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Abstract
In the present paper, a theorem concerning local property of |A,pn|r summability of
factored Fourier series, which generalizes a result dealing with |N,p,|x summability of
factored Fourier series, has been obtained. Also, some results have been given.
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1 Introduction

Let >" a,, be an infinite series with its partial sums (s, ) and (p,,) be a sequence of positive

numbers such that

n
Pn:va%oo as n—oo, (Poj=p_;=0, i>1).
v=0

Let A = (apy) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal
entries. Then A defines the sequence-to-sequence transformation, mapping the sequence

s = (sp) to As = (A,(s)), where

n
An(s) = Z AnwSy, n=0,1,...
v=0
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The series Y a,, is said to be summable |A, p,|,, k > 1, if (see [21])

> (27 )~ Ao < o0

n=1 \DPn
If we take an, = B, then |A, p,[x summability reduces to |N, pp|r summability (see [2]).
If we take an, = 5 and p, = 1 for all values of n (vesp. an, = B and k = 1), |A,pul
summability reduces to |C, 1|, summability (see [11]) (resp. |N,p,|) summability. Also, if
we take p, = 1 for all values of n, then |A, p,|; summability reduces to |A|; summability
(see [22]). Furthermore, if we take an, = %, then |A[; summability reduces to |R,pyx
summability (see [4]).

A sequence ()\,) is said to be convex if A2\, > 0 for every positive integer n, where
A%\, = A(AN,) and AN, = A, — Any1 (see [24]).

Let f(t) be a periodic function with period 27, and integrable (L) over (—m, ).
Without any loss of generality we may assume that the constant term in the Fourier
series of f(t) is zero, so that

/ " f()dt =0
—

and
f(t) ~ Z (ancosnt + bysinnt) = Z Cn(t),
n=1 n=1

where (a,,) and (b,) denote the Fourier coefficients. It is well known that the convergence
of the Fourier series at t = x is a local property of the generating function f (i.e. it
depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and
hence the summability of the Fourier series at ¢ = x by any regular linear summability

method is also a local property of the generating function f (see [23]).

2 Known Results

There are many different applications of Fourier series. Some of them can be find in [1],

[5]-[10], [12]-[20]. Furthermore, Bor [3] has proved the following theorem.
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Theorem 1 Let k > 1 and (p,) be a sequence such that

P, = O(npy), (1)

P,Ap, = O(pnpn+1)- (2)

Then the summability |N,pn\k of the series Z% at a point can be
ensured by local property, where (\,) is a conver sequence such that >.n~ 1\, is

convergent.

3 Main Result

The purpose of this paper is to generalize Theorem 1 by using the definition of |A, p,|x
summability. Now, let us introduce some further notations. Let A = (ay,) be a normal

matrix, we associate two lower semimatrices A = (ap,) and A = (ayny) as follows:

n
dnv:Zam, n,v=0,1,... (3)

i=v
Goo = Gop = aoo, Gny = Qpy — C_Lnfl,va n = ]-a 2, .. (4)

and it is well known that

An(s) = Z UnpySy = Z Ay Qy (5)
v=0 v=0

and
Adp(s) = nypay. (6)
v=0

Now, we will prove the following theorem.

Theorem 2 Let k> 1 and A = (any) be a positive normal matriz such that

=1 n=01,.., (7)

Gn—1,v > anpy, forn>v+1, (8)
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|dn,v+1| = O (v|Aypanl) (10)

where Ay (Gny) = Gny — Gnyt1. Let the sequence (py) be such that the conditions (1) and

Cr (D) An Pr
npn

(2) of Theorem 1 are satisfied. Then the summability |A, p,|i of the series at
a point can be ensured by local property, where (\,) is as in Theorem 1.
Here, if we take an, = %”:L, then we get Theorem 1.

We should give the following lemmas for the proof of Theorem 2.

Lemma 3 ([13]) If the sequence (py) is such that the conditions (1) and (2) of Theorem

s(2)-0(3)

Lemma 4 ([10]) If (\n) is a convex sequence such that Y n~1\, is convergent, then (\,)

1 are satisfied, then

is non-negative and decreasing, and nAXN, — 0 as n — oo.
Lemma 5 Let k > 1 and let the sequence (py) be such that the conditions (1) and (2) of
Theorem 1 are satisfied. If (sp) is bounded and the conditions (7)-(10) are satisfied, then

the series

i AP (12)
=1 Pn

is summable |A, pp|k, where (N\,) is as in Theorem 1.

Remark 6 Since (\,) is a convex sequence, therefore (\,)¥ is also conver sequence and

Z*()‘n)k < o0. (13)
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4 Proof of Lemma 5

Let (M,,) denotes the A-transform of the series ) a”)‘;P . Then, we have

~ n Ao P,
AM, = 3y, ot
v=1 UPv
by (5) and (6)
Now, we get
n—1 N v
~ Ay P, nnPpA
AM, — ZAU(W)ZG nn "Zau
v=1 UPv r=1
SN (anUAvPU> - annPnAnsn
v=1 UPu npPn
ann Pu — PAA (@ a1 ANP,
_ anLLpn n3n+z . ( nv)8v+z n,v+; viv .
n v=1 Du v=1 Puv
n—1
P,
+ Z Qnp v+1)\v+1A < . ) Sy
v=1 v

by applying Abel’s transformation. For the proof of Lemma 5, it is sufficient to show that
o P k—1
Z <n> |]an|]C <oo, for r=1,234.

n=1 n

First, we have

- om3 (1) (5) e (2) owtter
- ouéiw’f—oa) as m oo,
by (9), (1) and (13).
5
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From Hoélder’s inequality, we have

n=2

¥ (o

n

k—1 .
> |Mn72|

m+1

D

n=2

m+1

D

n=2
m+1

< 2

n=2

IN

By (4) and (3), we have that

Av (dm))

Thus using (8), (3) and (7)

Hence, we get

m+1

>

n=2

G

P,

n

k-1 m+1 k-1
Py
) el = owy (3t)

(
(
(

Pn>k—1
Pn

s
DI

n—1
Z |Av(dnv)‘ =
v=1

= 0(1) i

v=1

Here, from (14) and (8), we obtain

Then,

m-+1

Uny — An 41

Qny — Qp—1,v-

n—1

Z (an—l,v -

v=1

UPv

P,

L PoA A ()
Z A ALV

Sv

k
) 184 () Msu}

(2) X

m+1

n—

S () 0]

V=

anv) < apn.

{

\po

m—+1

S 1A ()] -

n=v+1

Z |Av(&m))‘ = Z (an—l,v - anv) < Q.

n=v+1

349

n=v+1

Qny — C_ln—l,'u - an,v—l—l + C_Ln—l,”u—&—l

(14)

(15)
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v=1 v
= oy o
v=1
~ oy %(Av)’“ —0(1) as m— o,

by (9), (1) and (13).
Now, by (1) and Hélder’s inequality, we have

m+1 k—1 m+1 k—1
P P
() et - B (2)

Z an,v+1 vl v

v
VP

v=1
mtl  p o\ k-1 (n=l k
= 0(1) Z (”) {Z |&n,v+1|A)\UISU|}
n=2 Dn v=1
m+1

P k—1 (n—1 n—1 k-1
- oy () {Z |an,u+1|mv|su|k} {Z an,vﬂmv} .
n—2 \Pn v=1 v=1
Now, (4), (3), (7) and (8) imply that
n n—1
&n,v—i-l = Gny+l — On—1p+1 = Z Gni — Z an—1,
i=v+1 i=v+1

n v n—1 v
= Z (nj — Z Qi — Z ap—1, + Z (p—1,i
i=0 i=0 i=0 i=0
v v
= 1- Zani -1 +Zanfl,i
i=0 i=0

v

= Z(an—l,i — am) Z 0 (16)

=0

and from this, using (4), (3) and (8), we have

’dn,v+1| = ELn,erl_dnfl,v+1
n n—1
= Z Qng — Z Qn—1,i
i=v+1 1=v+1
n—1
= Gpp + Z (ani_an—l,i)
i=v+1
< Gnn-
7
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Hence, we get

mil s p kL mtl p o\ k-1 n—1 el k—1
> <") (Maslt = 0(1) Y (”) a1 AN {Z AAU}
n=2 n n=2 pTL v=1 v—1
m+1 P k—1 n—1
=2 Pn v=1
m m+1
= ZA)‘U Z ‘anv+1|
n=v+1
Now, by (16), (3) and (7), we find
m—+1
> lanwsi] < 1. (17)
n=v+1
Thus,
m+1 P k—1 m
> (n) |Mnslf = O(1)Y AN =0(1) as m— o,
n=2 n v=1
by Lemma 4.

Since A (%) =0 (%) by Lemma 3 and also by using (10), we have that

m+1 Pn k—1 m+1 Pn k—1
> () et = 3 (52

n—1 k
. P,

E an,v+1)\v+1A ( - ) Sy

v=1 up

n—2 Pn v
mtl  p o\ k-1 (n=l k
n N
- om'S (2) S Mol
n=2 Dn v:lv
mtl  p o\ k-1n=l k—1
n
= oY (1) Xy lanen O s Zm an)lb
n=2 Dn v= lv

From (15) and (9),

m+1 k—1

P,
> () il -
n=2

sy el k 171*1 1 k
o P ( ) Ay ;‘&n,v-i-l’()‘v-&-l)

Z

v=1
m 1 m+1
Z; v+1 z |dn,v+1|'

v=1 n=v+1
Again using (17),
m+1 Pn k—1 m 1
Z () \M,4* = 0(1) Z ;()\vﬂ)k =0(1) as m — oo,
n=2 n v=1

by (13). Hence the proof of Lemma 5 is completed.
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5 Proof of Theorem 2

The convergence of the Fourier series at ¢t = x is a local property of f (i.e., it depends
only on the behaviour of f in an arbitrarily small neighbourhood of x), and hence the
summability of the Fourier series at ¢ = x by any regular linear summability method is
also a local property of f. Since the behaviour of the Fourier series, as far as convergence
is concerned, for a particular value of x depends on the behaviour of the function in the
immediate neighbourhood of this point only, hence the truth of Theorem 2 is a consequence

of Lemma 5.

6 Conclusions

For a,, = %Z and p, = 1 for all values of n, then we get a result concerning |C,1|

summability factors of Fourier series. If we take ay, = %Z and k = 1, then we get a result

concerning |N, p,| summability factors of Fourier series (see [13]).
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