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ABSTRACT 
This research is being carried out within the framework of a SIS pandemic with a saturating incidence 
rate and a latent latency. Immediate and urgent attention is given to ensuring the stability of the model's 
disease-free and endemic equilibrium. To determine whether Hopf bifurcation takes place, one must first 
analyse the situation and, using the elapsed time as a metric, derive the bifurcation parameter. In order to 
help shed light on the results that were achieved, examples and simulations are provided. This paper 
investigates the dynamics of an SIS (Susceptible-Infectious-Susceptible) epidemic model incorporating a 
time delay to represent the period between infection and recovery. The analysis focuses on 
understanding how the time delay influences the system's stability and leads to the emergence of Hopf 
bifurcations. This study highlights the critical role of time delay in shaping the spread of infectious 
diseases and provides insights for developing effective control strategies. 
 
Keywords: SIS epidemic model, time delay, stability analysis, basic reproduction number, disease 
dynamics Hopf bifurcation. 
 
1. INTRODUCTION 
In recent years, mathematical models have emerged as powerful resources for studying and managing the 
transmission of infectious illnesses. Much of the classic mathematical literature on epidemiology makes 
use of continuous models, often expressed as simple non-linear differential equations. To combat the 
spread of illnesses, researchers in recent years have developed a variety of epidemiological models (e.g., 
SI, SIS, SIR, SIER, SIERS, etc.) that include various treatment options. The fundamental assumptions of 
these model state that the whole population is quantitatively classified into different groups based on 
their epidemiological condition and that the transmission of the virus is represented by incidence terms. 
Since there is no way to prevent reinfection in a SIS model, infected individuals revert to the susceptible 
class after they recover. [1] With a delay and a population size that may vary, H.W. Hethcote and P. Van 
den Driessche developed a SIS epidemic model. [2] G. Ranjith Kumar, K. Lakshmi Narayan, and B. 
Ravindra Reddy conducted a stability study of an epidemic model that included immigration and 
nonlinear incidence rates. [3] In their work, H.W. Hethcote and Vanden Driessche provide two delayed SIS 
epidemiologic models. [4] M.Sridevi, B.Ravindra Reddy, Dynamics of an SIS Epidemic Model with Double 
Epidemic Hypothesis. [5] V.N. Afanasev,V.B. Kolmanowski,and V.R.  
Nosov,MathematicalTheoryofControlSystem Design. P. Das, D. Mukherjee, and A. K. Sarkar, 
Study of an S-I epidemic model with nonlinearincidence rate [6]. S. Ruan, D. Xiao, Examining a non-
monotone pandemic model on a global scale [7]. Authors: W.O. Kermack and A.G. Munro Enhancement of 
mathematical theory pertaining to epidemics [8]. Chen L.S., Chen J, Biological System with Nonlinear 
Dynamics [9]. In their work on epidemiological models for SIR, SIRS, and SIS, A. Korobeinikov and G.C. 
Wake addressed Lyapunov functions as well as global stability [10]. For Classical SIS, SIR, and SIRS 
Epidemic Models with Variable Population Size, C. Vargas-De-Le'on constructs Lyapunov Functions [11]. 
Vargas-De León C. On the Global Stability of SIS, SIR and SIRS Epidemic Models with Standard Incidence 
[12]. J. Zhou and H. W. Hethcote [13] state that in models for non-immune diseases, the incidence is 
proportional to the population size. Raid kamel Naji and Ashraf Adnan Thirthar released their book in 
2018. The SIS epidemic model presented in [14] incorporates stability and bifurcation into its treatment 
function, as well as a saturated incidence rate. Bnerjee, S.K. [15] studied a fractional-order SIS pandemic 
where the population size is variable and the recruitment rate is constant. Zhang, J. Sun, Physicists tested 
the robustness of an epidemic model in SIS that included a feedback mechanism for networks [16]. J.S. Y. 
Muroya, T. Kuniya, and Zhou's SIS disease transmission model based on recruitment-birth-death 
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emographics [17] Keeping the world's population movement model consistent with a multi-group SIS 
pandemic [18]. Yasuo Muroya and Taiyo Kuniya A worldwide pandemic model that incorporates many 
populations and their resiliency [19]. In order to account for non-linear epidemic rates, K. Madhusudhan 
Reddy, K. Lakshmi Narayan, and B. Ravindra Reddy created the delayed SIS epidemic model [20].  
In this research, we examine a SIS-type epidemic model and use it to find the fundamental reproduction 
number, stable states, and stability. 
 
2.MATHEMATICAL MODEL 
Immunity cannot be achieved against all infectious diseases. There is no way to recover from these 
illnesses; in fact, once infected, people are always at risk of contracting them again.  
The SIS type may be used to simulate this illness. Classes (S) represent the susceptible members of the 
population, whereas classes (I) represent the infectious members (I).In order to put the SIS model into 
differential equations form,  

 
change of the susceptible individuals when their number increases. 
 
3. EQUILIBRUIM ANALYSIS 
There are two equilibrium for system (1) 
i) Disease-Free-Equilibrium  

0 ,0
b

P
r

 
  

 
 

ii) Endemic equilibrium 
 

( , )P S I   with coordinates 

S 
=
 1 )(I c  



  
,   I  = 

( )( )

( )( ) ( )

b r c

c r c

   

     

   

    
(2) 

The parameter 0R = 
( )( )

b

r c



    
is the Basic reproductive number 

 
4. LOCALSTABILITY ANALYSIS 

In this section, we investigate the stability analysis of Disease-Free-Equilibrium 
0P  and Epidemic-

Equilibrium P
. The Jacobian matrix of system (1) 
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J =  
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   (3) 

 
4.1 Stability of disease-free equilibrium 

Theorem1: The disease-free equilibrium is locally asymptotically stable if 0 1R  and unstable if 0 1R  . 

Proof: For the disease-free equilibrium at the point 
0P  the system (3) reduces to  
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(4) 

With characteristic equation 
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The characteristic roots are given by  

 
 1 2,
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 then the system is stable if  
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0 1R   

Hence the given system is stable if 0 1R  and unstable if 0 1R  . 

 
4.2 Stability of Endemic-Equilibrium  

Theorem2: The Endemic steady state P
of (1) is locally asymptotically stable if 0 1R   

Proof: The Jacobian matrix for system (1) evaluated at the endemic steady state P
is 

 

 
   

   
 

* *

2 2
* *

*

* *

2 2
* *

1 1

1 1

I S
r

I I
J P

I S
c

I I

 
 

 

 
 

 

 
   

  
  
   
   
 

 

that can be rewritten as  
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                                             (5) 

when we consider the identify  
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*1
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which is obtained by the endemic steady state the trace of ( )J P
 is 
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   
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Thus tr ( ) 0J P   

Also, we obtain 
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thus det ( ) 0J P   

Here, the eigen value of the Jacobian matrix ( )J P
 have negative real parts. This means that P

is 

asymptotically stable whenever it exists. 
 
5. DELAYED SISMODEL 
This part of the paper is devoted to construction the dynamical model for our proposed problem.The 
process dynamical model can be described as  
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6. LOCAL STABILITY ANALYSIS 

In this section, we investigate the stability analysis of Disease-Free-Equilibrium 
0P  and Endemic-

Equilibrium P
 

 
The Jacobian matrix of system (6)  
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6.1 Stability of Disease-Free-Equilibrium 

The Jacobian matrix of the linearized of model (6) at 
0 ( ,0)P S  is given by 
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With the characteristic equation  
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In case of 𝜏 =0 in above equation 
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0 1R   

Hence the given system is locally asymptotically stable if 0 1R   and unstable when 0 1R   

 
6.2 Stability of Endemic Equilibrium 

Now the Jacobian matrix J at endemic equilibrium ( , )P S I   is given by 
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The characteristic equation of (9) is given by 
2
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we need to find the necessary and sufficient condition for every root of the characteristic equation (10) 
 
Case 1: If 𝜏 = 0 equation (10) becomes  

2

1 2 1 2 0P P Q Q        

2
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where 0 1R  , we have 1 1 2 2( ) 0&( ) 0P Q P Q     

By Routh-Hurwitz criteria, all roots of (11) are real and negative, or complex conjugate with the negative 
real part 
Hence, the system (6) without delay is locally asymptotically stable when 1R  . 
Case 2: If 𝜏 > 0 

Suppose that there is a positive 0 such that equation (10) has pair of purely imaginary roots i , 

0put i    in (10), we get 
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Then, there is no  such that i  is an Eigen value of the characteristic equation (10) 

i.e.,  will never be a purely imaginary root of equation (10). Thus, the real part of all the Eigen value of 

equation (10) is negative for all 0  . 

Hence, the endemic equilibrium P
is asymptotically stable for all  . 

If the following conditions hold: 
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If
2 2

2 2( ) 0P Q  . There is a unique positive ω0 satisfying (14). That is, there is a positive 0 such that 

equation (10) has pair of purely imaginary roots 0i  as  0  and all the eigen values with negative 

real parts as 00    . 

From (13) 𝜏𝑘 corresponding to 0 can be obtained  
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7. Hopf Bifurcation 
Based on the above results, we have the following 
 
Theorem3:AssumethatR0>1thenthereisapositiveτ0suchthatthefollowingresultshold. 

i) If 00 ,   equation(6)has anendemic equilibrium Pwhich is locally a symptotically 

stable. 

ii) Equation(6)can undergo a Hopfbifurcation if 0 ,   and a periodic orbit exists in the small 

neighborhood of the endemic equilibrium. 
Proof: To obtain the Hopf bifurcation, we need to check the transversal condition for the complex 

eigen values of the P at 0  . Then, from equation(10),wehave  
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Therefore, the transversality condition holds, and Hopf bifurcation occurs at 0  , 0   

 
8. NUMERICAL SIMULATION 
In this section, we substantiate as well as augment our analytical results through numerical simulations  
considering the following  
Example: We take the following parameters 

0.9, 0.1, 0.4, 0.023, 0.003, 0.5, 0.071b r c           

system(6) has the unique positive equilibrium P
(7.0602, 0.5580) and 0R = 1.5679 1  

It follows from result (16), that the critical positive time delay 0 = 0.45 and we know that when as 

0 < 𝜏 < 𝜏0 E1 is asymptotically stable. From the theorem (2) when𝜏 passes through the critical value 
𝜏0 =0.45    The positive equilibrium loses its stability and a family of periodic solution bifurcate from 
P*.(Fig. 1-3). 
 

 

Figure 1: The trajectories and phase graphs of system (6) with 00.05 0.45     
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Figure 2: The trajectories and phase graphs of system (6) with  0 0.45    

 

 

Figure 3: The trajectories and phase graphs of system (6) with   00.6 0.45     
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Findings 
Threshold Dynamics:The system's behaviour is dictated by the fundamental reproduction  number 
(R0). The sickness will disappear if the disease-free equilibrium is universally stable, which occurs when 
R0<1. An endemic equilibrium is formed when R0 >1, which means that the sickness persists. 
1. Impact of Time Delay: Time delay significantly influences the stability of the endemic equilibrium. 

When the delay is small, the equilibrium remains stable. However, beyond a critical delay value, the 
system undergoes a Hopf bifurcation, leading to periodic oscillations in the disease prevalence. 

2. Critical Conditions for Bifurcation: Analytical expressions are derived to identify the delay values 
at which Hopf bifurcation occurs, providing a clear understanding of the transition from stability to 
oscillatory behavior. 

3. Numerical Validation: Simulations confirm the theoretical predictions, demonstrating the onset of 
periodic oscillations and the sensitivity of disease dynamics to time delays. 

 
Suggestions 
1. Delay Minimization: Public health interventions should aim to minimize delays in diagnosing and 

treating infections, as longer delays can destabilize the system and result in recurrent outbreaks. 
2. Early Detection and Response: Strategies that focus on reducing the infectious period, such as 

faster testing and treatment, can help maintain the stability of the disease-free state. 
3. Policy Design: Incorporating the effects of delays in epidemiological models can improve the 

accuracy of disease control policies and help design interventions that prevent periodic disease 
outbreaks. 

4. Further Research: Investigate the influence of other factors, such as vaccination or external 
interventions, in the presence of delays, to develop more comprehensive models for managing 
infectious diseases. 

5. Community Awareness: Educating the public about timely medical intervention can be a practical 
approach to reducing the effects of delays in disease transmission dynamics. 

 
CONCLUSION 
Using a conventional incidence rate, we have examined the SIS epidemic model in this specific paper. We 
found that of all the variables that affect the SIS epidemic model's global stability, the base reproduction 
number is the most crucial. A disease-free-steady state, which is globally asymptotically stable, will be the 
only possible outcome if the basic reproduction number is less than one; the disease will inevitably 
vanish. If there is more than one fundamental reproduction number, then there is a unique endemic 
stable state. As a result, the disease is likely to spread across the population and become endemic in due 
time. This study provides a comprehensive analysis of the stability and dynamics of an SIS epidemic 
model incorporating a time delay to represent the period between infection and recovery. The results 
demonstrate that the basic reproduction number (R0) serves as a crucial threshold parameter 
determining the disease's long-term behavior. When R0 <1, the disease-free equilibrium is globally stable, 
ensuring the eradication of the disease. For R0>1, an endemic equilibrium emerges, and the system's 
stability depends on the time delay.As the delay increases beyond a critical value, the system experiences 
a Hopf bifurcation, leading to sustained oscillations in the infected population. This highlights the 
significant role of delays in influencing disease dynamics and the potential for recurrent outbreaks.The 
findings emphasize the importance of timely interventions and suggest that reducing delays in diagnosis 
and treatment can stabilize the system and control disease spread. This work contributes to the 
understanding of time-delayed epidemic models and offers valuable insights for designing effective public 
health strategies to mitigate the impact of infectious diseases. 
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