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Abstract 
Vaccination and treatment are two major strategies in controlling or eradication of any contagious 

disease. Usually, both these factors are represented by fixed parameters in most of the studies. In the 

present work, an SIR (Susceptible-Infectious-Recovered) model of populations is considered with time-

dependent vaccination and treatment rates and influence of these disease control strategies is studied. Besides 

establishing the boundedness of solutions, conditions are provided on asymptotic closeness of 

solutions. Upon further restrictions on vaccination and treatment, it is observed that the populations 

may be made to approach a pre-specified state affairs which the society could manage. Further study 

reveals that the system may approach eventually an equilibrium solution of a system with constant 

rates of vaccination and treatment. Illustrations are provided to understand the technique and its 

effectiveness. 
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1. Introduction 
Human health has been widely affected by diseases which are broadly classified into infectious and 
non-infectious diseases. Amongst them the infectious diseases due to their dynamical behavior poses a 
major threat to the human population. This necessitates the need to understand its mechanisms which lead 
to the disease spread processes. One of the primary reasons for studying about dynamics of infectious 
diseases is to improve, control and ultimately to eradicate the infectious diseases from the population. 
Thus, modelling the dynamics of infectious diseases [11, 1 2 , 13, 1 7 ] became a power tool in the 
approach of studying the patterns and suggesting ways to mitigate the diseases. Over the past many years 
various efforts and studies were made by several researchers and scientists from different fields to 
understand the disease dynamics [2, 5 , 6 ,7]. Their efforts are to make a global surveillance network that 
could confront the pandemics and re-emerging infectious diseases. To analyze the dynamics of such 
outbreaks mathematical modelling was developed, which helps not only to predict the possible causes for 
spread of an epidemic accurately but also assists to assess and develop control strategies for potential 
outbreaks [10, 13]. 
 

 Various mathematical models [9, 13, 16] attempted not only to improve control measures with 

optimal use of limited resources but also to eradicate the infection from the affected population. Amongst 

them SIR model is the more sought-after model which subdivides the whole population into three 

categories namely susceptible, infected and recovered [3, 6, 10,12]. Many authors considered application 

of several kinds of control measures in their epidemiological models [4, 8, 15] to predict the impact of the 

viruses. With vaccination as the control measure several SIR epidemic models have been introduced. 

According to these models, vaccination as the major control variable could minimize the susceptible 

individuals and lead to prevention /eradication of the infectious diseases. But it was observed, vaccination 

alone cannot bring optimum control of the spread of infection from a community. Further, it is observed 

vaccination could only be a good choice for controlling the disease during early stages of the disease. 

Massive vaccination may not be possible when the population is very large. Sometimes vaccine resistant 

strains could emerge due to frequent or long-term vaccination, which could make recovery from diseases 

difficult [10, 14]. This leads to emergence of treatment, the other control variable. 
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 Over the time it is seen that, whenever an epidemic occurs the immediate action to contain the 

disease is vaccinating the non-infected, susceptible population and the affected must undergo medical 

treatment. While the vaccine is being developed symptomatic treatment ropes in. Vaccine resistant strains 

stress the importance of treatment and proper vaccination reduces the stress on requirement of treatment.  

Vaccination has the role of preventing healthy people from getting infected by a disease, while treatment 

cures a disease and can also be used as a prophylactic. Thus, vaccination and treatment should work 

together in controlling the spread of diseases. SIR models using vaccination and treatment strategies came 

in, to obtain optimal result of containing the disease spread. Apart from vaccination, if treatment is 

considered in the control measures, then not only rapid reduction in the proportion of susceptible 

individuals but also an increase in recovered individuals was observed. Thus, epidemic models with 

vaccination and treatment become utmost priority. Thus, when these are used together, they can contain the 

disease spread more efficiently. 

 

 Now, vaccination depends on (a) the ability of the pharmaceutical companies and laboratories to 

produce suitable and enough quantity to meet the demand; (b) the actual requirement, that is, the number of 

susceptible at any particular point of time available for vaccination; and (c)availability of vaccine at the 

moment. On the whole, we can say as the spread of the disease varies over the time, corresponding should 

be the variation in vaccination. In other words, vaccination should vary with time and need not be constant 

always. Treatment, on the other hand restricts movement of infectious and infected population and works 

also as a quarantine. Secondly, it provides opportunity to understand the disease dynamics or behaviour by 

experts. Now treatment depends on (i)readiness of the society or facilities available in the society to start 

the treatment process; (ii) spread of the disease, that is, treatment rate varies according to the number of 

infected and (iii) availability of medical teams and medicines etc. Thus, situation (time) tells how the 

system requires vaccination and treatment and that vaccination and treatment need not be fixed constants 

but time varying. 

 

 Motivated by above observations, we consider here, an SIR model proposed in [12]. We 

introduce time varying vaccination and treatment rate functions and study their impact on the disease 

dynamics. In [9] it is observed that a proper interplay between vaccination and treatment rates (assumed to 

be constant fixed values) could drive the system to a desired state. The authors could provide only an 

algebraic technique and numerical examples to illustrate this. In the present, we shall provide a theoretical 

support to this concept. For any mathematical model describing the dynamics of infectious diseases, basic 

aim would be to establish conditions under which the spread of disease is under control. This we study in 

terms of boundedness of solutions, convergence to a known situation or stability of equilibrium solutions 

etc. In the present work, we follow the same method, employing the flexibility to vary the vaccination and 

treatment rates. 

 
The strategy is as follows: 

a) To establish the boundedness and asymptotic closeness of solutions of the system- prerequisite that the 

system is controllable 

b) To establish conditions on parameters, functional relations with suitably restricted vaccination and 

treatment rates to make the system converge to a pre-specified, desired state of disease environment 

c) To establish the stability of our non-autonomous system in terms of the stability of the equilibrium 

solution of a system with constant vaccination and treatment rates. 

 

The paper is organized as follows. In Section 2, we describe the model and establish to provide 

estimates on vaccination and/or treatment functions so that the solutions of the model are non- 

negative and might be bounded as well. In Section 3, a predefined set of constant values are chosen 

from the space of solutions of the system and conditions are established on the system parameters 

and functions, for the asymptotic stability of these predefined values as an assumed equilibrium. 

Numerical examples with simulations are provided here for an illustration of the technique employed 

and the results obtained. In Section 4, we consider the autonomous system with constant vaccination 

and treatment rates as a special case which admits an equilibrium solution and provide conditions on 

our time varying vaccination and treatment functions so that the solutions of  

non-autonomous system approaches this equilibrium solution asymptotically. Conclusion follows 

in Section 5. 
2. The Model and Basic Properties 

  
 We consider the model 
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     , 

      

      

 In (1) x, y, z denotes the susceptible, infected and recovered populations respectively and  

denotes the time derivative. Here a ≥ 0 is rate of growth of susceptible population, 

 b > 0 is interaction rate between susceptibles and infected ones, d is rate of susceptible individuals who are 

naturally immune to the infection and in no way get infected, α > 0 is rate at which a recovered person becomes 

susceptible again, c > 0 is vaccination rate, the parameter 0 < b1 ≤  b is the rate of conversion of susceptible into 

infected, and d1 > 0 denotes the death rate of infected population which is not treated well or inadequately treated 

or beyond the treatment. V is the vaccination function assumed to be a function of time variable t. The time 

variant function r(t) is the treatment rate, f denotes infection function which shows how susceptible x are 

converted into infected y and P is the recovery function of infected by treatment. The positive constant r1 is the 

recovery rate. 

 
 The vaccination and treatment functions are assumed to be non negative functions with V (0) = 0, 

 r (0) > 0. Further assumptions on these functions will be made in the due course. The conversion function  

f (x, y) is assumed to satisfy f (0, y) ≡ 0, f (x, 0) ≡ 0 and f (x, y) > 0 for all other x, y. Thus, there is no conversion 

in the absence of either of susceptible or infected ones. Similarly, we assume P (0) = 0 and     P(y) > 0 for y > 0. 

Further assumptions on functions will be made depending on the requirements there. For more details of such 

functions, we refer the readers to [12]. 

 

 We shall now establish that the solutions are non-negative. This complies with basic requirement for a 

biological model such as (1), representing populations. 
 

Theorem 2.1. All the solutions of (1) are non-negative in the domain of definition, provided the vaccination 

function satisfies the condition  

Proof. We shall start with the non-negativity of the recovery population z. 

Before taking negative values, z(t) by its continuity should assume the value 'z'. Suppose there exists t1 > 0 such 

that at t = t1, z(t1) = 0. Then, from the third equation of [12], z'(t1) = r1 P(y(t1)).  

By our assumption P(y) ≥ 0 ⩝ y, we have z'(t1) ≥ 0. Thus, at t= t1, z(t1) = 0, z'(t1) is non-decreasing. Hence, z is 

not going beyond '0'. Hence z(t) ≥ 0, ⩝t. 

 Similarly, using the assumption f(x,0) = 0 and P (0) = 0 and arguing as above, we can establish that if 

y(t2) = 0 at t = t2 then y'(t2) = 0 implying that y is non-decreasing or is not taking negative values [12]. 

 Now consider the susceptible population. Assume that there exists a t3 > 0 such that x(t3) = 0. Now from 

the first equation of (1), we have x'(t3) = a - cV(t3) + α z(t3), using f (0, y) = 0, ⩝y. Clearly x'(t3) ≥ 0 by the 

assumptions on 'V' and that z(t) ≥ 0, ⩝t. Again, x is non-decreasing at t = t3 which means that x is non-negative in 

a neighbourhood around t = t3. Running similar argument for all such ' t3', one may correlate that x(t) ≥ 0, ⩝t. 

Thus, all the solutions of (1) are non-negative in the domains of definition. 

 Our next results establish that the solutions of (1) are eventually close to each other, in the sense that if 

(x, y, z) and  are two solutions of (1) then for under certain conditions. 

 

Theorem 2.2. Assume that the functions f and P satisfy the conditions (3) and the parameters of the system (1) 

satisfy 

   

in which L1, L2 and M1 > 0 are such that                 

   

 Then, for  for any pair of solutions (x, y, z) and of (1). 

Proof. We employ the functional 

     

Then the upper Dini derivatives of W along the solutions of (1) is given by 

  

       

               

                 | 

                 < 0, {by assumptions on parameters.} 

By definition  
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Thus, W is the required Lyapunov functional and employing standard arguments [12], it may be shown that W(t) 

→ 0 for large 't'. 

. 

Thus, all the solutions are coming close to each other eventually. 

 So far, we have shown that the solutions of (1) are non-negative (minimum requirement to represent a 

biological situation) and are close to each other under conditions (which means that if the behaviour of one 

solution is known, the behaviour of others can be assessed). In what follows, we establish conditions under 

which the solutions could be bounded so that all the solutions could be close to such bounded solutions so as to 

predict/control the behaviour of the system. 

 

Theorem 2.3. All the solutions of (1) are bounded provided the vaccination rate satisfies the integral condition 

 .  

Proof. We employ the functional, W(t) = W(x, y, z) = x + y + z. 
Then the time derivative of W along the solutions of (eq1) is given by 

 
         

        

       Integrating on both sides w.r.t 't' from 0 to 't', we get 

 

                                                (4) 

 
Since the righthand side of the above inequality is finite by assumptions, boundedness of W = x + y + z follows. 

Since x, y, and z are all non-negative, each should be bounded. Thus, the conclusion follows. 

 

Remark 2.4. Notice that a function such as   satisfies the above 

condition. Hence, our assumptions on V(t) in Theorem 2.3 are not unrealistic.  
 

Remark 2.5. Now we may infer that under the parametric conditions of Theorem 2.2 and vaccination satisfying 

the condition in Theorem 2.3, all the solutions of (1) are bounded and are close to each other. It is now clear that 

the system behaviour is predictable/controllable. Our next question is whether the solutions of system (1) 

converge to finite values within the regions of parameters and functional relations, vaccination rate defined by 

above two results. In other words, can we find some constant values in the region of definitions of solutions of 

(1) to which the solutions approach? The following section answers this question. 

 

3. Convergence to a Desired State 
We are studying a model that represents disease dynamics. One usual way is to find where the solutions are 

going under the  impact of vaccination and treatment. We take the converse path here. We shall first define a 

state which the society feels comfortable or tolerable with regards to disease environment. We shall then estimate 

our two control measures V and r with which this defined state of environment is reached. Mathematically, we 

assume that ( ) is the state of disease (Susceptible, Infected and Recovered populations respectively) desired 

by the society. Then we shall establish conditions on the vaccination and treatment functions under which the 

solutions (x, y, z) of (1) approach ( ) for sufficiently large values of t, of course, within the purview of other 

parameters and functional relations of the system. 
Assume that  are all fixed non negative constants that exist in the regions of definition of the solutions 

of (1).  

Clearly  . 

Consider the following rearrangement of equations (1). 

 

 
                   (5)            
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We shall assume that  = 0, ( ,  satisfy the condition). 

We shall now estimate a result to obtain sufficient conditions under which all solutions of (1) approach ( ). 
Theorem 3.1. Assume that the conditions of Theorem 2.2 and the condition of V(t) in Theorem 2.3 hold good 

and also there exist   
    d  

    

  .                                                                  (6) 

hold good. Then all the solutions of (1) satisfy,  

Proof. We employ the functional  

     

The upper right derivative of W along the solutions of (5) is given by  

  

         

          

 Then the negative definiteness of D+W, follows from the assumptions on p(t) and q(t) for large 't'. 

Observing that  , it may be noticed that W defined above is the required 

Lyapunov functional. The rest of the argument follows employing standard arguments [12]. 

Hence, the conclusion follows as t → ∞. 

Remark 3.2. Observe that the assumptions on p(t) and q(t) provide new conditions on the vaccination rate and 

treatment rate. In other words, if  then the 

solutions of ,  provided other conditions on parameters and functions are satisfied. 

Upon further forcing V(t) from the condition in Theorem 2.3 and the treatment rate staying around , 

the system approaches any predefined desired constant set of values that could be reasonable to estimate. 

 We shall now present a couple of examples to illustrate our results and help estimate the vaccination 

and treatment rates to reach a desired state of populations. 

Example 3.3. 

        , 

      

     ) 
  

Clearly   

Since b=b1, condition (i) of Theorem 2.2 is vacuously true. 

Clearly  

 Hence L1=1 and L2=1.  And as P(y)=y, M1=1here. Hence d1+r1 > r(t) would satisfy condition(ii) of Theorem 2.2 

 i.e. r(t) < 3. 

       

       

       

      

Then (x, y, z) → (4, 1, 2) as shown in figure 1. 
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, one may notice that the solutions of (8) 

converging to the pre-specified values (4,1,2) of populations. 
Example 3.4. 

      

      

     9) 
  

From r1 - = 0, we get  = 2.5. 

Clearly . 

Here L1 = max(y) = 1.1745 and L2 = max(x) = 5.3887. And as p(y) = y, M1 = 1. 

As d-(b-b1)L1 = 0.65 > 0. Condition (i) of Theorem 2.2 is satisfied. 

 

By the condition (ii) of this Theorem 2.2, . 

. 

  

Then (x, y, z) → (2,1,1) as shown in Figure 2. 

                                 

Figure 2. Solutions of (9) approaching the desired state of disease (2,1,1) with 

   as specified by Theorem 3.1. 

 

4   A Special Case 
In this section we consider the particular situation where both the vaccination and treatment rates are fixed 

constants. This may be the case where the society is in a position to apply both vaccination and treatment at fixed 

rates irrespective of demand/requirement. 

Mathematically, we let  fixed constants in (1). Thus, we consider 

                 

                 

                                                                                                                      (10) 
 Few numerical examples are provided to estimate on the vaccination rate (V), treatment rate (r) and 

recovery rate (α), all constants, to make the system approach a desired (predefined) state of disease environment. 
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However, no theoretical support is provided by the authors in [11]. One might have noticed that the present work 

fills this gap and also deals with a more general case of time varying/ situation depending on remedial measures. 

 We shall now understand the behaviour of solutions of (1) with those of (10). In fact, (10) being an 

autonomous system, it could have constant equilibria unlike (1). Equilibria, being constant solutions of the 

system, if stable would establish the stability of the system. We further try to explore the possibility of solutions 

of (1) approaching the equilibria of (10). 

 We have already established that under these conditions of Theorem 2.2, any pair of solutions of (1) are 

asymptotically close. We shall now try to verify similar closeness may be obtained among the solutions of (1) 

and (10). For this we now let  of the solution of (1) and , as the solution of (10) and obtain 

conditions for  for sufficiently large ‘t’. Since  is the solution of (11) we have 

         

       

                                                                         (11)                                                                                                                   

 

Subtracting (11) from (1), we have 

    

   ) 

                                           (12) 

                                                                       

We shall assume that there exist constants p1, p2 such that 

                                                  (13)         
                                                                                           
We shall now establish the conditions for asymptotic closeness of   

 

Theorem 4.1. Assume that the functions of f and P satisfy the conditions (3) and also (13) holds good. Assume 

that the parameters of the system satisfy 

    
Further assume that the functions V(t) and r(t) satisfy either of the conditions  

     

or   

           

Then for  for any solution (x, y, z) and  of (1) and (10) respectively.   

Proof. We employ the same functional and proceed as in Theorem 2.2. We consider   

 
The upper Dini derivative of W w.r.t ‘t’ along the solutions of (12) after a rearrangement is given by 

  

         . 

 Negative definiteness of D+W follows from assumptions  and for sufficiently 

large 't'. Alternately, we have 

  

           

 Integrating on both sides from 0 to t with respect to t, we get 

 

               

 

 Now the conclusion follows from the integral conditions on V(t) and r(t) and assumptions on the other 

parameters. For detailed arguments one may refer to (14). Thus,   
Remark 4.2. It is clear from Theorem 4.1 that under the conditions specified, the solutions of (1) could be close 

to the solutions of (10). Now (10) being an autonomous system and may possess a constant equilibrium solution 

say (x*, y*, z*) of (10). Then in such a case letting    in Theorem 4.1, we may conclude that 

all the solutions of (1) approach this  of (10). Thus, the system (1) is asymptotically stable under the 

conditions of Theorem 4.1. 
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Example 4.2.  We shall now re-examine check Example 3.4 with constant vaccination and treatment rates. That 

is, we consider 

      

      

      

                                                                                                

where V = 2.25 and r = 2.4. It is easy to see that the endemic equilibrium solution of this system is (2,1,1). Now 

by the choice of V(t)= 2.25 (1- e-t) and r(t)= 2.4(1- e-t) (as in Example 3.4) we observe that all the conditions of 

Theorem 4.1 are satisfied and hence, all the solutions of the system (1) approach the equilibrium (2,1,1) of (14), 

as already established in Example 3.4. 

Remarks 4.3. The reason for choosing already studied Example 3.4 is to draw the attention of the readers to the 

observation that the predefined state (desired)  of section 3 is nothing but an equilibrium solution of a 

system with constant parameters V, r such as (10) or (14). The boundedness and convergence of solutions of (1) 

make it a controllable system and we may notice that this is as good as a system with constant parametric values 

provided the time varying functions satisfy conditions such as those prescribed here. Thus, within the space of 

parameters, the system (1) and system (10) behave similarly. 

 

5   Conclusion 
The primary interest in investigating the infectious diseases is to understand the pandemic/epidemic situation and 

propose a framework to predict, assess and develop control strategies for such potential outbreaks. Mathematical 

modelling is one such tool. 

  

In this study we considered a modified SIR model wherein the two control measures vaccination and treatment 

are regarded as time-dependent functions and studied its dynamics. Both vaccination and treatment are crucial in 

containing the spread of disease as the world has already witnessed in several cases including the latest pandemic 

COVID-19. Need, demand and availability of these measures make them time dependent rather than simple, 

fixed constant parameters. At the same time, they should go hand-in-hand but are not simple, independent 

measures. Thus, estimation of vaccination and treatment efforts help bring the situation under control. This is 

exactly what is followed in this work. Initially, in Theorem 2.1, conditions are obtained on vaccination function 

so that all solutions of the system are at least non negative and thus, represent a biological situation. It is 

established under specified conditions on parameters and functional relations that the solutions are close to each 

other. Once a bounded solution is obtained, Theorem 2.2 ensures that no solution (situation) is violent or beyond 

control. Thus, boundedness of solutions is important as it is not hard to handle such situations by the society. 

Theorem 2.3 assures this. Even boundedness is not a comfortable state - a situation could be oscillatory and 

needs further efforts to control it. To avoid such complications, we have studied the asymptotic behaviour of 

solutions. 

 

Mathematically, a non autonomous system such as (1) does not possess an equilibrium solution to study its 

stability. To overcome this, we proposed an assumed or put forth a desired set of values for populations to 

approach this eventually. This may be regarded as an assumed equilibrium for the system. Conditions are now 

obtained on the parameters, functional relations so that this assumed constant equilibrium is within the range of 

the solution space of the system and this equilibrium comes out to be stable by virtue of Theorem 3.1. Thus, 

vaccination and treatment functions are estimated to bring the system to a desired state of disease. Further 

contemplation reveals that the pre-defined, fixed values of the populations could be equilibria of systems with 

constant vaccination and treatment rates. Thus, stability of non-autonomous system is derived in terms of 

equilibria of an autonomous system.  Examples establish that our estimates are possible at least numerically 

bringing the populations to a predefined state and that they may be applied to real time problems. 

 

The results and the remarks presented in Sections 3 and 4 infer that the disease dynamics may be controlled 

equally well either through variable rates of vaccination and treatment or for fixed rates of administration of 

them. The Choice is of the society basing on its preparedness or availability of resources. 

  

The work done in this paper, provides estimates on the vaccination and treatment efforts to be made by a society 

in order to fight any contagious or pandemic situation and bring it to desired state. Testing the present results on 

a real time situation or practical (experimental or clinical) data is the next step to make this study more realistic 

and applicable. A proper balance of vaccination and treatment as suggested in this study could lead the society to 

proper utilization of its resources. Further exploration is needed in this direction. Similar behaviour of solutions 
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of non- autonomous systems and autonomous as studied in this paper needs a further probe for generalization of 

results and may be taken up by enthusiastic researchers. 
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