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Abstract

In the present paper, a theorem concerning local property of |A, pn|k summability of

factored Fourier series, which generalizes a result dealing with |N̄ , pn|k summability of

factored Fourier series, has been obtained. Also, some results have been given.
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1 Introduction

Let
∑
an be an infinite series with its partial sums (sn) and (pn) be a sequence of positive

numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1) .

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal

entries. Then A defines the sequence-to-sequence transformation, mapping the sequence

s = (sn) to As = (An(s)), where

An(s) =
n∑
v=0

anvsv, n = 0, 1, ...
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The series
∑
an is said to be summable |A, pn|k, k ≥ 1, if (see [21])

∞∑
n=1

(
Pn
pn

)k−1
|An(s)−An−1(s)|k <∞.

If we take anv = pv
Pn

, then |A, pn|k summability reduces to |N̄ , pn|k summability (see [2]).

If we take anv = pv
Pn

and pn = 1 for all values of n (resp. anv = pv
Pn

and k = 1), |A, pn|k
summability reduces to |C, 1|k summability (see [11]) (resp. |N̄ , pn|) summability. Also, if

we take pn = 1 for all values of n, then |A, pn|k summability reduces to |A|k summability

(see [22]). Furthermore, if we take anv = pv
Pn

, then |A|k summability reduces to |R, pn|k
summability (see [4]).

A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n, where

∆2λn = ∆(∆λn) and ∆λn = λn − λn+1 (see [24]).

Let f(t) be a periodic function with period 2π, and integrable (L) over (−π, π).

Without any loss of generality we may assume that the constant term in the Fourier

series of f(t) is zero, so that ∫ π

−π
f(t)dt = 0

and

f(t) ∼
∞∑
n=1

(ancosnt+ bnsinnt) =
∞∑
n=1

Cn(t),

where (an) and (bn) denote the Fourier coefficients. It is well known that the convergence

of the Fourier series at t = x is a local property of the generating function f (i.e. it

depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and

hence the summability of the Fourier series at t = x by any regular linear summability

method is also a local property of the generating function f (see [23]).

2 Known Results

There are many different applications of Fourier series. Some of them can be find in [1],

[5]-[10], [12]-[20]. Furthermore, Bor [3] has proved the following theorem.
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Theorem 1 Let k ≥ 1 and (pn) be a sequence such that

Pn = O(npn), (1)

Pn∆pn = O(pnpn+1). (2)

Then the summability |N̄ , pn|k of the series
∑ Cn(t)λnPn

npn
at a point can be

ensured by local property, where (λn) is a convex sequence such that
∑
n−1λn is

convergent.

3 Main Result

The purpose of this paper is to generalize Theorem 1 by using the definition of |A, pn|k
summability. Now, let us introduce some further notations. Let A = (anv) be a normal

matrix, we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =
n∑
i=v

ani, n, v = 0, 1, ... (3)

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ... (4)

and it is well known that

An(s) =
n∑
v=0

anvsv =
n∑
v=0

ānvav (5)

and

∆̄An(s) =
n∑
v=0

ânvav. (6)

Now, we will prove the following theorem.

Theorem 2 Let k ≥ 1 and A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (7)

an−1,v ≥ anv, for n ≥ v + 1, (8)
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ann = O

(
pn
Pn

)
, (9)

|ân,v+1| = O (v |∆vânv|) , (10)

where ∆v(ânv) = ânv − ân,v+1. Let the sequence (pn) be such that the conditions (1) and

(2) of Theorem 1 are satisfied. Then the summability |A, pn|k of the series
∑ Cn(t)λnPn

npn
at

a point can be ensured by local property, where (λn) is as in Theorem 1.

Here, if we take anv = pv
Pn

, then we get Theorem 1.

We should give the following lemmas for the proof of Theorem 2.

Lemma 3 ([13]) If the sequence (pn) is such that the conditions (1) and (2) of Theorem

1 are satisfied, then

∆

(
Pn
npn

)
= O

(
1

n

)
. (11)

Lemma 4 ([10]) If (λn) is a convex sequence such that
∑
n−1λn is convergent, then (λn)

is non-negative and decreasing, and n∆λn → 0 as n→∞.

Lemma 5 Let k ≥ 1 and let the sequence (pn) be such that the conditions (1) and (2) of

Theorem 1 are satisfied. If (sn) is bounded and the conditions (7)-(10) are satisfied, then

the series

∞∑
n=1

anλnPn
npn

(12)

is summable |A, pn|k, where (λn) is as in Theorem 1.

Remark 6 Since (λn) is a convex sequence, therefore (λn)k is also convex sequence and

∑ 1

n
(λn)k <∞. (13)
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4 Proof of Lemma 5

Let (Mn) denotes the A-transform of the series
∑ anλnPn

npn
. Then, we have

∆̄Mn =
n∑
v=1

ânv
avλvPv
vpv

by (5) and (6).

Now, we get

∆̄Mn =
n−1∑
v=1

∆v

(
ânvλvPv
vpv

) v∑
r=1

ar +
ânnPnλn
npn

n∑
v=1

av

=
n−1∑
v=1

∆v

(
ânvλvPv
vpv

)
sv +

annPnλn
npn

sn

=
annPnλn
npn

sn +
n−1∑
v=1

Pvλv∆v(ânv)

vpv
sv +

n−1∑
v=1

ân,v+1∆λvPv
vpv

sv

+
n−1∑
v=1

ân,v+1λv+1∆

(
Pv
vpv

)
sv

= Mn,1 +Mn,2 +Mn,3 +Mn,4

by applying Abel’s transformation. For the proof of Lemma 5, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)k−1
|Mn,r|k <∞, for r = 1, 2, 3, 4.

First, we have

m∑
n=1

(
Pn
pn

)k−1
|Mn,1|k =

m∑
n=1

(
Pn
pn

)k−1 ∣∣∣∣annPnλnnpn
sn

∣∣∣∣k
= O(1)

m∑
n=1

(
Pn
pn

)k−1 ( pn
Pn

)k 1

nk

(
Pn
pn

)k
(λn)k|sn|k

= O(1)
m∑
n=1

1

n
(λn)k = O(1) as m→∞,

by (9), (1) and (13).
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From Hölder’s inequality, we have

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,2|k =

m+1∑
n=2

(
Pn
pn

)k−1 ∣∣∣∣∣
n−1∑
v=1

Pvλv∆v(ânv)

vpv
sv

∣∣∣∣∣
k

≤
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

(
Pv
vpv

)
|∆v(ânv)| (λv)|sv|

}k

≤
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

(
Pv
vpv

)k
|∆v(ânv)|(λv)k|sv|k

}{
n−1∑
v=1

|∆v(ânv)|
}k−1

.

By (4) and (3), we have that

∆v(ânv) = ânv − ân,v+1

= ānv − ān−1,v − ān,v+1 + ān−1,v+1

= anv − an−1,v. (14)

Thus using (8), (3) and (7)

n−1∑
v=1

|∆v(ânv)| =
n−1∑
v=1

(an−1,v − anv) ≤ ann. (15)

Hence, we get

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,2|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

{
n−1∑
v=1

(
Pv
pv

)k 1

vk
|∆v(ânv)|(λv)k

}

= O(1)
m∑
v=1

(
Pv
pv

)k 1

vk
(λv)

k
m+1∑
n=v+1

|∆v(ânv)| .

Here, from (14) and (8), we obtain

m+1∑
n=v+1

|∆v(ânv)| =
m+1∑
n=v+1

(an−1,v − anv) ≤ avv.

Then,

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,2|k = O(1)

m∑
v=1

(
Pv
pv

)k 1

vk
(λv)

kavv
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= O(1)
m∑
v=1

(
Pv
pv

)k−1 1

vk
(λv)

k

= O(1)
m∑
v=1

vk−1
1

vk
(λv)

k

= O(1)
m∑
v=1

1

v
(λv)

k = O(1) as m→∞,

by (9), (1) and (13).

Now, by (1) and Hölder’s inequality, we have

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,3|k =

m+1∑
n=2

(
Pn
pn

)k−1 ∣∣∣∣∣
n−1∑
v=1

ân,v+1∆λvPv
vpv

sv

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

|ân,v+1|∆λv|sv|
}k

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

|ân,v+1|∆λv|sv|k
}{

n−1∑
v=1

|ân,v+1|∆λv

}k−1
.

Now, (4), (3), (7) and (8) imply that

ân,v+1 = ān,v+1 − ān−1,v+1 =
n∑

i=v+1

ani −
n−1∑
i=v+1

an−1,i

=
n∑
i=0

ani −
v∑
i=0

ani −
n−1∑
i=0

an−1,i +
v∑
i=0

an−1,i

= 1−
v∑
i=0

ani − 1 +
v∑
i=0

an−1,i

=
v∑
i=0

(an−1,i − ani) ≥ 0 (16)

and from this, using (4), (3) and (8), we have

|ân,v+1| = ān,v+1 − ān−1,v+1

=
n∑

i=v+1

ani −
n−1∑
i=v+1

an−1,i

= ann +
n−1∑
i=v+1

(ani − an−1,i)

≤ ann.
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Hence, we get

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,3|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

n−1∑
v=1

|ân,v+1|∆λv

{
n−1∑
v=1

∆λv

}k−1

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

{
n−1∑
v=1

|ân,v+1|∆λv

}

= O(1)
m∑
v=1

∆λv

m+1∑
n=v+1

|ân,v+1|.

Now, by (16), (3) and (7), we find

m+1∑
n=v+1

|ân,v+1| ≤ 1. (17)

Thus,

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,3|k = O(1)

m∑
v=1

∆λv = O(1) as m→∞,

by Lemma 4.

Since ∆
(
Pv
vpv

)
= O

(
1
v

)
by Lemma 3 and also by using (10), we have that

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,4|k =

m+1∑
n=2

(
Pn
pn

)k−1 ∣∣∣∣∣
n−1∑
v=1

ân,v+1λv+1∆

(
Pv
vpv

)
sv

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1{n−1∑
v=1

1

v
|ân,v+1|(λv+1)|sv|

}k

= O(1)
m+1∑
n=2

(
Pn
pn

)k−1 n−1∑
v=1

1

v
|ân,v+1|(λv+1)

k|sv|k
{
n−1∑
v=1

|∆v(ânv)|
}k−1

.

From (15) and (9),

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,4|k = O(1)

m+1∑
n=2

(
Pn
pn

)k−1
ak−1nn

n−1∑
v=1

1

v
|ân,v+1|(λv+1)

k

= O(1)
m∑
v=1

1

v
(λv+1)

k
m+1∑
n=v+1

|ân,v+1|.

Again using (17),

m+1∑
n=2

(
Pn
pn

)k−1
|Mn,4|k = O(1)

m∑
v=1

1

v
(λv+1)

k = O(1) as m→∞,

by (13). Hence the proof of Lemma 5 is completed.
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5 Proof of Theorem 2

The convergence of the Fourier series at t = x is a local property of f (i.e., it depends

only on the behaviour of f in an arbitrarily small neighbourhood of x), and hence the

summability of the Fourier series at t = x by any regular linear summability method is

also a local property of f . Since the behaviour of the Fourier series, as far as convergence

is concerned, for a particular value of x depends on the behaviour of the function in the

immediate neighbourhood of this point only, hence the truth of Theorem 2 is a consequence

of Lemma 5.

6 Conclusions

For anv = pv
Pn

and pn = 1 for all values of n, then we get a result concerning |C, 1|k
summability factors of Fourier series. If we take anv = pv

Pn
and k = 1, then we get a result

concerning |N̄ , pn| summability factors of Fourier series (see [13]).
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(1956), 114–124.

[13] K. N. Mishra, Multipliers for | N̄ , pn | summability of Fourier series, Bull. Inst. Math.

Acad. Sinica, 14 (1986), 431–438.

[14] R. Mohanty, On the summability | R, logω, 1 | of a Fourier Series, J. London Math.

Soc., 25 (1950), 67–72.
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