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ABSTRACT 
Alzheimer’s disease (AD) stands out as one of the main causes of dementia worldwide and it represents 
around 65% of all dementia cases, affecting mainly elderly people. AD is composed of three evolutionary 
stages: Mild Cognitive Impairment (MCI), Mild and Moderate AD (ADM) and Advanced AD (ADA). It is 
crucial to create a tool for assisting AD diagnosis in its early stages with the aim of halting the disease 
progression.The main purpose of this study is to develop a system with the ability of differentiate each 
disease stage by means of Electroencephalographic Signals (EEG). Thereby, an EEG nonlinear multi-band 
analysis by Wavelet Packet was performed enabling to extract several features from each study group 
which are not processed in existing works. Classic Machine Learning (ML) and Deep Learning (DL) 
methods have been used for data classification per EEG channel. In this research work, initially, 
disturbances and interference from the EEG dataset are eliminated using a Band-Pass Elliptic Digital 
Filter (BEF). Then Variational mode decomposition (VMD) was employed to decompose the filtered 
signals. VMD has excellent noise resistance, better decomposing performance, and stability. Also this 
paper proposes a new method called Discrete Wavelet Packet Transform (DWPT) processed on a 
nonlinear multiband analysis of the filtered EEG signals. Hence both the statistic features and the 
nonlinear features are considered to improve diagnostic performance. The improved EEG was 
categorized using a Combination of a deep convolutional neural network (DCNN) and long short-term 
memory (LSTM) called DCNN-LSTM. Here, the ideal DCNN hyperparameter is determined using the 
Adaptive clonal selection algorithm (ACSA), which might increase the classifier's accuracy. Finally, the 
sensitiveness, accuracy, quality of diagnosis, and the area beneath the receiver operating characteristic 
(ROC) curve were additionally computed in order to compare and evaluate the performance of the 
various recommended approaches. 
 
Keywords: Alzheimer’s disease, average energy, discrete wavelet transform, electroencephalogram, 
Discrete Wavelet Packet Transform (DWPT), Band-Pass Elliptic Digital Filter 
 
INTRODUCTION 
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder in which electrical activities of 
the brain become slower than normal people [1,2]. It is the first cause of dementia and its main symptom 
is rapid impairment of cognitive functions [3,4]. It is most commonly seen in people over 65 years and its 
incidence rate increases exponentially with age [5]. The number of people with neurocognitive 
disorders is about 50 million and is projected to exceed 100 million by 2050 [6]. AD includes three stages 
of mild AD (AD1), moderate AD (AD2), and severe AD, respectively. During these stages, the patient loses 
his/her cognitive abilities such as memory and thinking, gradually. Using treatments for people who are 
in the early stages of AD can greatly prevent the progression of disease and delay the onset of dementia. 
Therefore, early diagnosis of AD is very important. In many studies, the term mild cognitive 
impairment (MCI) has been used to categorize people who have many AD symptoms, but these symptoms 
are not severe enough to be called AD [7]. 
The treatment of neurological damages caused by AD is very difficult. Early detection of AD allows early 
treatment and thus delays the onset of AD symptoms [8]. Therefore, early detection of AD is of particular 
importance and can reduce the incidence rate of this disease as well as delay in disease progression. In 
the last decades, different neurophysiological techniques have been used for diagnosing patients with 
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AD. Electroencephalography (EEG) is a non-invasive, low-cost, high-temporal-resolution, and portable 
technique that reflects the electrical activity the brain. The EEG signal can usefully describe the brain 
dynamics in neurological disorders [9]. 
Therefore, early diagnosis is crucial in medical intervention to maintain daily functioning longer, reduce 
brain damage, and give the patient time to make plans for the future [10]. Different neuroimaging 
techniques, namely positron emission tomography (PET), EEG, magnetic resonance imaging (MRI), and 
single photon emission computed tomography (SPECT) are used for the diagnosis of AD [11]. EEG records 
electrical waves produced by nerve cells in the brain. EEG offers superior millisecond-level temporal 
resolution in comparison to other neuroimaging techniques. Recording the EEG at rest is advantageous 
when examining AD patients as it requires little cooperation and is not stressful [12]. In addition, EEG is a 
relatively easy, inexpensive and widely available, portable and noninvasive method. Because of these 
advantages, EEG is more preferred [13].  
Early diagnosis of diseases by EEG provides an opportunity for early treatment. It is therefore particularly 
promising. In the relevant literature, there are limited studies investigating the connection between EEG 
signals and Alzheimer's diagnosis. Amezquita-Sanchez et al. (2019) [14] suggested a model for AD and 
mild cognitive impairment classification tasks. They used enhanced probabilistic neural network (EPNN) 
to automatic classify and MUSIC-EWT algorithm to decompose the EEG signals. The accuracy of the model 
is 90.3%. The convolutional neural network (CNN), linear discriminant analysis (LDA), kNN, and support 
vector machine (SVM) approaches in diagnosis of AD using EEG signal. Using CNN approach, the accuracy 
of AD was 89.1% and the accuracy of the healthy population was 75%. Early diagnosis and treatment can 
slow down the progression of the disease. Therefore, there is a need to develop easy and applicable 
methods and it is of critical importance. 
The contribution of the research is discussed as follows  
Step 1: the disturbances and interference from the EEG dataset are eliminated using a band-pass elliptic 
digital filter (BEF).  
Step 2: Variational mode decomposition (VMD) was employed to decompose the filtered signals.  
Step 3: To get the properties of the EEG signal, processed on a nonlinear multiband analysis of the filtered 
EEG signals using the Discrete Wavelet Packet Transform (DWPT) technique. Then, by including a variety 
of signal properties into feature vectors, the DWPT technique was utilized to improve diagnostic 
performance.  
Step 4: The improved EEG was categorized using a Combination of a deep convolutional neural network 
(DCNN) and long short-term memory (LSTM) called DCNN-LSTM. Here, the ideal DCNN hyperparameter 
is determined using the Adaptive clonal selection algorithm (ACSA), which might increase the classifier's 
accuracy. 
In terms of structure, this paper is organized in five main sections: In Section 2, the existing works are 
described. Thereafter, the methodology concerning the signal processing and the classification procedure 
is explained in Section 3. The obtained results and the inherent discussion were covered in Section 4. 
Lastly, Section 5 makes remarks about conclusions. 
 
RELATED WORKS 
Recognizing EEG of AD, MCI and HC is a matter of classification. This section details the latest techniques 
for diagnosing AD through the combination of EEG and deep learning. These techniques can be divided 
into two-class classification and three-class classification, and the latter has been the focus of research in 
recent years. 
Ferri et al. [15] collected the resting-state EEG signals from 89 AD subjects and 10 HC subjects, and 
preprocessed them by using Fast Fourier Transform (FFT) and eLORETA source estimation. They 
extracted spectral power density calculated by FFT and neural current density by LORETA as the input 
features of the neural network, gaining a two-class classification accuracy rate of 89.00% on the 
stacked ANN with autocoder. Although this study innovatively used neural current density as a 
classification feature, the classification accuracy rate is relatively low. 
Duan et al. [16] collected two groups of resting-state EEG signals, i.e., 22 MCI subjects and 38 HC subjects 
in Group 1 and 17 AD subjects and 24 HC subjects in Group 2 to achieve two two-class classifications of 
MCI vs. HC and AD vs. HC. Both groups of EEG data were preprocessed with the same band-pass filter. 
The functional connectivity of EEG was extracted as the input to CNN by calculating the coherence 
between two electrodes. In their paper, the recognition accuracy rate of CNN model ResNet-18 is 93.42% 
for MCI and 98.54% for AD. This study is the first to consider the difference of spatial attribute of EEG in 
AD classification and achieve excellent classification performance, but it lacks direct comparative analysis 
of AD vs MCI and the challenge of accurately diagnosing MCI remains unresolved. 
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Two-class classification is less complex than three-class classification, but the latter is more significant in 
research. MCI is an intermediate stage between HC and AD. At present, it is uncertain whether MCI will 
definitely develop into AD [17], but the diagnosis of MCI can help to prevent and treat AD. Therefore, it 
has more clinical application value. 
Ieracitano et al. [18] collected EEG signals of 63 AD subjects, 63 MCI subjects and 63 HC subjects, and 
used two-dimensional grayscale PSD images of EEG as classification features to construct a CNN-based 
three-class classification model. Although this model is superior to traditional machine learning 
techniques such as SVM and MLP, its accuracy rate is only 83.33%. Therefore, the study considered using 
the average PSD image of the entire EEG as a classification feature in the future to reduce the effect of 
epoch variability. It will also investigate mapping spectral feature representations that are more sensitive 
to AD and MCI EEG features to improve the accuracy of the classification model. 
You et al. [19] proposed a cascade neural network which used the sequential characteristics of EEG and 
the human gait characteristics to classify AD, MCI and HC, with a classification accuracy rate of 91.70%. 
This attention-based spatiotemporal graph convolutional network can automatically extract the features 
of EEG and gait data, reducing human intervention and achieving good classification results. Also, the 
study used only gait data when differentiating between HC and patients, eliminating the need to use EEG 
data from HC and saving a lot of data collection time. Although this study provides a new way of thinking 
about which data to collect to diagnose AD, it is difficult to reproduce the EEG and gait fusion data used 
when subdividing patients into AD and MCI. 
Rad et al. [20] extracted different bands of frequency characteristics, statistical properties, Lyapunov 
index of task-state EEG, and selected optimal features that had the greatest impact on AD, MCI and HC 
classifications with variance analysis. The multi-channel deep convolutional neural network constructed 
by the author reached a three-class classification accuracy rate of 97.50%. This study presents the first 
analysis method based on the four task states of closed-eye, open-eye, recall and stimulation EEG, opening 
up a new way of using task-state EEG to diagnose AD. However, the EEG was collected in three self-
defined electrode positions (Pz, Cz and Fz), rather than 19 or 64 channels in the 10–20 international 
system. The three-channel recording of human brain electrical activities is not comprehensive, and the 
data used in this paper cannot represent the real situation of AD and MCI patients, so the experimental 
results are somewhat fortuitous. 
A paper published by Amini et al. [21] used the time-dependent power spectrum descriptor to extract 
EEG features of each channel as CNN input. The accuracy rate is 82.30% in the data set consisting of the 
resting-state EEG of 64 AD subjects, 64 MCI subjects and 64 HC subjects. The TD-PSD method well 
extracts time-domain and frequency-domain features from the 180 s EEG signals at each epoch (one 
epoch every 300 s, from 60 to 240 s), minimizing EEG background artifacts. However, the paper did not 
improve or innovate in CNN. Instead, it only proved that CNN has obvious advantages compared 
with SVM and LDA in this data set. Moreover, the accuracy rate of the algorithm used in the paper is low, 
especially for HC (only 75%). 
To sum up, the current use of EEG combined with deep learning technology for AD diagnosis is mostly to 
convert one-dimensional EEG into high-dimensional data for discrimination, but the one-
dimensional deep learning model is rarely used directly. This not only makes data preprocessing more 
difficult, but also increases the human intervention in the research process, reducing the reproducibility 
of research results.  
 
PROPOSED METHODOLOGY 
In this work, the EEG dataset was substantially reduced by using the band-pass elliptic digital filter. Then 
Variational mode decomposition (VMD) was employed to decompose the filtered signals. Important 
characteristics might then be extracted from the EEG data by applying the DWPTapproach to process on a 
nonlinear multiband analysis of the filtered EEG signals. After that, a lot of signal characteristics were 
added to the DWPTmethodology to build feature vectors and enhance the efficacy of diagnosis. After the 
required dataset was created, the DCNN-LSTM optimized using ACSA was used to classify the improved 
EEG is shown in figure 1. 
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Fig.1. Blok Diagram of Proposed Methodology 

 
 
Dataset Description 
Datasets from the Behavioral and Cognitive Neurology Unit of the Department of Neurology including the 
Referral Center for Cognitive Disorders at the Hospital das Clinics in Sao Paulo, Brazil, were used in this 
study to gather information on AD patients and control volunteers. The Mini-Mental State Examination 
(MMSE) and the Brazilian version of the Clinical Dementia Rating - CDR scale was used by qualified 
neurologists to recognize all AD individuals and Control volunteers and gather the necessary datasets 
[22]. 86 participants were split into three groups and provided the multi-channel EEG datasets. With a 
median age of 66.89 years and 8.18 StD, the first batch of 35 Control subjects (CS) is made up of 18 men 
and 19 females. Based on individual interviews, the requirements for being included for those in the 
cognitive normal subgroup included an MMSE of at least 25, a CDR score of 0, a median MMSE of 28, and a 
mean deviation of 2.2. Moreover, there was no indication of functional cognitive decline prior to 
recording. The second patient group met the NINCDS-ADRDA [23] along with DSM-IVTR [24] parameters. 
It consisted of 31 mild-AD patients (a total of 12 male and 19 female), having the median age of 75.23 
years as well as 5.55 StDs. The criteria for inclusion that followed significantly reduced the number of 
individuals with mild Alzheimer's disease: 0.5 CDR 1 as well as MMSE 24, which produced a median 
MMSE of 19.48 and a standard deviation of 3.16.  
Twenty-two individuals with intermediate Alzheimer's disease—seven men and fifteen women—make 
up the third group. Their average age is 73.77 years, and they have 10.16 StDs.  
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Fig 2. Samples of EEG data, electrode mappings, and power spectrum density pattern for three different 

EEGs: (a) control; (b) mild AD; and (c) moderate AD. 
 
People with intermediate Alzheimer's disease needed to have an MMSE score of 20, with an average of 
14.18 and a variance of 3.69, as well as a CDR score of 2. Inclusion in both AD cohorts (AD1 and AD2) was 
also necessary due to the existence of cognitive and functional decline in the year prior, as long-term 
interviews with competent informants indicated. Several other diseases that may possibly contribute to 
cognitive loss were examined in both AD groups, including B12 (vitamin) deficiency, diabetes, renal 
illness, thyroid disease, addiction to alcohol, liver or lung disease [25]. An example of electrode mappings, 
EEG power spectrum density, and EEG signals for three different datasets—control, moderate 
Alzheimer's disease, as well as moderate Alzheimer's disease—are shown in Figure 2 on a logarithmic 
scale. The patterns of waves from the Fp1 electrodes collected from three different individuals from three 
different datasets make up the EEG signal sample. Three different arbitrary frequencies—2, 10, and 25 
Hz—for which electrode maps are given in order to show how the three datasets differ from one another. 
 

 
Fig 3. Distribution of the EEG acquisition system electrodes on the scalp 

 
Using the Braintech 3.0 equipment collecting system (EMSA Medical Equipments Inc., Brazil), the EEG 
dataset was acquired at a sampling rate of 200 Hz and an accuracy of 12 bits. The International 10-20 
protocol was followed while positioning electrodes with the EEG data collection instrument. The subjects' 
earlobes, A1 on the left and A2 on the right, as well as a pair of electrodes were used to collect EEG 
datasets for this study. The subjects' Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, T5, T6, O1, O2, Fz, Cz, 
Pz, and Oz. Figure 3 depicts the dispersion of each electrode. Everyone was awake, calm, and wearing 
closed eyelids when the assessment was done. EEG artifacts such as muscle movements and blinking 
were meticulously eliminated from the data by two experienced neurophysiologists. Following that, a 
minimum of 28 epochs, that extending eight seconds, were selected by examining each person's eyes [26]. 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 1098                                                    Rashmi R Nath et al 1074-1090 

Data pre-processing 
The research data is publicly available at https://github.com/tsyoshihara/Alzheimer-sClassification-
EEG/tree/master/data. EEGs were obtained from 100 patients, including 14 HC subjects, 37 MCI patients, 
and 49 AD patients. Prior to removing noise and interference from brainwave patterns, the recorded 
signals from the EEG are analyzed and filtered using a pre-processing block. An elliptic band-pass filter is 
used to successfully confine the signals to a frequency range of 0.1 to 60 Hz. Beyond the EEG dataset, 
noises, interferences, and artifacts were recorded. The electrodes, magnetic fields from electronic devices, 
blood pressure, breathing, limb movement, eye blinking, and other people's actions were all responsible 
for these distortions, noises, and interferences [27]. During the preprocessing stage, the EEG signals were 
filtered using a band-pass filter to remove noise and disruptions caused by the EEG recording process. 
Numerous finite impulse response (FIR) and infinite impulse response (IIR) filters were in use. In this 
experiment, a band pass IIR elliptic digital filter with cutoff frequencies of 0.1 and 60 Hz was employed. 
Two skilled neurophysiologists carefully removed EEG artifacts from the EEG data, such as blink and 
contractions of the muscles [28]. 
Band pass elliptic digital filter: Band-pass filters allow signals inside the band-pass area to flow 
through while attenuating frequencies outside of the band-pass zone. The passband and stopband ripple 
can be adjusted individually. If the stopband and passband ripples approach zero independently, the filter 
can change into a Chebyshev type I or type II filter. As a result, in order to have a thin transition band, 
both the passband and stopband ripples must be permitted. Elliptical (also known as Cauer) filters 
provide a smaller transition band than other filters of the same order [29]. Discrete-time filters can be 
built in either IIR or FIR modes. The IIR filter is a feedback device with an infinite impulse response, as 
shown in Figure 2.Equations (1), (2), and (3) offer the mathematical difference equations that define the 
functioning of the IIR filter. For the IIR elliptic band-pass filter, we choose 100 kHz sampling frequency 
(𝑓𝑠𝑎𝑚𝑝), 2 kHz lower cut-off frequency (𝑓𝑙𝑐𝑜), 2.5 kHz upper cut-off frequency (𝑓𝑢𝑐𝑜), 1 dB pass band ripple, 

and 80dB stop-band attenuation. Because the filter is of fourth order, it contains four zeros and four poles 
in the complex plane, as illustrated in [29]. The distance between the zeros and the center is one. Using 
the suitable Bilinear transformation method, an analogue filter with a transfer function 𝐻(𝑠𝑝) may be 
turned into a digital filter with a transfer function 𝐻(𝑧𝑝). A projection between the s-plane and z-plane 
variables can be constructed if  𝑠𝑝 = 𝑓(𝑧𝑝), This matching is utilized for the band-pass filter, and the 
equivalent frequency may be found by replacing 𝑠𝑝 = 𝑗𝜔 and 𝑧𝑝 = 𝑒𝑗𝜔 , where 𝜔 is the angular frequency 

and 𝜔 =
2𝜋𝑓

𝑓𝑠𝑎𝑚𝑝
. Equations (4) and (5) define the bilinear transformation employed in the band-pass filter. 

𝑦[𝑛] = ∑ 𝑟𝑒𝑣𝑘𝑥[𝑛 − 𝑘] − ∑ 𝑓𝑟𝑤𝑘𝑦[𝑛 − 𝑘]𝑁
𝑘=1

𝑀
𝑘=0      (1) 

𝐻(𝑠𝑝) =
∑ 𝑓𝑟𝑤𝑘𝑧−𝑘𝑀

𝑘=1

∑ 𝑟𝑒𝑣𝑘𝑧−𝑘𝑁
𝑘=1

, 𝑟𝑒𝑣0 = 1       (2) 

𝐻(𝑧𝑝) =
𝑓𝑟𝑤0 ∏ (1−𝑟𝑒𝑣𝑘𝑧−1)𝑀

𝑘=0

∏ (1−𝑓𝑟𝑤𝑘𝑧−1)𝑁
𝑘=1

       (3) 

𝑠 =
1−2 cos 𝜔0𝑧−1+𝑧−2

1−𝑧−2         (4) 

Ω =
cos 𝜔0− 𝑐𝑜𝑠 𝜔

sin 𝜔
         (5) 

Where 𝑟𝑒𝑣𝑘  and 𝑓𝑟𝑤𝑘  are the reverse and forward filter coefficients, respectively, 𝑇𝑠 represents the 
sampling period and 𝜔𝑠 corresponds to the center frequency of the band-pass/stop filter. 
 
Variational mode decomposition (VMD) for EEG Signal  
For signal processing, especially with regards to EEG signals and other biological signals, the feature 
extraction stage is crucial for achieving the optimum results. To evaluate and break down the EEG signal 
into its component features, a variety of feature extraction techniques are used. A well-liked and widely 
utilized method, VMD, was employed in the current investigation. VMD is an adaptive signal 
decomposition method based on Wiener filter, Hilbert transform and heterodyne demodulation. Its 
purpose is to decompose a real-valued input signal 𝑥(𝑡) into a set of sub-modes {𝑢𝑘} with a particular 
sparsity. Each of the limited bandwidth sub-modes is tightly centered around a central frequency 𝜔𝑘 . In 
the process of VMD, each submode 𝑢𝑘 is transformed by Hilbert transform to obtain the corresponding 
unilateral spectrum. The analytical signal of each component is mixed with a pre-estimated center 
frequency 𝑒−𝑗𝜔𝑘𝑡  and the spectrum of each mode is modulated to the corresponding base-band. In order 
to obtain the bandwidth of the sub-modes, the constraint variational problem is introduced to calculate 
the square 𝐿2norm of the gradient of the demodulated signals and estimate the bandwidth of each mode. 
The optimized variational model constructed is shown in Equation (6). 
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{

𝑚𝑖𝑛
{𝑢𝑘}, {ωk}

{∑ ‖𝜕𝑖 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗ωk𝑡‖

2

2
𝐾
𝑘=1 }

𝑠. 𝑡.  ∑ 𝑢𝑘(𝑡) = 𝑥(𝑡)𝐾
𝑘=1

     (6) 

where, 𝐾  is the number of mode components, {𝑢𝑘} = {𝑢1, 𝑢2, ⋯ , 𝑢𝐾}  and {𝜔𝑘} = {𝜔1, 𝜔2, ⋯ , 𝜔𝐾}  are 
components and corresponding central frequency respectively. ∑𝑘: = ∑𝐾

𝑘=1  is equivalent to the sum of 
all band components. 
By introducing the quadratic penalty factor 𝛼 and the Lagrange multiplication operator 𝜆(𝑡), the 
constrained variational problem is transformed into a non-constrained variational problem. The 
quadratic penalty factor can guarantee the signal reconstruction accuracy under the condition of 
Gaussian noise, and the Lagrange multiplier emphasizes the strictness of constraints. 

𝐿({𝑢𝑘}, {ωk}, 𝜆) ≔ 𝛼 ∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑘(𝑡)] 𝑒−𝑗ωk𝑡‖

2

2
𝐾
𝑘=1 + ‖𝑓(𝑡) − ∑ 𝑢𝑘(𝑡)𝑘 ‖2

2 + 〈𝜆(𝑡), 𝑓(𝑡) −

∑ 𝑢𝑘(𝑡)𝑘 〉     (7) 
Then, the {𝑢𝑘

𝑛+1}, {ω𝑘
𝑛+1},and 𝜆𝑛+1 are updated alternately by using the alternate direction method of 

multipliers (ADMM). By seeking the ‘saddle point’ of the extended Lagrange expression, that is, meeting 
the stop condition of iteration, mutually independent frequency band components {𝑢𝑘} are finally 
concluded. The decomposition process of the variational model is summarized in Algorithm 1. 
 
Algorithm: VMD 

Initialize: {𝑢̂𝑘
1}, {𝜔𝑘

1}, 𝜆̂1, 𝑛 ⟵ 0 
Repeat: 
𝑛 ⟵ 𝑛 + 1 
For k=1: k do 
Update 𝑢̂𝑘 for all 𝜔 ≥ 0; 

𝑢̂𝑘
𝑛+1(𝜔) ←

𝑓(𝜔) − ∑ 𝑢̂𝑖
𝑛+1(𝜔) −𝑖<𝑘 ∑ 𝑢̂𝑖

𝑛(𝜔) +
𝜆̂𝑛(𝜔)

2𝑖>𝑘

1 + 2 ∝ (𝜔 − 𝜔𝑘
𝑛)2

 

Update 𝜔𝑘: 
 

𝜔𝑘
𝑛+1 ←

∫ 𝜔|𝑢̂𝑘
𝑛+1(𝜔)|2𝑑𝜔

∞

0

∫ |𝑢̂𝑘
𝑛+1(𝜔)|2𝑑𝜔

∞

0

 

End for 
Dual ascent for all 𝜔 ≥ 0: 

𝜆̂𝑛+1(𝜔) ← 𝜆̂𝑛(𝜔) + 𝜏 (𝑓(𝜔) − ∑ 𝑢̂𝑘
𝑛+1(𝜔)

𝑘

) 

Until convergence: 
∑ ‖𝑢𝑘

𝑛+1−𝑢𝑘
𝑛‖

2

2
𝑘

‖𝑢𝑘
𝑛‖

2

2 < 𝜖 

 
Once the iterations converge, the final decomposed modes and their central frequencies are used to 
reconstruct the original signal. The reconstructed signal 𝑥̂(𝑡) is obtained by summing up all the modes: 
𝑥̂(𝑡) = ∑ 𝑢𝑘(𝑡)𝐾

𝑘=1                 (8) 
 
Discrete Wavelet Packet Transform (DWPT)and Nonlinear Analysis for feature extraction  
In this study, seven significant features (parameters) were combined with the VMD technique to generate 
feature vectors and improve AD system performance diagnosis. To construct the feature vectors, the 
significant features were computed for all extracted components, which included both the IMFs and the 
residual, from all signals of a certain trial. These feature vectors were then processed individually through 
the classifiers in order to reduce the proposed system complexity and simplify the training process. In 
order to handle EEG signals as efficiently as possible, the feature-extraction approach is essential. To deal 
with the relatively small number of values that indicate the properties of the EEG signal, the signals are 
recorded and split into long time-series. In order to handle EEG signals as efficiently as possible, the 
feature-extraction approach is essential. To deal with the relatively small number of values that indicate 
the properties of the EEG signal, the signals are recorded and split into long time-series. These numbers 
are often referred as being features since they are merged into a vector known as the vector with 
features. Consequently, feature-extraction methods may be characterized by methods for converting 
signals into feature vectors. To extract features, a variety of feature-extraction methods are employed. 
The most popular and often applied approach, DWPT, has been applied in this investigation. We propose 
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to use DWPT in this study to create vectors of attributes that include the parameters as follows: 
Logarithmic band power (LBP), Standard deviation (StD), Variance (VAR), Kurtosis (KUR), Average 
Energy (AE), Root mean square (RMS), and NO (Norm). 
Using the STFT, non-stationary data analysis is not possible, such as EEG data. This can be attributed to 
STFT's consistent accuracy over the entire wavelength range. The technique of multi-resolution wavelet 
transform is employed to assess various frequencies at various resolutions. Additionally, the wavelet 
transform would be the ideal choice to avoid the related dimensionality problem because it may provide 
fewer attributes for the signal to be analyzed. Wavelet transformations, for example, may analyze signal 
properties in the temporal along with frequency domains by decomposing signals across multiple steps 
via a single function [30]. This function is provided by and is known as the mother function ξ. 

𝜉(𝑡) =
1

√2
𝜉 (

𝑡−𝑦

𝑥
) . . . 𝑥, 𝑦 ∈  𝑊𝑆, 𝑥 >  0,       (9) 

 where the wavelet space (WS) is represented by the parameter and the scaling and shifting parameters, 
respectively, by x and y. Wavelet transform is represented by the following equation. 

𝐹(𝑥, 𝑦)  =
1

√𝑥
∫ 𝜉 (

𝑡 − 𝑦

𝑥
) 𝑑𝑡        (10) 

DWT was utilized in this work because it provides a very useful wavelet representation. Low- and high-
pass filters are commonly employed in first-level decomposition to offer a depiction of the digital 
information as detail (D1) and estimate (A1) components. The following equation provides the DWT 
decomposition: 

𝑓(𝑡) = ∑ 𝐷𝐶𝑛,𝑘∅(2−𝑛𝑡 − 𝑘)𝑘=+ 𝑋∞
 𝑘=−∞  + ∑ ∑ 2

−𝑗

2
×𝑎𝑐𝑗,𝑘×𝜓(2−𝑗𝑡−𝑘)𝑘=+ 𝑋∞

𝑘=−∞
𝑘=+ 𝑋∞
𝑘=−∞    (11) 

where the detail coefficients are represented by 𝐷𝐶𝑛,𝑘 and the approximation coefficients by 𝑎𝑐𝑗,𝑘 , 

respectively; n indicates the level and ∅ is the function of scale. The process is repeated once the first 
estimate is deconstructed. At the end of the process, n+1 deconstructed signals are present. The mother 
wavelet function utilized in this study is Daubechies 4 (db4); level 4 was selected since it provides the 
best qualities for correctly detected signal features. The following techniques were employed to produce 
the extra feature vectors: There are 𝑛 =  1, 2, . . . , 𝑁, discrete signal samples in S(n), where N is the 
number of signal samples. 

1. Logarithmic band power (LBP) 

𝐿𝐵𝑃 = 𝑙𝑜𝑔 (
1

𝑁
∑ |𝑆(𝑛)|2𝑁

𝑛=1 )       (12) 

2. The signal's Standard Deviation (𝜎) 

𝜎 = √
1

𝑁
∑ (𝑆(𝑛) − 𝜇 )𝑁

𝑛=1
2

        (13) 

   
3. The signal's variance V 

𝑉 =
1

𝑁
∑ (𝑆(𝑛) − 𝜇)2𝑁

𝑛=1          (14)  

4. The kurtosis of the signal  

𝑘𝑢𝑟𝑡 =  
𝐸(𝑆(𝑛)−𝜇)4

𝜎4         (15) 

where E( ) is the expected value of the signal samples. 
5. Average Energy (AE) 

𝐴𝐸 = ∑ |𝑆(𝑛)|2𝑁
𝑛=1         (16) 

6. Root mean square (RMS) 

𝑅𝑀𝑆 = √
∑ |𝑆(𝑛)|2𝑁

𝑛=1

𝑁
        (17) 

7. NO (Norm) 

𝑁𝑂 = √∑ |𝑆(𝑛)|2𝑁
𝑛=1      (18) 

More specifically, Discrete Wavelet Packet Transform (DWPT) provides a simultaneous decomposition of 
low and high frequencies. Unlike the Discrete Wavelet Transform (DWT), it also considers high 
frequencies after the 1st level of decomposition. This procedure is iterative, as the signal is successively 
filtered both by a low-pass and a high-pass filter (obtaining approximation and detail coefficients, 
respectively) [31]. 
The DWPT equation is defined as follows: 

𝑊𝑠,𝑚(𝑛) = {
√2𝑠∑ ∅𝑜(2𝑛 − 𝑘)𝑊

(𝑠−1),(
𝑚

2
)
(𝑘),𝑁−1

𝑘=0 𝑖𝑓 𝑚 𝑒𝑣𝑒𝑛

√2𝑠∑ ∅1(2𝑛 − 𝑘)𝑊
(𝑠−1),(

𝑚−1

2
)
(𝑘),𝑁−1

𝑘=0 𝑖𝑓 𝑚 𝑜𝑑𝑑
     (19) 

where s is the scale of decomposition (𝑠 =  {0, 1, 2, . . . , log2(𝑛)}  ∈  𝑍), 𝑁 corresponds to the signals 
length, m denotes the position in the tree at scale 𝑠 (𝑚 =  {0, 1, 2, . . . , 2𝑗  −  1}), 𝑛 are the samples (𝑛 =
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 {0, 1, 2, . . . , 𝑁 −  1}), and k represents the time (𝑘 ∈  𝑅). 𝑊𝑠,𝑚are the coefficients of the Wavelet Packet at 

the scale s and position m. ∅0 𝑎𝑛𝑑 ∅1 are the high-pass and low-pass Wavelet filters, respectively. These 
filters depend from the selected wavelet [24]. It must be pointed out that 𝑊0,0 is the original normalized 

signal — y(n), the sub-band signal 𝑊𝑠,𝑚(𝑛) has its frequency limited in [𝑚𝜋/2𝑠 , (𝑚 +  1)𝜋/2𝑠 )], where π 

is the normalized angular frequency. The filters applied vary according to the mother wavelet family and 
subfamily. 
 
Non-Linear Analysis  
According to the nonlinear dynamic theory, a complex system (such as the human brain) is characterized 
by nonlinear dynamic properties. Due to physiological events, the brain environment is constantly 
changing over time. Consequently, brain waves exhibit a nonlinear and chaotic behavior. Additionally the 
degree of complexity of the brain represents the time series randomness. Depending on the intensity of 
the brain activity, the EEG signal can be more or less complex, containing more or less information per 
signal fragment. Briefly, many methods of extracting nonlinear features have been increasingly explored, 
making them a powerful approach for EEG signal characterization. Indeed, through the detection of 
patterns in the time series, it is possible to infer about EEG signal behavior and predict the same kind of 
occurrences in the future [32]. 
The present method suggested the extraction of nonlinear and statistic features from each node and from 
each one of the channels of all participants’ signal segments with the purpose of accomplish a nonlinear 
and multiband analysis. Generally, the non-linearity characteristics correspond to entropy, exponents and 
fractal dimensions parameters.  
 
Energy  
The sub-bands energies are the most used EEG features for detecting AD due to the power shift effect 
from high to low frequencies that progressively occur as AD progresses. The energy of a signal 𝑥(𝑛) is 
defined as 
𝐸 = ∑ |𝑥(𝑛)|2𝑁

𝑛=1      (20) 
 
Entropy  
Entropy concept arises with the intention of describing the molecules distribution in a given system. This 
thermodynamic definition explains how molecules are organized, considering the size and atomic 
configuration of each one. Thus, the assessment of entropy allows the quantitative evaluation of the 
degree of randomness and uncertainty of a given sequence of data. Entropy is a measure that considers 
the amount of energy present in the complex system. In fact, entropy features are commonly used, as 
their analysis allows us to accurately evaluate the non-linear behaviour characteristic of the EEG signals 
[17,24,26]. Several measures of entropy were used (Shannon, logarithmic, norm, approximate, sample, 
and permutation entropy), leaving the feature selections process elect the one(s) more relevant for the 
EEG classification. 
Shannon Entropy: 
𝑆𝐸 = − ∑ |𝑥(𝑛)|2log [|𝑥(𝑛)|2]𝑁

𝑛=1      (21) 
Logarithmic Entropy: 
𝐿𝐸 = − ∑ log [|𝑥(𝑛)|2]𝑁

𝑛=1       (22) 
Norm Entropy: 
𝑁𝐸 = ∑ |𝑥(𝑛)|𝑙𝑁

𝑛=1      (23) 
where l represents the normalized power equal to 1.1 on present study [33].  
Approximate Entropy: 
𝐴𝐸(𝑒, 𝑟, 𝑁) = 𝐻𝑒(𝑟) − 𝐻𝑒+1(𝑟)    (24) 
where N is the data length (suggested to be 1000 of the signal standard deviation), r is the similar 
tolerance (between 0.1 and 0.25) and e represents the embedding dimension (between 2 and 3). H is the 
Heaviside function that results from intermediate calculations [33]. 
• Sample Entropy: 

𝑆𝐸(𝑒, 𝑟, 𝑁) = − ln
𝐴𝑒+1(𝑟)

𝐵𝑒(𝑟)
    (25) 

Where, 
𝐴𝑒+1(𝑟) = 𝑑[𝑥𝑒+1(𝑖), 𝑥𝑒+1(𝑗)] < 𝑟;    (26) 
And 
𝐵𝑒(𝑟) = 𝑑[𝑥𝑒(𝑖), 𝑥𝑒(𝑗)] < 𝑟;    (27) 
as the factors N, r, e are the same used in Approximate Entropy, the recommended values are similar, and 
d is the Chebyshev distance between two sets of simultaneous data points [33].  
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• Permutation Entropy: 
𝑃𝐸(𝑒) = − ∑ 𝑝𝑗 ln 𝑝𝑗

𝑚!
𝑗=1      (28) 

where e is the embedding dimension and 𝑝𝑗represents the probability of the j th permutation occurring 

[30].  
 
Chaos Theory  
Chaos theory is an approach closely related to dynamic systems. A dynamic system does not share the 
properties of a system in equilibrium, wherefore certain unpredictable disturbances may influence its 
behavior. In this way, those perturbations cause the system transition from one state to another. The 
concept of phase space represents the set of all possible states through which a dynamic system can pass 
over time. There are two main exponents which provide a comprehensive framework of chaos. 

• Hurst Exponent 

𝐻𝐸 =
𝜖−1

2
    (29) 

Where 𝜖 derives from power-law [26]. 
• Lyapunov Exponent 

𝐿𝐸(𝑥𝑜) =
𝑙𝑖𝑚

𝑛 → ∞
1

𝑛
∑ 𝑙𝑛|𝑓 ′(𝑥𝑘 − 1)|𝑛

𝑘=1      (30) 

Where 𝑓 ′ is the derivative of iterator function f.   
 
Fractal Analysis 
Fractal structures present self-similarity properties that enable detailing both irregular processes and 
structures. Regarding brain activity study, fractal geometry has been showing to be a useful approach to 
identify neurological pathologies. In fact, monitoring the selfsimilarity of the brain rhythms allows the 
characterization of the patient clinical condition. Fractal feature extraction such as the Higuchi fractal 
dimension is considered to be helpful in EEG signal classification [34].  
• Higuchi Exponent: 
𝐿(𝑘) ∝ 𝑘−𝐷     (31) 
where k indicates the time interval, L(k) is the length of the curve in the k time interval and D is the 
Higuchi Exponent. 
For each 38 study participants, 10 non-linear features (Energy, Shannon Entropy, Logarithmic Entropy, 
Approximate Entropy, Sample Entropy, Permutation Entropy, Norm entropy, Hurst Exponent, Lyapunov 
Exponent, and Higuchi Exponent) are calculated from the 18 DWP nodes signals of all 5 s segments per 
channel. At the same time, 10 timeseries statistics used for a fast signal analysis, such as Maximum, Mean, 
Median, Mode, Kurtosis, Standard Deviation, Variance, Skewness, Root Mean Square and Asymmetry, 
have been also extracted from each 18 DWP nodes. Thus, a total of 20 features have been computed in 
each DWP node 5 s signal analysis per channel. Treating the 20 extracted features of all segments per 
DWT Node analysis as time series distributions, 3 statistics have been used to compress them along the 
channel, reducing in this way the dimensionality of the problem. Mean, variance (var) and standard 
deviation (sd) have been picked for this purpose. At the end of the process, each DWT node analysis per 
channel produced 60 features (20 time series features digitally compressed by 3 statistics, respectively). 
 
DCNN-LSTM with ACS for classification of EEG data 
The extracted features from the EEG signal are given as input to the classifier. The classifier specifies that 
the new observation belongs to which category. The present study proposed a Combination of a deep 
convolutional neural network (DCNN) and long short-term memory (LSTM) called DCNN-LSTM. The 
DCNN-LSTM has the hyperparameters which is tuned by proposed optimization algorithm called 
Adaptive clonal selection (ACS) algorithm. 
 
Convolutional neural network  
A particular type of multilayer perceptron is a CNN, but a simple neural network cannot learn complex 
features, unlike a deep learning architecture. CNNs have shown excellent performance in many 
applications [35], such as image classification, object detection, and medical image analysis. The main 
idea behind a CNN is that it can obtain local features from high layer inputs and transfer them to lower 
layers for more complex features. A CNN comprises convolutional, pooling, and fully connected (FC) 
layers. A typical CNN architecture along with these layers is depicted in Fig. 3. The convolutional layer 
encompasses a set of kernels for determining a tensor of feature maps. These kernels convolve an entire 
input using “stride(s)” so that the dimensions of an output volume become integers. The dimensions of an 
input volume decrease after the convolutional layer is used to execute the striding process. Therefore, 
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zero padding [36] is required to pad an input volume with zeros and maintain the dimensions of an input 
volume with low-level features. The operation of the convolutional layer is given as: 
𝐹(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)    (32) 
where I refers to the input matrix, K denotes a 2D filter of size 𝑚 ×  𝑛, and F represents the output of a 2D 
feature map. The operation of the convolutional layer is denoted by 𝐼 ∗ 𝐾. To increase nonlinearity in 
feature maps, the rectified linear unit (ReLU) layer is used. ReLU computes activation by keeping the 
threshold input at zero. It is mathematically expressed as follows: 
𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)    (33) 
The pooling layer performs a downsampling of a given input dimension to reduce the number of 
parameters. Max pooling is the most common method, which produces the maximum value in an input 
region. The FC layer is used as a classifier that makes a decision on the basis of features obtained from the 
convolutional and pooling layers. 
 

 
Fig. 3. A typical architecture of the convolutional neural network 

 
Long short-term memory  
Long short-term memory is an improvement of recurrent neural networks (RNNs). LSTM proposes 
memory blocks instead of conventional RNN units in solving the vanishing and exploding gradient 
problem [37]. It then adds a cell state to save long-term states, which is its main difference from RNNs. An 
LSTM network can remember and connect previous information to data obtained in the present. LSTM is 
combined with three gates, such as an input gate, a “forget” gate, and an output gate, where 𝑥𝑡  refers to 
the current input; Ct and Ct− 1 denote the new and previous cell states, respectively; and ht and ht− 1 are 
the current and previous outputs, respectively. The internal structure of LSTM is shown in Fig. 4. 
The principle of the input gate of LSTM is shown in the following forms. 

it = σ(Wi. [ht−1, xt] + bi) 
𝐶̃𝑡 = tanh(Wi. [ht−1, 𝑥𝑡] + bi)    (34)   

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡 
where (3) is used to pass ht−1 and 𝑥𝑡through a sigmoid layer to decide on which portion of information 
should be added. Subsequently, (4) is employed to obtain new information after ht−1 and 𝑥𝑡  are passed 
through the tanh layer. The current moment information, 𝐶̃𝑡 , and long-term memory information 𝐶𝑡−1 
into 𝐶𝑡are combined in (5), where 𝑊𝑖  refers to a sigmoid output, and 𝐶̃𝑡  refers to a tanh output. Here, 
𝑊𝑖denotes weight matrices, and bi represents the input gate bias of LSTM. The LSTM’s forget gate then 
allows the selective passage of information using a sigmoid layer and a dot product. The decision about 
whether to forget related information from a previous cell with a certain probability is executed using (6), 
in which 𝑊𝑓 refers to the weight matrix, bf is the offset, and σ is the sigmoid function. 

𝑓𝑡 = 𝜎(Wf. [ht−1, 𝑥𝑡] + b𝑓)       (35) 

The LSTM’s output gate determines the states that are required for continuation by the ht−1 and 𝑥𝑡inputs 
following (7) and (8). The final output is obtained and multiplied by the state decision vectors that pass 
new information, 𝐶𝑡 , through the tanh layer 
𝑂𝑡 = 𝜎(W𝑜 . [ht−1, 𝑥𝑡] + b𝑜)         (36) 
∅𝑡 = 𝑂𝑡tanh (𝐶𝑡)     (37) 
where 𝑊𝑜 𝑎𝑛𝑑 𝑏𝑜  are the output gate’s weighted matrices and LSTM bias, respectively 
Combined DCNN-LSTM network  
In this study, a combined method was developed to automatically classifyEEG data using their features. 
The structure of this architecture was designed by combining CNN and LSTM networks, where the CNN is 
used to extract complex features from input, and LSTM is used as a classifier.  The network has 20 layers: 
12 convolutional layers, five pooling layers, one FC layer, one LSTM layer, and one output layer with the 
softmax function. Each convolution block is combined with two or three 2D CNNs and one pooling layer, 
followed by a dropout layer characterized by a 25% dropout rate. The convolutional layer with a size of 3 
× 3 kernels is used for feature extraction that is activated by the ReLU function. The max-pooling layer 
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with a size of 2 × 2 kernels is used to reduce the dimensions of an input. In the last part of the 
architecture, the function map is transferred to the LSTM layer to extract time information. After the 
convolutional block, the output shape is found to be (none, 7, 7, 512). Using the reshape method, the input 
size of the LSTM layer has become (49, 512). After analyzing the time characteristics, the architecture 
sorts the EEG through a fully connected layer to predict whether they belong under which categories 
(Presence of Alzheimer’s Disease, moderateor normal). 
Based on the quantity of EEG datasets, the following five categorization issues have been studied: Two 
classes of characteristics: Control in comparison to symptoms of mild and moderate AD Three classes of 
AD characteristics were compared: mild against moderate, regulate versus weak and moderate, and 
controls vs weak vs intermediate (3-class). The hyperparameter definition has a significant impact on the 
network's efficiency. The most significant issue is that there is no accepted paradigm for determining the 
ideal set of DCNN-LSTM hyperparameters and creating the architecture of the network. Using the ACS 
algorithm in this work, the authors created an automated method for hyperparameter optimization and 
structural design to solve this problem. The DCNN-LSTM model's chosen hyperparameters are batch size, 
number of epochs, number of filters, pooling size, and kernel size. 
 
Adaptive clonal selection (ACS) algorithm for hyperparameter optimization 
At present, many cloning selection algorithms have been studied, and improvements have been made to 
the cloning, mutation and selection steps. However, there is a lack of research on the optimization of the 
updating operation steps. The clonal selection algorithm is traditionally updated through a random 
complement of antibodies, which is a blind and uncertain process. The added antibodies may gather near 
a local optimal solution, resulting in the need for more iterations to obtain the global optimal solution. To 
solve this problem, our improved algorithm introduces a crowding degree factor in the antibody updating 
stage to determine whether there is crowding between antibodies. By eliminating antibodies with high 
crowding potential and poor afnity, the improved algorithm guides the antibodies to update in the 
direction of the global optimal solution and ensures stable convergence with fewer iterations.  
Organisms have a variety of immunologically active cells, and immune cells undergo mitosis to produce 
clones, i.e., a single cell gives rise to a group of cells. This mechanism of generating antibodies that 
recognize and destroy invading antigens and using asexually reproducing clones to activate differentiated 
and proliferating antibodies to achieve an immune response and ultimately remove the antigen is called 
clonal selection [38].  
The flow of the traditional CSA is shown in the following steps:  
Step 1: Initialize the parameter. Initialize the population size D, outstanding antibody size N, dimension 
dim, upper and lower bounds M and m for the array of antibody values, respectively, maximum number of 
iterations 𝐺𝑚𝑎𝑥 , and variation probability p where N < D.  
Step 2: Initialize the antibody population. Random generated antibody population of antibodies A of size 
D, 𝑥𝑖  is the i th antibody 𝑥, 𝑖 ∈  [1, 𝐷]. 
𝐴 = {𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝐷}    (38) 
Step 3: Calculate affinity. Calculate the affinity of each antibody in the antibody population by using the 
objective function as the target value.  
Step 4: Perform segmentation. Sort the calculated antibody affinities and select the top N antibodies as 
the outstanding antibody population B. 
𝐵 = {𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑁}      (39) 
Step 5: Clone. Clone each antibody at different scales, depending on affinity, to obtain the clonal 
population 𝐵′. 

𝐵′ = {𝑥1, … , 𝑥1, 𝑥2, … , 𝑥2, 𝑥𝑖 , … , 𝑥𝑁 … , 𝑥𝑁}    (40) 
Step 6: Mutate. Mutate the B′ antibody population with probability p to obtain the mutated antibody 

population B′′, where 𝑥𝑖
′is the i th mutated antibody 𝑥, 𝑖 ∈  [1, 𝑁]. 

𝐵′′ = {𝑥1
′ , … , 𝑥1

′ , 𝑥2
′ , … , 𝑥2

′ , 𝑥𝑖
′ , … , 𝑥𝑁

′ … , 𝑥𝑁
′ }    (41) 

Step 7: Select. For the cloned mutated antibodies, the antibody with the best affinity is selected to replace 
the original antibody. Finally, the new top N antibodies with good affinity are obtained as a new 
population of outstanding antibodies C. 

𝐶 = {𝑥1
′ , 𝑥2

′ , … , 𝑥𝑖
′ , … , 𝑥𝑁

′ }      (42) 
Step 8: Stock update. Randomly replenish d antibodies combined with the outstanding antibody 
population C as the initial population for the next generation. 
𝑑 = 𝐷 − 𝑁   (43) 
Step 9: Repeat step 3 if the maximum number of iterations 𝐺𝑚𝑎𝑥is not satisfed; otherwise, output the 
result. 
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Update operations with a targeted update policy  
The directed update strategy is an improvement on the traditional random update method. The 
integration of the directed update strategy into the update operation of the clonal selection algorithm 
regulates the balance between randomness and determinism, thus avoiding the problems of low accuracy 
in fnding the best solution and slow convergence rate due to complete randomness in the local search 
phase [38]. It can also avoid the blindness and uncertainty of antibodies generated by complete 
randomness, which may gather near a local optimal solution and produce crowding, so that the global 
optimum is never found. 
The DUSCSA uses a threshold 𝜎 to determine whether to add a random complement of antibodies to the 
antibody population. The threshold calculates the farthest distance between antibodies and introduces a 
crowding degree factor (cdf), where 𝑐𝑑𝑓 ∈ (0, 1), which is used as the defning value for determining 
“crowding”. If the difference in position between the current antibody and the best antibody in the 
current iteration is greater than the threshold 𝜎, crowding has not occurred and can be added to the 
antibody population; if the difference in position between the current antibody and the best antibody in 
the current iteration is less than the threshold 𝜎, crowding has occurred. If the diference between the 
current antibody and the best antibody in this iteration is less than a threshold 𝜎, crowding has occurred. 
In this case, the affinity between the two needs to be further determined, and if the current antibody has a 
higher affinity, this antibody can also be added to the antibody population. Otherwise, the algorithm 
continues to generate antibodies at random. The expression for the directed update strategy is as follows: 

𝜎 = 𝑐𝑑𝑓√∑ (𝑀(𝑖) − 𝑚[𝑖])2𝑑𝑖𝑚
𝑖=1     (44) 

𝑑𝑖𝑣 = √∑ (𝑥𝑖
𝑔

− 𝑏𝑖
𝑔

)
2𝑑𝑖𝑚

𝑖=1       (45) 

where M denotes the array of upper limits of antibody values, m denotes the array of lower limits of 
antibody values, dim denotes the antibody dimension, div denotes the distance between the current 
antibody and the optimal antibody during the current iteration, 𝑥𝑖

𝑔
denotes the i-th variable of antibody x 

during the g-th iteration, 𝑏𝑖
𝑔

denotes the i-th variable of the optimal antibody b during the g-th iteration, 

1 ≤  𝑖 ≤  𝑑𝑖𝑚, and 𝑔 ≤  𝐺𝑚𝑎𝑥 . 

{
𝐴 ⟸ 𝑥𝑖

𝑔
= 𝑟(𝑀[𝑖] − 𝑚[𝑖] + 𝑚[𝑖] + 𝑑𝑖𝑣 > 𝜎‖𝐴𝑓𝑓(𝑥𝑔) > 𝐴𝑓𝑓(𝑏𝑔)

𝑟(𝑀[𝑖] − 𝑚[𝑖] + 𝑚[𝑖]                           𝑜𝑡∅𝑒𝑟𝑠
    (46) 

where r denotes a uniformly distributed random number between [0, 1]. 𝐴𝑓𝑓(𝑥𝑖
𝑔

) denotes the affinity of 

the i-th variable of antibody x during the g-th iteration, and 𝐴𝑓𝑓(𝑏𝑖
𝑔

)  denotes the affinity of the i-th 

variable of the optimal antibody b during the g-th iteration. 
This process was repeated ten times; each time, one subset was transmitted into the testing classifier. 
Finally, the results were averaged to produce overall classification accuracy.  
 
EXPERIMENTAL RESULTS AND DISCUSSION 
The sensitivity, specificity, receiver operating characteristic curve area, and classifier accuracy may all be 
used to evaluate a diagnostic system. A multitude of classifiers were developed implemented and 
evaluated in order to obtain the greatest diagnostic efficiency and accuracy in classification. In this study, 
the proposed DCNN-LSTM with ACS is compared with various methods, such as RF, ELM, QDA, KNN, SVM, 
ANN, and MCNN classifiers, that produced the best outcomes. The k-fold cross-validation approach is 
used in the classification process, which randomly divides all EEG features into k equal groups [39]. The 
balance of subsets is used for training, and one subset is chosen for testing (validation). A selected 
number of each has been used once in the k repetitions of this procedure. We used 10-fold cross-
validation in the current study, putting all of the detected EEG signal characteristics into a feature matrix 
that was obtained using feature extraction techniques, and then applying 10-fold a cross-valid to the 
feature matrix. Following that, these qualities were split into two distinct subsets: 10% for testing and 
90% for training. The examination subset was given into the model after it was successfully trained each 
time, and the training subset was used for training the classifier with the aim to build and preserve the 
database of features of the learned classifier. 
As mentioned before, the EEG data utilized in this study were divided into 3 categories. Thirty-one 
moderate AD patients, twenty mild AD patients, as well as 30 Normal subjects submitted the EEG records 
for the initial, next, and final groups, respectively. The electroencephalogram (EEG) dataset was 
processed utilizing a band-pass elliptic digital filter having the threshold frequency of 0 and 60 Hz in 
order to improve the signal-to-noise ratio. Next, various statistical parameters and nonlinear analysis 
parameters are used to improve diagnostic performance and generate the EEG feature vectors. 
Ultimately, several classifier types were employed to divide the EEG data into groups based on these 
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classifications, and the classification accuracy of each group was calculated and contrasted. An in-depth 
evaluation of the recommended techniques was made possible by plotting the receiver's operating 
characteristic curves and calculating the regions beneath them. 
Its definition is a ratio of correctly segmented samples to the total number of samples. This represents 
one of the most frequently utilized metrics of the effectiveness of classification, as seen below.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (47) 

Where True Positive (TP): This denotes the accurate detection of AD. True Negative (TN): This status 
shows that a feature was appropriately identified as non-AD. FP: It means that a feature was mistakenly 
identified as AD. False Negative (FN): This signal means that feature was missed and classified as an AD. 
 

 
Fig.4. Sensitivity performance comparison 

 
Figure 4 compares the sensitivity of the existing RF, ELM, QDA, KNN, SVM, ANN, OMCNN and that of the 
proposedDCNN-LSTM with ACS. Figures comparing the proposed strategy to existing methods indicate 
that it can achieve a high sensitivity rate when used for DPWT based feature extraction. When compared 
to other existing approaches such as RF, ELM, QDA, KNN, SVM, ANN, OMCNN for DWT and, the 
proposedDCNN-LSTM with ACSachieves a high sensitivity rate of 99.12%, indicating its effectiveness in 
AD detection. The recommended solution displays a significantly lower end error and a substantially 
faster and less variable training curve when compared to the preceding strategies. These results provide 
additional evidence that the suggested method has a greater rate of AD detection. 
 

 
Fig.5. Specificity performance comparison 

 
The results of a specificity comparison between the present RF, ELM, QDA, KNN, SVM, ANN, KNN,OMCNN 
and the proposed DCNN-LSTM with ACSare shown in Figure 5. According to the results, the suggested 
DCNN-LSTM with ACSobtains specificity rates of 99.02% for DWT-based feature extraction approaches. 
 

92

93

94

95

96

97

98

99

100

DWT+CWT+Nonlinear  features

S
en

si
ti

v
it

y
 (

%
)

ANN

SVM

RF

ELM

QDA

KNN

94

95

96

97

98

99

100

DWT+CWT+Nonlinear  features

S
p

ec
if

ic
it

y
 (

%
) 

ANN

SVM

RF



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 1107                                                    Rashmi R Nath et al 1074-1090 

 
Fig.6. Accuracy performance comparison 

 
Fig. 6 shows the accuracy comparison of the proposed DCNN-LSTM with ACSwith the current RF, ELM, 
QDA, KNN, SVM, ANN and OMCNN. Based on the data, a high accuracy rate value was obtained by the 
suggested DCNN-LSTM with ACS, with a high rate of AD detection. With an efficient prediction model, the 
training time would be shortened by the filtering and feature extraction based on DPWT in the suggested 
scheme. Accuracy value is about 99% for DPWT along with nonlinear analysis, respectively, show that the 
suggested study can provide superior AD detection findings than current approaches. Medical 
professionals and physicians can benefit from the suggested method's automated, quick, simple, accurate, 
and efficient identification of Alzheimer's disease. The suggested method may cut down on the restricted 
number of neurologists, speed up diagnosis, and increase diagnosis precision.  
 

 
Fig.7. AUCROC performance comparison 

 
The AUCROC comparison for AD prediction is shown in Fig. 7. The findings demonstrate that, in terms of 
improved liquid particle identification results with high accuracy rates, the suggested DCNN-LSTM with 
ACStechnique outperforms the current algorithms. DCNN-LSTM with ACSlearning approaches improve 
accuracy without causing the local optima issue because they are very resilient to distortion in data used 
for training. These results imply that the suggested method is better capable of reliably and effectively 
differentiating not just AD however their sorts. 
 
CONCLUSION AND FUTURE WORK 
The main aim of this work is to develop an Alzheimer's disease diagnosis tool based on EEG data 
processing. The creation of an automated diagnostic system which can interpret signals from the brain on 
itself would quicken up and boost the reliability of the diagnosis process. The gathered EEG datasets 
during this investigation were filtered using BEF. After that, many signal features were combined using 
the DPWT methodology to improve diagnosis performance, and it helps to divide the signal that was 
filtered into high and low frequency bands. DCNN-LSTM with ACSthen looked into how EEG 
characteristics were categorized into groups. This study aims to evaluate many approaches and 
determine the best combination approach for Alzheimer's disease diagnosis. Datasets related to 
manageable, minor, and moderate Alzheimer's illnesses were utilized. The proposed system obtained 
better accuracy for classification. Additionally, the accuracy of the present OMCNN was enhanced by 3% 
when compared to the traditional model. This makes the recommended approach for processing EEG 
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signals very important, and the best classification would result from using a customized hyper-parameter 
model to predict the severity range. In future several preprocessing and feature selection approaches will 
be used to identify characteristics that might be helpful for future early Alzheimer's disease detection. 
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