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ABSTRACT 
The fusion of multimodal medical imaging is crucial in enhancing the clinical utility of medical images for 
diagnosis and medical issue assessment. Fused images significantly augment the quality of reference 
images while reducing randomness and redundancy. However, the efficacy of the fused image heavily 
relies on the chosen fusion techniques. Numerous algorithms have been proposed to enhance the clinical 
precision of image-based decisions; however, developing efficient fusion methods continues to pose a 
significant challenge for researchers. This paper proposes a novel multimodal framework for medical 
image fusion aimed at enhancing output image clarity and diagnosis accuracy. Our approach integrates 
classical fusion methods such as CV2, DWT, and PCA with multimodal source images. We implemented 
and evaluated this method in a simulated environment, demonstrating through quantitative analysis that 
our approach markedly enhances fusion quality compared to existing methods. 
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1. INTRODUCTION  
Medical imaging has been widely applied for analysing and diagnosing diseases such as atherosclerosis, 
ageing and cancer. In this context, Multimodal Medical Image Fusion (MMIF) has become one of the most 
powerful tools that can help medical experts obtain richer and more accurate information by combining 
medical images from different modali- ties [1–3]. This technique aims to overcome the limitations of 
single-modal medical images : by combining various images of the same or different modalities with 
complementary information. The result is a single composite image that has comprehensive and detailed 
descriptions of the medical problems [2]. The top imaging modalities commonly used to produce the 
fused image include Microscopy, magnetic resonance imaging (MRI), Positron Emission Tomography 
(PET), radiology, printed signals (waves), Fluoroscopy, computed tomography (CT) scanners, Single-
Photon Emission Computed Tomography (SPECT), ultrasound and medical radiation [2,4,5]. The 
produced image is more informative and ac- curate than any single source image since it contains all the 
necessary information, leading to better and more appropriate medical decision-making [2,5,6]. 
The overall multimodal image fusion process includes five basic steps that should be performed after 
selecting the different imaging modalities and the appropriate fusion algorithm [4,5]. These steps can be 
summarised as follows: reference image registration, original image decomposition by a decomposition 
algorithm, fusion method, image re- construction, and evaluation methods [3,4,6]. The output fused 
image, obtained from the fusion method, must have all pertinent medical information that was extracted 
from the source image Nevertheless it must not contain any additional information that is not present in 
the reference image. The primary concern regarding this process lies in the fact that the resulting fused 
medical image’s is heavily reliant on the fusion technique’s efficiency. To address this, researchers have 
suggested various fusion algorithms intended to enhance the accuracy of fused image details. Each 
algorithm has its drawbacks and benefits [1,2,5]. Nonetheless, a trustworthy fusion technique is still 
necessary for producing more accurate, comprehensive, and potentially more easily interpreted results 
for various types of medical images. [1,5,7]. In this article, we aim to address these particular issues by 46 
proposing a novel multimodal medical image fusion algorithm that combines the output fused images 
obtained from the convolutional fusion methods CV2 [8], discrete wavelet transform (DWT) and Principal 
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Component Analyses (PCA) with the multimodal source image in order to further improve the fusion 
quality of medical images as well as the accuracy of the obtained results. The proposed fusion method can 
be used in a wide range of medical diagnostic problems. The quantitative experimental results 
demonstrate that the proposed algorithm significantly improves the fusion quality and performs better 
than most of the existing fusion methods in most cases. 
The rest of this paper is structured as follows. In section 2, we present some significant work in the 
multimodal medical image fusion domain. In section 3, we give a detailed description of the proposed 
fusion method. After that, we present in Section 4 the set of experiments that were performed to evaluate 
the proposed method along with an extensive analysis of the obtained results. Finally, in Section 5, the 
main conclusions of this work are presented along with some future directions to further enhance and 
extend their scope. 
 
2. Multimodal Image Fusion Techniques 
As previously discussed, multimodal medical image fusion is a research field aimed at developing 
advanced and reliable techniques that allow for the integration of image data captured from multiple 
imaging modalities [3,5]. These methods can be classified into three main levels: pixel level, decision level 
and feature level [4,5]. Decision-level fusion techniques merge information at a high level of abstraction 
and combine the results from numerous methods to achieve a common final decision that is better than 
the individual decisions of local fusion methods [2,9]. The fusion process is generally composed of three 
main steps. First, features are identified and extracted from each source image, then classified using local 
methods to form the corresponding results. Finally, decision rules are applied to fuse them, aiming to 
enhance the performance of the classification task. Bayesian techniques [10], dictionary learning, deep 
learning and machine learning are the most commonly used methods at the decision-fusion level [2,5,11]. 
In feature-level fusion, the sets of relevant features, such as edges, corner points, contours, texture and 
shapes [12], that were extracted from multiple biometric sources are combined into a single feature set 
by applying the appropriate feature normalisation, transformation, and reduction schemes [5,13]. 
Retrieved features in this category are more informative and better describe the content than pixels [2]. 
Further, this category resolves many issues related to contrast, noise sensitivity, and mis-registration 
with pixel-based algorithms [2,14]. The most important fusion methods that have been applied at this 
level are machine learning, deep learning [15], region-based, and similarity matching [2]. For instance, 
authors in [16] proposed a multimodal medical image fusion approach based on deep learning 
convolutional neural networks (CNN) for the fusion process. This approach has been tested on nine sets 
of input medical images from different modalities. The authors affirmed that their approach achieved 
better results compared to existing fusion methods. 
Pixel-level techniques, which are commonly employed in medical image fusion, oper- ate at the most 
fundamental level of image processing by directly merging the pixel data from multiple input images. 
They are generally used without applying any image enhance- ment technique to the original images 
[5,17]. These techniques are generally performed in either the transform or spatial domain [18,19]. The 
transform domain is based on frequency, where the source image is divided into several scales, and the 
transform coefficients are then merged together in accordance with predetermined fusion rules [2]. Then, 
the inverse transform of the fused coefficients is utilized to build the output fused image [2,18]. In this 
domain, wavelet-based algorithms, such as Discrete Wavelet Transformation (DWT), are extremely 
effective due to their rapid speed of computation, low energy consumption, and good fusion quality [18]. 
On the other hand, the spatial domain techniques are related to pixels, where pixel values from two or 
more images are brought together and manipulated to obtain the fused image [19]. This category includes 
many algorithms like Principal component analysis (PCA), Simple average, select maximum, select 
minimum, etc. 
Multi-scale decomposition (MSD) based fusion is one of the most widely used tech- niques at the pixel 
level [20]. In this technique, the source image is first decomposed into multi-scale layers and then, images 
from different sensors are combined at different scales to produce the fused image [2,20]. Many other 
popular pixel-level image fusion algorithms have used the Component Substitution (CS) approach to 
produce the fused image [12,20]. At the pixel level, the fused image is very rich in information content, 
which improves decision accuracy. However, we must deal with the highest amount of data and the 
processing demands are larger as compared to feature level and decision level fusion techniques [2,12]. 
Table 1 presents a comparison between the three levels of image fusion (pixel-level, feature-level, and 
decision-level) based on some criteria [2,6,9]. 
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Table 1. Comparison between the image fusion levels [2]. 

 
 
In the following sections, we will present the three pixel-level image fusion techniques that were used in 
this study; DWT, PCA and CV2. 
 
2.1. Discrete Wavelet Transform 
Discrete Wavelet Transformation (DWT) converts the image from the spatial domain to the frequency 
domain. In this method, the input source images are first transformed by DWT to their corresponding 
wavelet coefficient images at each scale level. Corresponding approximation coefficients and detail 
coefficients of the source images at each level are then fused, respectively, based on a certain fusion rule 
[5,19] (e.g., pixel-level averaging rule, weighted averaging rule and min-max rule). This rule can be a 
simple addition or averaging, or a PCA-based weighted averaging. The fused approximation and detail 
coefficients at each level are used in the final reconstruction of a single output fused image by an inverse 
DWT [2,21]. Fig. 1 illustrates the block diagram of a pixel-level image fusion process using wavelet 
transform and pixel-level averaging fusion rule [21]. 
This technique has found extensive application in the image fusion field, demonstrat- ing notably high 
performances. For instance, N. Julaiha et al. [22], proposed a multimodal image fusion approach for 
detecting brain tumours based on (Computed Tomography) scans and MRI (Magnetic Resonance 
Imaging) images. The fusion was executed utilizing DWT, IDWT, and VGG19 algorithms. This method was 
evaluated on the public datasets Brain Tumor Segmentation (BraTS) Challenge [23] and Cancer Imaging 
Archive (TCIA) [24], achieving an impressive accuracy of approximately 90%. 
 
2.2. Principal component analysais 
Principal Component Analysis (PCA), also known as the Karhunen-Loève transform (or the Hotelling 
transform), is a statistical analysis for transforming high-dimensional data into a new coordinate system, 
where the axes are chosen to be the directions of maximum variance in the data. This linear 
transformation is mainly used for reducing the dimension 
 

 
Figure 1. Scheme of Generic DWT fusion[21] 

 
ality of data while retaining as much information as possible. It is widely used in various fields, including 
statistics, signal processing, computer vision, and machine learning. This approach can be applied to any 
N number of modalities [25,26], and easily implemented for applications that analyse a huge amount of 
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data, such as in data compression and pattern 133 matching [25,26]. In addition, PCA plays a crucial role 
in preserving the essential features 134 of the original image while simultaneously reducing noise. By 
transforming the image data 135 into a new set of orthogonal components, PCA captures the most 
significant variations 136 in the data—those that contribute the most to the overall structure of the 
image. This allows the method to retain key information such as important textures, edges, or patterns, 
138 which are critical for interpretation and analysis. At the same time, PCA minimizes less relevant 
information, such as noise or small fluctuations that do not significantly impact 140 the image’s primary 
content. This noise reduction, coupled with the preservation of key features, enhances the quality of the 
final output, making it a highly effective tool for tasks like medical image fusion, where clarity and 
accuracy are paramount [26]. 
 

 
Figure 2. Scheme of Generic PCA fusion[27] 

 
In image fusion, PCA can be used to combine two or more source images from different ∗ modalities. As 
shown in Fig. 2, PCA generic fusion involves a mathematical procedure that transforms a number of 
correlated variables into a number of uncorrelated variables called principal components [7,27]. First, the 
source input images (I1(x, y), I2(x, y)) are organised in two-column vectors and their empirical means are 
subtracted. The resulting vector has a dimension of n 2, where n is the length of each image vector. After 
that, the eigenvector and eigenvalues for this resulting vector are computed and the eigenvectors 
corresponding to the larger eigenvalue are achieved. The principal components P1 and P2 (i.e., P1 + P2 = 
1) are computed from the obtained eigenvector. The fused image I f is [27]: 

 
 
2.3. Open Source Computer Vision Library CV2 
OpenCV, also known as CV2,is a robust open-source library primarily utilize for tasks related to computer 
vision and image processing. This library offers a diverse range of functions designed for performing 
operations like image resizing, cropping, and filtering, which are essential steps in preparing images for 
fusion. Moreover, OpenCV equips users with a comprehensive set of tools and functions that enable the 
implementation of various image fusion algorithms. Some common and fundamental fusion techniques 
achievable with OpenCV encompass averaging, weighted summation, minimum or maximum op- erations, 
Laplacian pyramid blending, and guided filter-based fusion. Notably, CV2 has found extensive application 
in the fusion of medical images utilizing multiple modalities [28,29]. For instance, authors in [28] 
leveraged CV2 in conjunction with a machine learning classifier for the early screening of coronary heart 
disease, achieved through the multimodal fusion of ultrasonic images and electronic medical records 
(EMRs). 
 
3. Proposed methodology 
In this section, we elucidate our methodology which is working to fuse medical images sourced from 
diverse modalities, including X-ray, Medical Resonance Images (MRI), Computed Tomography scan (CT), 
Position Emission tomography PET, Single Photon Emission Computed Tomography (SPECT), ultrasound, 
and nuclear medicine imaging. The fusion of images obtained from different modalities could significantly 
enhance the quality and clarity of medical images, ultimately facilitating healthcare professionals in their 
decision-making endeavours. As illustrated in Fig. 3, Our methodology involves various stages, beginning 
with the loading and pre-processing of the source images. This is followed by the fusion process, where 
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we adjust the fusion parameters. Lastly, we perform post-processing tasks, such as noise reduction and 
enhancement, based on the resulting fused image that integrates information from all modalities. More 
details about these stages are given in the following sections. 
 

 
Figure 3. High-level architecture of the proposed approach 

 
3.1. Source images loading and preprocessing 
Initially, we load two multi-modal source images as input, referred to as S1 and S2. The source images 
must have a square size, specifically 500 x 500 pixels. Otherwise, performing some pretreatment is 
necessary, like normalisation and resizing, which may be applied to the images as needed. This 
preprocessing is crucial for the compatibility of images and to give both images the required shape for the 
fusion process. In medical imaging, the normalization of source images is imperative due to potential 
fluctuations in lighting conditions and colour spaces during image acquisition. By meticulously adjusting 
brightness and contrast and standardizing colour spaces for coloured images, we achieve a consistent 
level of intensity and colour information across all regions of the source images. This crucial process 
serves to alleviate potential disparities, guaranteeing that subsequent analyses or fusion techniques are 
applied consistently and with precision, thus upholding the integrity and accuracy of diagnostic 
procedures. Moreover, it is worth noting that medical images are often obtained from diverse sensors, 
resulting in variations in spatial resolutions. However, our image fusion methodology necessitates 
spatially matched input images. Consequently, it becomes imperative to resize the input images to 
uniform dimensions and align them within the same coordinate system. Nonetheless, it is pivotal to 
emphasize that while this preprocessing stage is strongly recommended, it is not obligatory. There are 
instances where it may be omitted, particularly when source images exhibit identical origins, precise 
alignment, uniform dimensions, and consistent coverage, rendering them inherently suitable for fusion 
without further adjustment. 
 
3.2. Fusion process 
Following the necessary preprocessing procedures, the selected fusion technique is applied to source 
images named S1 and S2. In this paper, we propose a novel approach to combine the resulting source 
images. This approach involves several sequential steps. Firstly, we utilise the image augmentation 
technique, which is commonly used in image processing and computer vision, to enhance the size and 
variety of available images by generating new versions of data. This technique is largely used in machine 
learning and deep learning applications such as object detection, segmentation, and classification, where 
it allows for the expansion of the training dataset and the generation of new training samples, particularly 
when the available data is limited. We then fuse the image sources S1 and S2 together to create new 
images using three different techniques: CV2, DWT, and PCA. This results in new three images called 
RCV2, RDWT, and RPCA, produced by the CV2, DWT, and PCA methods, respectively. Next, we use the 
three generated images from the previous step, along with the source images,(S1 and S2) to generate 
more images through an iterative process using intensity-based methods. 
The low-level fusion methods are used to combine the intensity component, operating at the pixel level, to 
generate additional images by merging the pixel values from the input images. The fusion process is 
performed at a low level by pairing up the images and comparing the grey level of each pixel while 
adhering to a tolerance margin of τ. As previously stated, each image in our approach needs to have a 
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resolution of 500x500 pixels. Consequently, every image is encoded as a tuple consisting of 250000 
elements, with each element representing a pixel value within the image. The fusion process compares 
two input tuples In_T from two input images and combines them into a newly merged tuple F_T to create 
the output fused image. In the first iteration, the fusion is performed, and we will take the three generated 
images RCV2, RDWT, and RPCA and the source images S1 and S2 as input. Then, the output tuple is 
determined by calculating the average value if the grey values of each pixel in the input tuples are within 
a specified tolerance margin. Otherwise, a null value is assigned to the output tuple, as demonstrated in 
equation 2. Besides, it is important to note that the fusion between the two source images only occurs in 
the first iteration. 

 
Upon the completion of this iteration,, we will possess a total of nine novel images. The subsequent step 
involves the combination of the nine produced images to create more images that are both enhanced and 
contain valuable information, as outlined in equation 3. 

 
Where f _T is the tuple of the fused image, In_T is a tuple of an input image subject to − − the fusion, and 
S_T is a tuple of a source image. We can keep going through this process until we have the desired amount 
of images. At each iteration i, we will generate Ni new images based on the previous number of images Ni 
1 generated in the previous iteration i_ 1 . Once the augmentation process is complete, we obtain a 
collection of N additional tuples. In the current step, we will reconstruct the final image from the N tuples 
generated previously. We engage in a reverse iterative process until we obtain a single, highly detailed 
image. We will continuously work towards minimizing the number of tuples by extracting relevant pieces 
of information from each one. 
The first step in this process is to eliminate any null tuples, and once that is done, we proceed to separate 
the remaining non-zero tuples into two distinct packets. The next step involves comparing the tuples 
from the first packet with the tuples from the second packet, one by one, using equation 2, until we are 
left with a single tuple. The final tuple that is obtained will be used to reconstruct the resulting image in 
its final form. 
 
4. Experimental analysis 
For the implementation of our approach, we employed the Python 3 programming language alongside 
various open-source libraries on the Windows operating system. Specif- ically, we leveraged OpenCV 1 
and PyWavelets 2 to implement the CV2 and DWT image fusion methods, respectively. Moreover, we 
developed a user-friendly interface that facili- tates seamless interaction with the multitude of features 
and functionalities integrated into our framework. To evaluate the capabilities and limitations of our 
image fusion approach, we conducted computational experiments and validation. These experiments 
were per- formed on a CPU equipped with an i7 9750 H, 9th Generation Intel® Core™ i7 processor 
featuring 6 Cores and 12 Threads running at a speed of 2.60 GHz. Additionally, the system is equipped 
with 16 GB DDR4 RAM and a 1TB storage capacity hard drive. 
 
4.1. Dataset 
To test and validate our approach, we have created a comprehensive multimodal medical imaging 
dataset, comprising images from four distinct modalities of the brain: MRI, PET, SPECT, and CT scan. Each 
modality offers unique insights into brain anatomy and function. MRI (magnetic resonance imaging) 
provides detailed anatomical information on soft tissues, while CT (computed tomography) images offer 
clear visualization of bone structures. PET (positron emission tomography) images primarily reveal 
functional infor- mation such as metabolic activity. Additionally, SPECT (single-photon emission 
computed tomography) images provide valuable data regarding the distribution of radioactive tracers 
within the brain. The original medical images were sourced from the Harvard Medical Image Library 
website [30]. From this repository, we extracted a collection of 100 registered MRI-CT, MRI-PET, MRI-
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SPECT and CT-SPECT image pairs showcasing various brain tumours (see Fig. 5). These images were 
obtained at high resolutions, with MRI images sized at 256x256 pixels and PET images sized at 128x128 
pixels, ensuring a comprehensive and detailed dataset for our tests and validation purposes. 
 

 
Figure 4. Examples of pairs of source images derived from MRI, CT, PRT and SPECT modalities. The 

dataset encompasses 25 pairs each of MRI-SPECT, MRI-CT, MRI-PET, and CT-SPECT source images. For 
instance, Pair-1 includes MRI-1 and CT-1, Pair-2 includes MRI-2 and CT-2, and so forth. 

 
4.2. Fusion results and analysis 
In this section, we present the fusion results obtained using the proposed method and provide a detailed 
analysis of its performance. The results are evaluated based on key metrics, such as image clarity, 
standard deviation, and noise reduction. 
 
4.2.1. Visual Assessment 
The main purpose of visual assessment is to determine whether the proposed fusion method produces 
images that are more informative, clear, and useful for interpretation. Figure 5 shows the fused images 
obtained from methods PCA, DWT, CV2 and our approach. Upon closer examination of the fusion results, 
it becomes evident that each fusion combination yields noteworthy visual qualities. The fusion of MRI and 
PET images stands out for its exceptional visual quality. This fusion capitalizes on the strengths of both 
modalities: MRI provides detailed anatomical information with high-resolution clarity, while PET offers 
valuable functional insights, resulting in a fused image that seamlessly integrates both anatomical and 
functional data. Similarly, the fused images resulting from MRI and SPECT source images also achieved 
outstanding visual quality. Here, MRI contributes detailed anatomical information, capturing the intricate 
structures within the body, while SPECT complements this by providing functional data, resulting in a 
fused image that offers comprehensive insights into both anatomical structure and functional activity. 
Concerning the fusion of MRI and CT scan images, we observe yet another instance of exceptional visual 
quality. In this fusion, MRI excels in providing soft tissue contrast and precise delineation of structures, 
complemented by the CT scan’s ability to offer valuable information about bone density. The resulting 
fused image thus combines the strengths of both modalities to present a comprehensive depiction of 
anatomical structures and tissue characteristics. Lastly, the fusion of a CT scan and SPECT images also 
produces fused images of remarkable visual quality. Here, the CT scan contributes precise anatomical 
information, offering detailed insights into anatomical structures, while SPECT provides functional data, 
highlighting areas of functional activity. Together, these modalities create a fused image that offers a 
comprehensive understanding of both anatomical structure and functional dynamics. Overall, the 
proposed fusion method yields fused images of exceptional visual quality, each offering unique insights 
into anatomical structures and functional characteristics. It effectively capitalizes on the complementary 
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strengths of each modality, resulting in fused images that provide comprehensive and detailed 
information for diagnostic and analytical purposes. 
 

 
Figure 5. The fusion results of the fusion methods PCA, DWT, CV2 and our method. 

 
4.3. Performance Evaluation and Discussion 
In this section, we utilize objective metrics to evaluate the quality of the fused images systematically. 
These metrics provide quantifiable measurements that help assess various aspects of image quality. 
Specifically, we focus on the key metrics Standard Deviation (STD), Correlation Factor (Corr), Deviation 
(D), and Peak Signal-to-Noise Ratio (PSNR). 
 
4.3.1. Correlation (Corr) 
Correlation (Corr) helps to evaluate how well the fused image preserves the information from the original 
modalities by analyzing the Corr between pixel intensities. Higher Corr values indicate that the fusion 
method effectively integrates the significant features from the input modalities. Table 2 displays Corr 
values achieved across different fusion methods and depending on the combination of source image 
modalities, for the ten first samples for each type of source image modalities. Notably, our fusion method 
consistently achieved the highest Corr values across all samples, with values ranging from 0.71263 to 
0.9200 for all samples (20 samples of each subset of the source image modalities). The highest Corr value 
of 0.9200 was achieved by pair #07 in the MRI-TET subset of samples (see Figure 7). This proves that the 
structural similarity and Corr between the source images are exceptionally well preserved in the fused 
images, ensuring that the key structural details from the original modalities are maintained in the final 
output. This high level of Corr reflects the robustness of our fusion method in preserving critical features 
and enhancing the overall image quality compared to the other fusion methods. 
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Table 2. Correlation metric using different fusion methods and source image modalities. 

 
 
Figure 7 illustrates the highest and lowest correlation values achieved by our method for the four types of 
input source images, alongside the values obtained by other methods. 
 

 
Figure 6. The higher and lower correlation values achieved by our method, for each subset of source 

image modalities. 
 

The analysis also reveals that the CV2 method consistently produced the lowest Corr values across most 
samples among the four types of source image modalities. In contrast, the DWT method regularly 
achieved high correlation values, indicating its effectiveness in maintaining structural similarity between 
the source images in the fused output. This sug- gests that the DWT-based fusion technique is particularly 
stronger than CV2 at preserving important features from the original images. PCA also performed well, 
with its correlation values frequently comparable to, or slightly higher than, those of DWT. This indicates 
that the PCA-based fusion method is capable of maintaining Corr between the source images, while also 
preserving structural information in the fused outputs. While CV2 and DWT may be suitable options 
when a moderate level of correlation with some variation in the fused image is acceptable, PCA and our 
proposed method stand out as stronger contenders when the goal is to maximize structural similarity and 
retain high correlation between the source images. This makes PCA, and particularly our approach, more 
suitable in medical imaging for accurate diagnosis and analysis. 
 
4.3.2. Deviation (D) 
The deviation matrix is used to particularly quantify how much the output fused image deviates from the 
original source images. A lower deviation typically indicates that the fusion method effectively combines 
the significant features of the source images without introducing distortions or losing important medical 
information. Table 3 represents the deviation values achieved across the different fusion methods, for 
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different combinations of medical image modalities. As shown in the table, our fusion method 
consistently exhibits the lowest deviation values across all samples and modalities (20 samples for each 
subset). For example, in the MRI-CT modality, our method achieves the lowest deviation for sample #04 
with a value of 43.5875, significantly lower than CV2 (193.0943) and PCA (188.9802). Similarly, in the 
CT-SPECT modality, our method also maintains a lower deviation value of 40.8229 for sample #12 
compared to other methods. This trend is consistent across various image combinations, suggesting that 
our method outperforms others in minimizing distortion and better preserving essential features. The 
consistently higher deviation values from CV2 and PCA indicate that these methods introduce more 
variation, which may compromise the quality of the fused image. DWT generally performs better than 
CV2 and PCA but remains inferior to our method, making it particularly effective in medical imaging for 
accurate diagnosis and analysis (see Figure 3). 
 

Table 3. Deviation metric using different fusion methods and source image modalities. 

 
 
Figure 7 illustrates the highest and lowest deviation values achieved by our method for the four types of 
input source images, alongside the values obtained by other methods. 
 

 
Figure 7. The higher and lower correlation values achieved by our method, for each subset of source 

image modalities. 
 

4.3.3. Peak Signal-to-Noise Ratio (PSNR) 
The PSNR metric assesses how well our fusion method preserves the important details from different 
imaging modalities while minimizing noise and artifacts. A higher PSNR value is desirable, as it implies 
better image quality, which is essential for maintaining diagnostic accuracy and clinical utility. Table 4 
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represents PSNR values achieved across the different fusion methods, for different combinations of 
medical image modalities (10 first samples). Based on the obtained results, we observe that particularly 
for CT-SPECT, our fusion method yields the highest PSNR values across almost all cases, outperforming 
CV2 by significant margins (e.g., 32.847 for CT-SPECT #01 in our method vs. 30.720 in CV2), reflecting 
more effective noise reduction and detail preservation. Similar trends are observed for MRI-CT fusion, 
where our method consistently achieves superior PSNR scores, such as 32.400 for MRI-CT #02, compared 
to 30.566 in CV2. In MRI-SPECT and MRI-TEP combinations, our method again excels, often providing the 
best balance between enhancing image detail and maintaining overall image integrity, with scores like 
32.031 (MRI-SPECT #01) and 32.551 (MRI-TEP #19). Overall, our method consistently outperforms 
DWT, PCA, and CV2, highlighting its effectiveness in producing high-quality fused images. 
Figure 8 illustrates the highest and lowest PSNR values achieved by our method for the four types of input 
source images, alongside the values obtained by other methods. 
 

 
Figure 8. The higher and lower PSNR values achieved by our method, for each subset of source image 

modalities. 
 

Table 4. PSNR metric using different fusion methods and source image modalities. 
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4.3.4. Standard Deviation (STD) 
The standard deviation metric (STD) is particularly used to evaluate the level of detail and contrast 
retained in the fusion process. A lower standard deviation indicates that the values are closer to the mean, 
suggesting less variability in the data. In the context of medical image fusion, a lower standard deviation 
across modalities implies a more consistent fusion result, as there is less variation in intensity across the 
fused images. This is mainly desirable as it means a smoother or more coherent fusion, which is beneficial 
for visualization or diagnostic consistency. Table 5 shows the STD values for the first ten pair-source 
modality images, for each category. Based on the achieved results, our method shows consistently lower 
standard deviation values across all fusion combinations. As shown in Figure x, for the CT-SPECT pairs 
(sample #20), our method achieved a value of 60.99, significantly lower than other methods like DWT at 
78.84, PCA at 82.46, and CV2 at 87.31. Similarly, in the MRI-CT pairs (sample #10), our method shows a 
reduced deviation of 70.56, outperforming DWT (82.84), PCA (85.40), and CV2 (87.13). In more 
challenging MRI-TEP and MRI-SPECT combinations, where conventional methods struggle to stabilize 
(e.g., MRI-TEP sample #11 shows CV2 at 100.01 and PCA at 79.93), our method achieves far lower 
variability with standard deviations of 43.76 and 52.87, respectively. These results indicate that our 
fusion method is likely the most stable and reliable fusion method among those listed. This stability 
suggests that it could provide smoother or less variable fusion images, which may be advantageous in 
clinical settings where consistency is crucial. 
CV2 generally has the highest values across the combinations, indicating more vari ability and potentially 
less stable fusion results. On the other hand, PCA shows moderate values, lower than CV2 in many cases 
but not consistently the lowest. DWT has as slightly better (lower) values than PCA but does not 
outperform our method across all entries. 
Figure 9 illustrates the highest and lowest standard deviation values achieved by our method for the four 
types of input source images, alongside the values obtained by other methods for the same pairs of sour 
modality images. 
 

 
Figure 9. The higher and lower PSNR values achieved by our method, for each subset of source image 

modalities. 
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Table 5. STD metric using different fusion methods and source image modalities. 

 
 
In conclusion, our proposed fusion method demonstrates superior performance across multiple metrics, 
including correlation, deviation, peak signal-to-noise ratio (PSNR), and standard deviation, affirming its 
effectiveness in preserving structural details from original modalities. The consistently high correlation 
values, particularly with a peak of 0.9200 in the MRI-TET subset, indicate that our method excels in 
maintaining key features and enhancing image quality compared to alternative techniques like CV2, 
which showed the lowest correlation and highest variability. Additionally, our method achieves the 
lowest deviation values across all samples, significantly minimizing distortion and ensuring essential 
features are preserved. The PSNR results further highlight our method’s capability for effective noise 
reduction and detail preservation, outshining DWT, PCA, and CV2 in nearly all cases. Lastly, the 
consistently lower standard deviation values signify its stability and reliability, making it a compelling 
choice for medical imaging applications where accurate diagnosis and analysis are paramount. Overall, 
our fusion method stands out as the most robust approach among the evaluated techniques, offering 
enhanced image quality and consistency critical for clinical settings. 
 
5. CONCLUSION 
Fusing multimodal medical images is crucial for disease identification, analyzing treatment options, and 
improving the performance and precision of computer-assisted systems. In this paper, a multimodal 
medical image fusion algorithm is proposed based on the combination of the results of fused images 
obtained using the three methods CV2, DWT, and PCA with multimodal source images, In order to benefit 
from their results for the improvement of the final fusion quality. The proposed integrated all critical 
properties from multiple fusion results with source images into a single composite image for more 
accurate diagnosis and treatment. Experimental results illustrated that the proposed method exhibits 
significantly better fusion than the three classical methods (CV2, PCA and DWT). The performance of our 
method is significantly better compared to various distinguished equivalent metrics. 
 
Abbreviations  
The following abbreviations are used in this manuscript: 
CNN Convolutional Neural Networks  
Corr Correlation  
CS Component Substitution  
CT Computed Tomography D Deviation  
DWT Discrete Wavelet Transform  
MMIF Multimodal Medical Image Fusion  
MRI Magnetic Resonance Imaging  
PCA Principal Component Analyses  
PSNR Peak Signal-to-Noise Ratio  



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                 1014                                               Nassima Mezhoud et al 1001-1015 

SPECT Single-Photon Emission Computed Tomography 
STD Standard Deviation 
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