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ABSTRACT 

A new type of errors known as restricted key error is introduced through this paper. Some 

formulae’s are provided to calculate the restricted key errors occurred in a vector of given 

length over GF(q). Also, Bounds on the check symbols needed for codes to be able to detect 

and locate restricted key errors that occur anywhere throughout the code length have been 

derived. 
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1. INTRODUCTION 

There is a large number of communication channels that are being used to send information 

from one place to another place. Each channel has a specific speed to transmit a particular 

type of information in the form of signals. During the transmission of a message through a 

channel, there may occur any error and the receiver may be unable to find the actual massage 

that was sent. There are several types of errors like random error, burst errors, repeated bust 

errors and key errors. Any message is sent in the form of strings of numbers or vectors. When 

due to a faulty channel, any digit of a string is replaced by any other digit at random basis, 

then such type of occurrence of error is called a random error. When some successive digits 

of a string are replaced by other digits then this clustered replacement is called a burst [9]. In 

the heavy loaded communication channels a burst error can repeat itself in a vector then such 

error is called repeated burst error [2, 8]. In the paper [13], the author introduced restricted 

burst errors. The paper [1] gives the repeated restricted burst errors with bounds for the codes 

capable to correct these repeated restricted burst errors. At first, the key error was introduced 

by P. K. Das [4]. When a person uses the keyboard while working on a computer and 

accidentally presses a wrong key, a different word that is meaningless or with different 

meaning appears. Due to this reason, Das named such error as a key error. The key that 

supposed to be pressed is referred to as \textit{entry error} of the key error. The entry error is 

always considered to be non-zero. 
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According to Das a key error is defined as “An i-key error of length b  (i = 1, 2,…, n) is an n-

tuple such that the ith component is non-zero and all other nonzero components are confined 

upto b consecutive positions (if exist) immediately preceding and succeeding the ith  

component” in [4], the author obtained the codes that correct the key errors.  

   

By introducing the idea of error locating codes, Wolf [14] proposed a midway approach to 

error detection and correction of the various types of errors.The paper [5] gives the codes that 

can locate the key errors and also suggested the weight distribution of the key errors. In the 

paper [6], the codes are developed that are capable to deal with the key errors existing in a 

sub-block. Such a code is divided into a predetermined number of sub-blocks that are 

mutually exclusive. 

A code is considered to be a good code if it possess more information digits. Such codes help 

to enhance the efficiency of a channel. Aiming the reduction of the check digits of a code, we 

are introducing a new type of errors which will be known as restricted key errors (RK errors). 

 

Definition 1.1 “A restricted i-key error of length   is a vector over GF(q) in which all the 

non-zero components occur only at    or less consecutive positions either or both sides of  ith 

position. The last component of each side is non-zero and each non-zero component is same  

element of GF(q). The ith component is called entry error of the restricted key.”  

 

2. CALCULATION OF RESTRICTED KEY ERROS OCCURRING IN A VECTOR 

We can calculate the restricted key errors of length  or less occuring in a vector of length 

n by imposing the restriction over the non-zero components of the  key errors obtained by P. 

K Das in his paper [4] . We can determine the restricted key errors from the key errors if the 

number )1( q   is multiplied to  the number  of key errors for binary case in each 

corresponding case of Theorem 2.1 of [4]. In the similar manner as the key errors the RK 

errors are divided into three parts:  

 

 (a). If the entry error  varies from first position to th  position, then total number of 

restricted key errors is given by  

 

                                                        12)1(
3

2 2  q .                                   (2.1) 

(b). If the entry error shifts from 
th)1(   to 

thn )(   position. Afterwards, the total count 

of RK errors is provided by 

 

                                           12)1(
3

)2( )12( 
 

q
n

.                                 (2.2) 

(c). If the entry error lies between the 
th   and thn  positions. Then the number of total 

restricted key errors is given by 

 

                                       
  







 
 

3

2
12

9

8
)1( )1(2 q

.                    (2.3) 

Consequently, the sum of RK errors of length upto    that occur in an n tuple is provided 

by 
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                                           Expr (2.1)+Expr (2.2)+Expr (2.3) 

i.e. 

 

      






 



 

3

2
12

9

8
12

3

)2(
12

3

2
)1( )1(2)12(2   n

q

.                           (2.4) 

 

3. DETECTION OF RESTRICTED KEY ERRORS 

 In the present“section”, the necessary and sufficient conditions to detect  restricted key 

errors by a code will be derived. The occurrence of the restricted key errors is considered to 

be in whole code length. For the restricted key errors“detecting”codes, the syndromes of the 

RK errors satisfy the following conditions. 

 

(i)  The syndromes corresponding to  the RK errors “corresponding” to all possible 

restricted key errors  must be different from zero vector. 

 

 Theorem 3.1 The number of parity check digits for a (n, k) code over GF(q) must 

satisfy the following condition in order to detect restricted key errors of length   or less 

that occur throughout the code length. 

 

                                                
 .12

3

)1(
1 )12( 


  q

q kn  

  

 Proof.  This result can be derived by determining the  number of all possible restricted 

key errors that have to be detected. 

 Let us assume that L represents  the set of all those vectors having their all non-zero 

restricted entries lying in the first  12  position. We ensure that these vectors ( restricted 

key errors) are distinct or we can say that no two different restricted key errors occur in the 

same coset. To prove our claim, we assume that two different restricted key errors E1 and E2 

are in the one coset. As sum or difference of two restricted key errors is a code vector. But by 

our assumption, E1 + E2  or E1 - E2 is an element of L, that concludes  a contradiction. 

Therefore, our claim is proved. 

 The number of all possible elemnts in L  is“equivalent”to the number of restricted key 

errors in a vector when the entry error varies from first position to 
th)1(    position.  

i.e. 

 

                                           
   12

3

)1(
12

3

)1(2 )12(2 



  qq

 

  

 or 

                                                                    12
3

)1( )1(2 
 q

. 

 Therefore the following number gives the total number of the RK erros that have to be 

detected ( taking the all zero vector together). 

 

                      
 12

3

)1(
1 )1(2 


 q

                                                                                  
(3.1) 
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 We can obtain the desired resurt by taking expression (3.1)< knq  , where knq  is the 

number of all possible cosets. 

 i.e. 

  

                                                              
 12

3

)1(
1 )1(2 


  q

q kn . 

  

In the following theorem, we will prove the “sufficient condition” required to  exist a code 

that can detect the RK errors in the whole code length. The famous bound,  Varshamov-

Gilbert-Sacks Bound (VGS Bound) (refer Theorem 16.14, [8]) will be used to prove this 

theorem. This bound “provides’ a technique to construct a PC matrix for codes. This theorem 

is verified by giving an example. 

Theorem 3.2. The construction of a PC matrix is possible that ensures the existence of an 

(n, k) code over GF(q) capable to detect the restricted key errors of length   or less if the 

“following” condition is satisfied. 

 

                                            

  .
3

2
12

9

8
)1(1 )1(2








 
  qq kn

 

  

Proof. The existence of the codes capable to locate the restricted key errors in a single 

sub-block is  considered to be ensured if the construction of a PC matrix H for such 

codes is done. This task will be performed by using the VGS Bound. As per this bound, let us 

choose appropriate n-k tuples over GF(q) to make ”all the columns of the first 1f  sub-

blocks together with the first 1  columns of the  thf  sub-block of H.” 

 In accordance with condition (i), “if column h  is not a linear sum of the 2  or 

fewer columns just preceding  , then the th  column h  of the PC matrix H can be added.”  

 

i.e., 

 

                                  ,.332211    huhuhuhuh                                  (3.2) 

   

where  iu ,s are same field elements of  GF(q). In expression (3.2), the calculation of the 

iu ,s coefficients is same as the calculation of the number of the RK errors occurring in last   

possition of a vector, which is given by  

 

                                                

  






 
 

3

2
12

9

8
)1( )1(2 q  

 Due to the expression (3.2) the total number of l.c. (taking together the n-k tuple with 

all zero components) that is not equal to h  is given by 

                                            

  






 
 

3

2
12

9

8
)1(1 )1(2 q . 

 

The required result will be obtained by putting this expression less than 
knq 
. 

i.e. 
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  .
3

2
12

9

8
)1(1 )1(2








 
  qq kn

                                                     

 

To wrap up this section, An example of the code that can detect RK errors up to   in 

length is provided.   

 

Example 3.3.  Taking 3q , 2 , 10n  in Theorem 3.2 in Theorem 3.2,  a ternary (10, 

7) linear code is obtained whose PCM is as follows: 

 

                                 



















1022101100

2110120010

1101211001

H  

 The error patterns syndrome table for this PC matrix can be made easily by using MS-

EXCEL. The syndromes due to the RK error  with lengths up to 2 that occur throughout the 

entire code length are non-zero. So, this ternary code is capable to detect the key errors of 

length upto 2. 

  

4. LOCATION OF THE RESTRICTED KEY ERRORS 

We are going to establish bounds over the check digits for a code that gives us information 

where  the restricted key errors are located. It is assumed that the entire code length of the 

codes that are able to lacate the RK errors is separated into a predetermined number of 

equally long sub-blocks that are mutually exclusive. The syndromes of the RK errors satisfy 

the conditions given below. 
 

(i) The Syndromes of each sub-block  that correspond to the RK errors must differ 

from the zero vector. 

(ii)  There must be a difference between the syndromes due to the RK errors in one 

sub-block and the syndromes due the RK errors in any other sub-block. 

  

Theorem 4.1.  The following condition must be met in order to locate the restricted key 

errors of length   in a single sub-block of a ),( kfln   code over GF(q) with k information 

digits and  entire code length is split up into f  sub-blocks, each with a length of l and mutual 

exclusivity. 

                                                           
 .12

3

)1(
1 )1(2 


  qf

q kn  

  

 Proof.  To derive this result we will determine the  number of all possible restricted 

key errors that have to be located.\\ 

 Since there are a total of f  sub-blocks, the expression (3.1) indicates the number of 

possible restricted key errors that can occur in a single sub-block. Consequently, the number 

of all possible RK errors (including the all zero component vector) that need to be located is 

given by 

                                                 
 .12

3

)1(
1 )1(2 


 qf

                                                            
(4.1)

 

  We can obtain the desired resurt by taking the expression (4.1)<
 

.knq 
 

can obtain the desired result by the expression (4.1) less than equal to the number of all 

possible cosets. 
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 i.e. 

                                            
 .12

3

)1(
1 )1(2 


  qf

q kn  

  

 The following theorem provides the suficient conditon required to  exist a code that can 

locate the RK errors in a single sub-block.The famous bound,  Varshamov-Gilbert-Sacks 

Bound ( refer Theorem 16.4, [8] ) will be used to prove this theorem. This bound provideds a 

technique to construct a PC matrix for codes. This theorem is verified by giving an example. 

 

Theorem 4.2.  The construction of a PC matrix is possible that ensures the existence of an 

),( kfln   code ( 2l ) over GF(q) capable to locate the restricted key errors of length    

or less if the follwing condition is satisfied. 

   






 
 

3

2
12

9

8
)1(1 )1(2 qq kn

 

                            .
3

2
12

9

8
12

3

)2(
12

3

2
)1(1 )1(2)12(2
















 



    l

f  

 Proof.  The The existence of the codes capable to locate the RK errors in single sub-block 

is  considered to be ensured if the construction of a PC matrix H for such codes is done. This 

task will be performed by using the VGS Bound. As per this bound,”let us choose appropriate 

n-k tuples over GF(q) to make all the columns of the first 1f  sub-blocks together with the 

first 1  columns of the thf  sub-block of H.” 

 In accordance with condition (i),”if column h  is not a linear sum of the  or fewer 

columns just preceding h , then the th   column h  of the PC matrix H can be added.”  i.e., 

 

 
                  huhuhuhuh .332211                                               (4.2) 

  

Where iu ,s  are same field elements of  GF(q). In expression (4.2), the calculation of the 

iu  coefficients is same as the calculation of the number of the restricted key errors occurring 

in last     “position” of a vector. This is given by 

  

                             

  






 
 

3

2
12

9

8
)1( )1(2 q                                                      (4.3) 

  

 Now, due the  condition (ii)”if column h  is not a linear sum of the   or fewer columns 

just preceding h  together with the linear combination of any set of 12   or less columns 

from any of 1f  sub-blocks, then the 
th  column h  of the PC matrix H can be added.” 

i.e., 

 

              huhuhuhuh .332211  

                  
,. 1212332211   hvhvhvhv                                                (4.4) 
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 where iu , iv  GF(q). The number of iu  “coefficients” in expression (4.4) is same as in 

expression (4.3) iu
 
while the finding the number of coefficients iv  is similar to the finding 

the number of restricted key errors contained in a vector of length l. This  is given by” 

 

                 .
3

2
12

9

8
12

3

)2(
12

3

2
)1( )1(2)12(2








 



    l

q  

 Since there are 1f  such sub-blocks, therefore, due to the condition (ii),  the number of 

linear sums is as: 

 

      .
3

2
12

9

8
12

3

)2(
12

3

2
)1()1( )1(2)12(22








 



    l

fq                       (4.5) 

 

  Therefore, due to the expression (4.4) the number of all linear sums (including the vector 

of all zero components) that is not equal to h  is 

   

                                                   1+Expr. (4.3) + Expr. (4.5) 

   

or 

                        

  






 
 

3

2
12

9

8
)1(1 )1(2 q

 

                                     .
3

2
12

9

8
12

3

)2(
12

3

2
)1(1 )1(2)12(2
















 



    l

f               

 

 The required result will be obtained by putting this expression less than knq  . 

 

 This section is concluded by giving an example of a code that locates the RK  errors of 

length upto  . 

  

Example 4.3.Taking 3q , 2 , 10l  in Theorem 4.2, we get a ternary (20, 13) linear 

code and its parity check matrix is given by  





























0002001112

2010002000

0022100101

0000110120

2100211002

0210112100

1101111111

1221000000

1110100000

1000010000

1220001000

1020000100

1100000010

1110000001

 
 

By preparing error patterns syndrome table, we can verify that all the syndromes of RK errors 

of length upto 2 occurring in different sub-blocks are non-zero and distinct. So, this is a ternar 

code is capable to locate the key errors of length upto 2. 
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