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ABSTRACT 
An analytical study on the effects of chemical reaction on unsteady flow of a viscous, incompressible and 
electrically conducting fluid past an oscillating inclined plate and radiation absorption through a porous 
medium with variable temperature and heat source in the presence of transversely applied uniform 
magnetic field, because of its widespread application in chemical engineering and manufacturing 
industries.  The plate temperature and concentration level near the plate increase linearly with time. The 
equations of momentum, thermal and as well as species concentration were solved used by the 
perturbation technique. The visual representation of changes in fluid velocity, temperature and 
concentration, results obtained are discussed with the help of graphs drawn for different parameters. 
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1. INTRODUCTION 
The study of heat generation or absorption in moving fluids is important in problems dealing with 
chemical reactions dissociating fluids. Since some fluids can also emit and absorb thermal radiation, it is 
of interest to study the effects of magnetic field on the temperature distribution vis-à-vis heat transfer 
when the fluid is not only an electrical conductor but also it is capable of emitting and absorbing 
radiation. With its broad range of applications in physics and engineering, especially for equipment 
design, processes of high-temperature, and space technology, radiation on natural convection has become 
more prominent. Nuclear power plants, hypersonic aircraft, space vehicles, and other recent 
advancements in these fields include gas-cooled nuclear reactors. Chemical reactions in the context of 
collective heat and mass transfer flow issues have received tremendous attention in a variety of chemical 
engineering processes. Chemical reaction consequences are critical in the dispersion of temperature and 
moisture across agricultural regions, the manufacture and dispersion of fog, cooling tower designs, 
configurations of chemical process apparatuses and more application in industrial [1-15].  
The problem of free convection and mass transfer flow of an electrically conducting fluid past an inclined 
heated surface under the influence of magnetic field has attracted interest in view of its applications 
to geophysics, astrophysics and many engineering problems, such as cooling of nuclear 
reactors, boundary layer control in aerodynamics and cooling towers. The MHD flow with heat and mass 
transfer plays an important role in different areas of science and technology like chemical engineering, 
mechanical engineering, biological science, petroleum engineering, biomechanics, irrigation engineering 
and aerospace technology. Study of radiation with heat transfer and mass diffusion is essential in 
describing several fluid models. In view of the above some of the authors studied [16-31].  
Numerous researchers have been intrigued by the unsteady free convection MHD heat and mass transfer 
flow associated with radiation, despite enormous uses in the engineering environment and industrial 
processes. Additional uses for MHD flow include metrology, solar physics, MHD generators, MHD pumps, 
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fluid fuel nuclear reactors, aeronautics, and the chemical process sector, which have been used recently.  
Very recently, a research article entitled effects of wall shear stress on MHD conjugate flow over an 
inclined plate in porous medium with ramped wall temperature is reported, the data analyzed by [32-43]. 
This research seek to discover the role of radiation absorption and chemical reaction effect on unsteady 
MHD flow through porous medium past an oscillating inclined plate with variable temperature and mass 
diffusion with heat source. The results are shown with the help of graphs. 
 
2. Formulation of the problem  
We consider an unsteady uniform MHD free convective flow of a viscous, incompressible and radiating 
fluid past an exponentially accelerated inclined plate with variable temperature embedded in a saturated 
porous medium.  The x – axis is taken along the plate and y –axis is normal to the plate. Magnetic field 

intensity 
0B  is applied in the direction perpendicular to the plate. The plate is inclined to vertical 

direction by an angle c. the induced magnetic field is neglected as the magnetic Reynolds number of the 
flow is very small. Initially, it is assumed that the plate and the surrounding fluid are at the same 

temperature T  and the concentration C .  

In view of the above the boundary layer equations of flow, heat and mass transfer past an exponentially 
accelerated inclined plate are given by 
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The initial and boundary conditions are: 
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   (5) 

Here u  is the primary velocity, v  the secondary velocity, g  the acceleration due to gravity, 

  volumetric coefficient of thermal expansion, t  time,  e em    the hall current parameter with 

e cyclotron frequency of electrons and electron collision of time, T  temperature of the fluid, 

   volumetric coefficient, C  spices concentration,   kinematic viscosity,   the density, 

pC  the specific heat,   thermal conductivity of the fluid, D the mass diffusion coefficient, K  the 

permeability parameter, wT  temperature of the plate at 0z  ,  wC species concentration at 0z  , 

0B the plate the uniform magnetic field,   electrical conductivity. 

The boundary conditions for the temperature at the plate impose a linearity relation between 

temperature and time with a residual temperature T  and having a constant slope 

2

0u


which depends 

upon square of the characteristic velocity and material property. Similar explanation holds for 
concentration at the plate.  

On introducing the following non – dimensional quantities 
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where Gr  thermal Grashof number, Gcmass Grashof number, K  the dimensionless permeability 

parameter, Pr the Prandtl number, Sc the Schmidt number, R radiation parameter, M  the 

magnetic parameter and Q  is heat source/sink parameter 

The basic field equations (1) – (4) can be expressed in the non – dimensional from and dropping the 

starts    as  
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The initial and boundary conditions in dimensionless form are  
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Combining the equations (7) and (8), the model becomes 
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Finally the boundary becomes 
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3. Solution of the problem 
Equation (9), (10) and (12) are coupled, non – linear partial differential equations and these cannot be 
solved in closed – form using the initial and boundary conditions (13).  However, these equations can be 
reduced to a set of ordinary differential equations, which can be solved analytically. This can be done by 
representing the velocity, temperature and concentration of the fluid in the neighbourhood of the fluid in 
the neighbourhood of the plate as   
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Substituting (14) in Equation (9), (10), (12) and equating the harmonic and non – harmonic terms, we 
obtain  
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here the summits denote the differentiation w. r. t. y 
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The corresponding boundary conditions can be written as  
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Solving Equations (15) - (17) under the boundary conditions (18) and we obtain the velocity, 
temperature and concentration distributions in the boundary layer as  
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In view of the equation (17) becomes 
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Coefficient of Skin-Friction 
The coefficient of skin-friction at the vertical porous surface is given by 
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Coefficient of Heat Transfer 
The rate of heat transfer in terms of Nusselt number at the vertical porous surface is given by 
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4. RESULTS AND DISCUSSIONS 

Figure (1) displays the consequences of angle of disposition    on the velocity profiles. It is pragmatic 

that the velocity reduces for positive change in the angle of inclination of  .  Figure (2) shows the results 

of the permeability of the porous medium  K  on the velocity profiles and the velocity increases with the 

increasing dimensionless porous parameter. The effect of thermal Grashof number  Gr on the velocity 

is exposed in figure (3). The thermal Grashof number shows the qualified result of the thermal buoyancy 
force to the viscous hydraulics force. The flow is quicker as a result of the event in buoyancy force 
matching to a growth within the thermal Grashof number. Heat is so conducted aloof from the vertical 
plate into the fluid will increase the temperature and thereby enhance the buoyancy force. Additionally, it 
is seen that the values of the velocity improve quickly close to the plate as thermal Grashof number will 
increase so disintegrates swimmingly to stream velocity. Figure (4), plotted the behaviour velocity 
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profiles for various values of chemical reaction parameter  Kr , it is ascertained that a rise in results in a 

decrease in each the values of velocity. A definite velocity increase happens close to the wall when that 
profiles decay swimmingly to the stationary price in free stream. Hence the chemical action accelerates 

the flow.  Figure (5) depicts the results of the Hall current parameter  m on the velocity profiles, it is 

determined that for lower values of Hall current parameter, the velocity increases for increasing Hall 
current parameter.  Figure (6) signifies the velocity outlines for various principles of magnetic 

parameter  M ; it found that the velocity decrease with improvement of the magnetic parameter. Figure 

(7) illustrate the characteristic of velocity profiles for various values of Prandtl number  Pr . It is noticed 

that a rise within the Prandtl number results in reduction of the thermal thickness. This is due to the fact 
that fluid with large Prandtl number has high viscosity and small thermal conductivity, which make the 
fluid thick and causes a decrease in fluid velocity.  The influence of presence of the heat source parameter 

 Q on the velocity distribution in the boundary layer is presented in figure (8). It is obvious that 

increasing the values of heat source parameter produces a decrease in the velocity distribution of the 
fluid. This is expected since the presence of a heat sink in the boundary layer absorbs energy. Which in 
turn cause the temperature of the fluid to decrease. This decrease in temperature produces a decrease in 
the flow field due to the buoyancy effect which couples the flow and thermal field. The consequences of 

radiation absorption parameter  lQ  on velocity are unit shown in figure (9) respectively. It is seem that 

the velocity increases with a growing the radiation absorption parameter.  Figure (10) shows the effect of 

Schmidt number on the velocity profiles for 0.16Sc   (hydrogen), 0.3Sc   (helium), 0.6Sc  (water 

vapour), 2.01Sc   (ethyl Benzene). It is observed that the velocity decreases with increasing Schmidt 

number values due to the decrease in the molecular diffusivity, which results in a decrease in the 
concentration and velocity boundary layer thickness. Variation of velocity profiles for different values of 

dimensionless time parameter  t  is shown in figure (11). It is noticed that the velocity increases with the 

progression of time. The velocity profiles for different values angle of inclination parameter    is 

shown in figure (12). It is noticed that the velocity decreases with the progression of angle of inclination 

parameter. The effects of time parameter  t  and angle of inclination parameter   shown in figures 

(13) and (14), it is observed that the increases in time parameter the temperature increases, but increase 
in angle of inclination resulted in the decrease of the temperature. The temperature variations for 

different values of Schmidt number  Sc shown in figure (15); it is clear that the temperature decreases 

with increasing values of Schmidt number. It is observed in figure (16) that the temperature increases as 

the radiation absorption parameter  R increases in the temperature. Figure (17) has been plotted to 

depict the variation of temperature profiles against y for different values of heat source parameter  Q  

by fixing other parameter. It is observed from this graph that temperature decrease with increasing heat 
source parameter. Figure (18) illustrate the characteristic of temperature profiles for various values of 

Prandtl number  Pr . It is noticed that a rise within the Prandtl number results in reduction of the 

thermal thickness and generally lower average temperature among the physical phenomenon, the reason 
for that smaller values of area unit admire increase within the thermal conduction of the fluid and thus, 
heat will diffuse aloof from the heated surface earlier for higher values of Prandtl number. Increasing the 

chemical reaction parameter  Kr  the temperature profiles decreases as observed in the figure (19). The 

effect of chemical reaction parameter  Kr on the concentration    is shown in figure (20). It is noticed 

from this figure that there is a marked effect of increasing values of on concentration distribution in the 
boundary layer. It is clearly observed from this figure that increasing values of decrease the concentration 
of species in the boundary layer. This happens because large values of chemical reaction parameter 
reduce the solutal boundary layer thickness and increase the mass transfer.  The concentration profiles is 

shown in figure (21), increase in Schmidt number  Sc  shows that the concentration profiles reduce. 

This cause the concentration buoyancy effects to reduce yielding a reduction within the fluid velocity; 
reduction within the concentration distribution area unit in the simultaneous reduction within the 
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concentration boundary layers. For different values of time parameter  t are shown in figure (22), it is 

clear that the concentration decreases with increases in time parameter. Skin friction is a measure of 
shearing stress experienced at the solid surface. Figure (23) exhibit the effect of permeability of the 

porous medium  K , it is observed that an increasing permeability of the porous medium the skin 

friction increases versus thermal Grashof number. From figure (24) it is observed that the absolute values 

of the rate of heat transfer decreases as the Prandtl number  Pr  increases versus different values of heat 

source parameter. From figure (25) it is observed that the absolute values of the rate of mass transfer 

decreases as the Schmidt number  Sc  increases versus different values with chemical reaction 

parameter. 
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Figure (1): Velocity profiles for different values of 

q

 

 

Q=1.0,  =1.0, t=0.4, Pr=0.71,  K=2.0, m=0.2
Kr=0.5,Sc=0.6,M=0.5,Gr=10.0,Gc=5.0,Q

l
=1.0

  = 1, 2, 3, 4

 
 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

y 

Figure (2): Velocity profiles for different values of K
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Figure (3): Velocity profiles for different values of Gr
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Figure (4): Velocity profiles for different values of Kr
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Figure (5): Velocity profiles for different values of m
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Figure (6): Velocity profiles for different values of M
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Figure (7): Velocity profiles for different values of Pr
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Figure (8): Velocity profiles for different values of Q
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Figure (9): Velocity profiles for different values of Q
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Figure (10): Velocity profiles for different values of Sc
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Figure (11): Velocity profiles for different values of t
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Figure (12): Velocity profiles for different values of 
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 Figure (13): Temperature profiles for different values of 
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Figure (14): Temperature profiles for different values of t
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Figure (15): Temperature profiles for different values of Sc
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Figure (16): Temperature profiles for different values of Q
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Figure (17): Temperature profiles for different values of Q



 

 

=1.0,t=0.4,Pr=0.71,Kr=0.5,Sc=0.6,Q
l
=1.0

Q = 1, 2, 3, 4

 
 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y 

Figure (18): Temperature profiles for different values of Pr



 

 

Pr = 0.71, 1, 7, 100

Q=1.0,=1.0,t=0.4,Kr=0.5,Sc=0.6,Q
l
=1.0

 
 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 2, 2024  

 
 

                                                                             939                                                              P. Ramesh Babu et al 925-941 

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

y 

Figure (19): Temperature profiles for different values of Kr
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Figure (20): Concentration profiles for different values of Kr

C
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Figure (21): Concentration profiles for different values of Sc

C
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Figure (22): Concentration profiles for different values of t

C
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 Figure (23): Velocity profiles for different values of K
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