Y1 (υ) − Y2 (υ)| + |Y1 (υ − 0.3) − Y2 (υ − 0.3)| 

≤ λ1 |Y1 (υ) − Y2 (υ)| + λ2 |Y1 (υ − 0.3) − Y2 (υ − 0.3)| , 

Σ ∂ Y (0 ) υ 
 
 (λ1 + λ2)ρ + M∗

 
ηα 1 2.ρ 

 + 
r=1 

∂Yr r! Γ (α + 1) 2 

1 2.ρ 
=  + 

Γ (2.5 + 1) 

. 
2 Γ (2.5 + 1) 

Now in the view of inequality (3.5) we have 

1 
+ 

 2.ρ  
≤ ρ ⇒ 

1 
≤ ρ

 

1 − 
 2 

 

. 

 

Hence we get 
 

 
Moreover, 

 
Γ (2.5 + 1) 

 
 

2.Γ (2.5 + 1) − 2 

 
≤ ρ. 

(λ1 + λ2) δα 
 

 

Γ (α + 1) 

2 
= 

Γ (α + 1) 
< 1 for 2 < α ≤ 3. 

All the conditions of Theorem 3.1 are stisfied, hence equation (4.1) has exactly one solution. 
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υ 

Y 

2 υ 
τ 

υ τ 

2 

 

 
Numerical Estimation 

The solution of differential equation is obtained by method introduced in [20] as follows, 
2 

′ 

Y (υ) = Y (0) + υY (0) + 
υ   ′′ 

Y 
2 

(0) + Iα
  

−Y (υ) − Y (υ − 0.3) + e −υ+0.3
 

. 

Applying the initial conditions we get, 
′ 2  ′′   

Y (υ) = Y (0) + υY (0) + υ (0) + Iα  −Y (υ) − Y (υ − 0.3) + e −υ+0.3
  

= 1 − υ + υ2 
+ Iα

 
e− 

υ
  

+ Iα
 

−Y (υ) − Y
 

υ
  

. 

 
 
 

 

(υ) 

Plot of the approximate and exact solution of (4.1) for υ and Y(υ). 
 (υ) 
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Figure 1: τ = 2 & α = 2.2, 2.4, 2.6, 2.8, 3.0 Figure 2: τ = 3 & α = 2.2, 2.4, 2.6, 2.8, 3.0 

 

Error Estimation for solution of (4.1) for υ and Y(υ) for τ = 2. 
 α = 2.2 α = 2.4 

t Exact Approx Error Approx Error 

0.0 1.0000 1.0000 0.0000 1.0000 0.0000 
0.2 0.818731 0.810334 0.008397 0.814268 0.004463 
0.4 0.670320 0.645015 0.025305 0.655771 0.014549 
0.6 0.548812 0.513409 0.035403 0.528865 0.019946 
0.8 0.449329 0.420269 0.029059 0.437045 0.012284 

0.10 0.367879 0.363394 0.004485 0.379058 0.011179 

  α = 2.2 α = 2.4 

t Exact Approx Abs. Error Approx Abs. Error 

0.0 1.0000 1.0000 0.0000 1.0000 0.0000 
0.2 0.818731 0.81032 0.008411 0.814264 0.004467 
0.4 0.670320 0.64478 0.025540 0.655681 0.014639 
0.6 0.548812 0.512416 0.036395 0.528422 0.020389 
0.8 0.449329 0.417978 0.031351 0.435919 .013409 

0.10 0.367879 0.359838 0.008042 0.377237 0.009357 

1.0 
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τ 

υ υ τ 

Y0 = − υ + υ2 + Iα
 

−υ2 + υ
  

Yi+1 = Iυ Yi + Yi (υ) 

 
 

 

α = 2.6 α = 2.8 α = 3.0 
Approx Error Approx Error Approx Error 

1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 
0.816656 0.002075 0.818077 0.000654 0.818908 0.000177 
0.663568 0.006752 0.669054 0.001266 0.672821 0.002501 
0.541703 0.007109 0.551934 0.003122 0.559816 0.011004 
0.452820 0.003491 0.466895 0.008858 0.478919 0.029589 
0.395687 0.027807 0.412200 0.044320 0.427757 0.059877 

Table 1:  Error Estimation for solution of (4.1) for υ and Y(υ) for τ = 2. 

 

α = 2.6 α = 2.8 α = 3.0 

Approx Abs. Error Approx Abs. Error Approx Abs. Error 
1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

0.816655 0.002075 0.818077 0.000654 0.818908 0.000177 
0.663539 0.006752 0.669048 0.001266 0.672823 0.002501 
0.541544 0.007109 0.551906 0.003122 0.559839 0.011004 
0.452412 0.003491 0.466874 0.008858 0.479073 0.029589 
0.395125 0.027807 0.412425 0.044320 0.428391 0.059877 

Table 2:  Error Estimation for solution of (4.1) for υ and Y(υ) for τ = 3. 
 

 

Example 4.2. 

 
with initial conditions 

Dα (Y (υ)) = Y
  υ  

− υ2 + υ, (4.2) 

 

 
and exact solution 

 
′ 

Y (0) = 0, Y 
1 

(0) = − 
2 

1 2 

 
′′ 

, & Y (0) = 1, 

y(υ) =  (υ 
2 

— υ). 

The assumptions of Theorem 3.1 can be easily verified, hence the differential equation (4.2) has 
solution. This solution can be obatined by the numerical scheme scheme introduced in [20]. 

 

Y (υ) = υ + υ2 + Iα
 

−υ2 + υ
 

+ Iα
 

Y
  υ  

 

2 
α
  υ υ 

 τ . 
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 (υ) 

Plot of the approximate and exact solution of (4.2) for υ and Y(υ). 
(υ) 
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Figure 3: τ = 2 & α = 2.2, 2.4, 2.6, 2.8, 2.0 Figure 4: τ = 3 & α = 2.2, 2.4, 2.6, 2.8, 2.0 

 

 α = 2.2 α = 2.4 

υ Exact Approx Error Approx Error 

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 
0.2 -0.16000 -0.15968 0.00032 -0.15982 0.00018 
0.4 -0.24000 -0.23754 0.00245 -0.23841 0.00159 
0.6 -0.24000 -0.23280 0.00719 -0.23486 0.00514 
0.8 -0.16000 -0.146412 0.01359 -0.14948 0.01052 

0.10 0.00000 0.01859 0.01859 0.01577 0.01577 

α = 2.6 α = 2.8 α = 3.0 

Approx Error Approx Error Approx Error 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
-0.159901 0.00011 -0.15995 0.00005 -0.15997 0.00003 
-0.23898 0.00102 -0.23935 0.00064 -0.23959 0.00041 

-0.236383 0.00361 -0.23748 0.00251 -0.23827 0.001723 
-0.151989 0.00801 -0.15399 0.00601 -0.15556 0.00444 
0.0130281 0.01303 0.01052 0.01052 0.00834 0.00834 

Table 3:  Absolute Error of (4.2) for υ ∈ [0, 1] for τ = 2 by ADM. 
 

 

α = 2.2 α = 2.4 

υ Exact Approx Abs. Error Approx Abs. Error 

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 
0.2 -0.16000 -0.15956 0.00043 -0.15976 0.00024 
0.4 -0.24000 -0.23658 0.00342 -0.23779 0.00221 
0.6 -0.24000 -0.22962 0.01038 -0.23263 0.00737 
0.8 -0.16000 -0.13927 0.02073 -0.14413 0.01587 

0.10 0.00000 0.03145 0.03145 0.02594 0.02594 

     

0.05 

 

0.10 

 

0.15 

 

0.20 

 

0.25 
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α = 2.6 α = 2.8 α = 3.0 
Approx Abs. Error Approx Abs. Error Approx Abs. Error 

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
-0.15986 0.00013 -0.15993 0.00007 -0.15993 0.00007 
-0.23859 0.00141 -0.23911 0.00089 -0.23911 0.00089 
-0.23483 0.00516 -0.23642 0.00357 -0.23642 0.00357 
-0.14803 0.01197 -0.15111 0.00889 -0.15111 0.00889 
0.02095 0.02095 0.01661 0.00890 0.01661 0.01661 

Table 4:  Absolute Error of (4.2) for υ ∈ [0, 1] for τ = 3 by ADM. 
 

 
Table 1 to 6 shows the numerical values of the exact and approximate solutions of problems 
(4.1) and (4.2) for the delay term τ = 2 and τ = 3. Moreover we had estimated the error 

 

5 Conclusion 

This study marks a significant breakthrough in extending fixed point theory within the frame- 
work of partially ordered Banach spaces.  By employing the generalized operators presented 
in [18], we have established a comprehensive Darbo-type fixed point theorem. This theorem 
encompasses a broad spectrum of fixed point results along with their subsequent implications, 
forming an extensive set of fixed point theorems. 

Our findings have been effectively applied to higher-order fractional delay differential equa- 
tions, underscoring the practical significance of this research. Within the realm of mathematical 
analysis and its applications, this work contributes to both the practical and the theoretical 
advancement of fixed point theory in partially ordered Banach spaces. 
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