
Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024
 VOL. 33, NO. 2, 20

 902 R. Nisha et al 902-911

Adaptive Data Enrichment Pre-Processing System (Adeps)
For Duplicate Detection, Outlier Handling, Imputation, And

Encoding

R. Nisha1, G.Dalin2

1Research Scholar, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu, India.
2Professor, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu, India.

 Received: 09.04.2024 Revised: 12.05.2024 Accepted: 24.05.2024

ABSTRACT
The Adaptive Data Enrichment Pre-processing System (ADEPS) is a comprehensive and flexible
framework designed to optimize data quality for analytical and machine learning tasks. ADEPS integrates
four critical preprocessing functions: duplicate detection, outlier handling, imputation, and categorical
encoding. Each component is developed to address common data quality issues that can adversely affect
model accuracy and reliability. ADEPS’s duplicate detection uses advanced similarity algorithms to
identify redundant entries, ensuring dataset integrity. Outlier handling leverages clustering and
normalization techniques to effectively identify and process anomalies. For missing values, enhanced
MICE-based imputation fills gaps using adaptive modeling with error terms, while categorical encoding
techniques, such as Target Encoding, transform high-cardinality categorical data for machine
compatibility. The ADEPS framework enhances model performance by delivering a high-quality, enriched
dataset ready for robust analysis and predictive modeling. Its modular design also allows for adjustments
based on data type, resource requirements, and analysis needs, making it suitable for a wide range of
applications.

Keywords: Machine learning, duplicate detection, outlier handling, imputation, and categorical encoding

1. INTRODUCTION
Insurance fraud detection is vital globally, as fraudulent activities cause billions of dollars in annual losses
and significant financial risk. Fraud takes various forms, including staged accidents, identity theft, and
fraudulent claims. Effectively detecting and handling these claims not only protects financial stability but
also ensures fair premiums for policyholders. Machine learning (ML) and artificial intelligence (AI)
techniques have emerged as essential tools for fraud detection, leveraging data insights to recognize
trends in transaction histories and claims data.

Importance of Data Mining and Pre-processing
Fraud detection now heavily relies on data mining, which uncovers hidden patterns and anomalies in
large datasets. However, for optimal algorithm performance, data pre-processing cleaning and organizing
raw data—is essential. Pre-processing mitigates noise, outliers, and missing values, ensuring that
algorithms perform with enhanced accuracy. Techniques such as feature scaling, dimensionality
reduction, and class balancing (oversampling and under sampling) are crucial to developing reliable,
unbiased models capable of detecting fraud.

Key Components of Pre-processing

1. Data Cleaning and Imputation: Addresses errors, missing values, and inconsistencies that can
mislead models, ensuring clean datasets for reliable training.

2. Normalization and Scaling: Standardizes numerical features, crucial for algorithms sensitive to
data magnitude, allowing fraud indicators to surface across variable scales.

3. Handling Imbalanced Data: Fraud cases are often sparse. Techniques like oversampling, under
sampling, and synthetic data generation balance datasets, supporting model precision in spotting
fraud.

Developing a Robust Pre-processing Strategy
Effective fraud detection relies on a comprehensive pre-processing strategy, which strengthens data
mining efforts and builds accurate models. Each pre-processing step contributes to a well-prepared

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 903 R. Nisha et al 902-911

dataset, paving the way for robust fraud detection frameworks. This study emphasizes the intricate role
of pre-processing in achieving reliable and adaptable fraud detection systems.

2. LITERATURE REVIEW
2.1 Receiver Operating Characteristic - Area Under the Curve (ROC-AUC)
Abd Halim KN et al. (2020) proposed a data pre-processing algorithm for enhancing neural network
binary classification in bank telemarketing. Addressing client targeting challenges, the method involves
normalization, imbalance handling, and data cleaning using Missing Common and Tomek Links, with
MaxAbsScaler or MinMaxScaler for scaling. Tested on diverse datasets, the approach achieved high AUC
scores (0.9129 and 0.9464), demonstrating improved classification performance. Future applications in
various fields are suggested.

2.2 Automated PRE-Processing for Data Mining (APREP-DM)
H. Nagashima et al. (2019) introduced APREP-DM, an automated data pre-processing framework based
on CRISP-DM, designed for sensor data analysis in fields like fault prediction, robot autonomy, and
customer behavior. APREP-DM addresses key pre-processing tasks such as handling missing data,
formatting, and detecting outliers, enhancing analysis reliability and consistency. In a pedestrian
trajectory tracking scenario, APREP-DM outperformed alternative frameworks, underscoring the
importance of well-defined success criteria and analytical goals. Future research will focus on further
APREP-DM implementations.

2.3 Association Rule Mining (ARM)
S. Kareem et al. (2017) proposed a framework utilizing association rule mining to identify fraudulent
health insurance claims, addressing the sector's substantial financial losses due to intentional fraud.
Given the high volume and complexity of claims, manual detection is impractical. This research
demonstrates that association rules effectively identify attribute relationships within claim documents,
reducing inconsistencies and enhancing fraud detection in health insurance. Data mining thus offers a
promising approach for combating fraud.

2.4 Tabulated Vector Approach (TVA)
Gutierrez RJ et al. (2018) proposed a cyber anomaly detection framework that uses tabulated vectors
and embedded analytics to efficiently analyze high-speed internet traffic in large enterprises. By
transforming firewall data into meaningful state vectors and applying multivariate methods, including
factor analysis and Mahalanobis distance, the study enhances anomaly detection, enabling efficient,
repeatable analysis through open-source tools for network intrusion detection.

2.5 Convolutional Neural Network - Gated Recurrent Unit (CNN-GRU)
Ayub N et al. (2020) proposed an electricity theft detection framework utilizing a Convolutional Neural
Network (CNN) and Gated Recurrent Unit (GRU) optimized with the Manta Ray Foraging Optimization
(MRFO) algorithm. The approach addresses data imbalances through the Synthetic Minority Over-
sampling Technique (SMOTE) and achieves 91.1% accuracy in handling missing data. It outperforms
existing methods, including ARM, CNN-GRU, and logistic regression, while focusing on enhancing real-
time theft detection in high-incident datasets.

3. Proposed Methodology
Data Collection
https://www.kaggle.com/datasets/mykeysid10/insurance-claims-fraud-detection. The dataset at the
link you provided, Insurance Claims Fraud Detection on Kaggle, contains:
 Number of records: 1,000 records (claims).
 Number of attributes: 39 features (columns) are available in the dataset.

These features represent a variety of information related to each claim, including details about the
insured person, the nature of the claim, policy details, and incident specifics.
This dataset is structured in a way that enables you to focus on claims analysis, particularly for fraud
detection
The Adaptive Data Enrichment Pre-processing System (ADEPS) is a structured and adaptable framework
designed to streamline the data preparation process, targeting four essential pre-processing tasks:
duplicate detection, outlier handling, imputation, and encoding. Each component of ADEPS is tailored to
enhance data quality and suitability for analysis and machine learning, enabling more accurate and
reliable model performance.

https://www.kaggle.com/datasets/mykeysid10/insurance-claims-fraud-detection

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 904 R. Nisha et al 902-911

The four steps in pre-processing the insurance fraud data:
 Duplicate Rows: Algorithms like Levenshtein Distance, Jaccard Similarity, and DBSCAN can help in

detecting subtle duplicates.
 Numerical Features: Algorithms such as PCA and DBSCAN help in identifying outliers and patterns,

while normalization techniques like Z-score or min-max scaling prepare the data for machine
learning.

 Missing Values: KNN Imputation and MICE are effective at filling in missing values using
relationships between features.

 Categorical Features: Encoding techniques like One-Hot Encoding, Target Encoding, and Binary
Encoding transform categorical variables into numerical forms that can be used in models.

1. Duplicate Rows
Algorithms like Levenshtein Distance can help in detecting subtle duplicates.

Levenshtein Distance
Levenshtein Distance (also known as Edit Distance) is a string metric used to measure the minimum
number of single-character edits (insertions, deletions, or substitutions) required to change one string
into another. This metric is widely used in various applications, including spell-checking, DNA
sequencing, and natural language processing.
Given two strings 𝐴 and 𝐵 , the Levenshtein distance 𝑑(𝐴, 𝐵) is the minimum number of operations
needed to transform 𝐴 into 𝐵 . The allowed operations are:
1. Insertion of a character.
2. Deletion of a character.
3. Substitution of one character with another.
Let |𝐴| and |𝐵| represent the lengths of strings 𝐴 and 𝐵 , respectively.
The Levenshtein distance 𝑑(𝐴, 𝐵) is calculated using a dynamic programming approach where the
distance is computed based on the distances between smaller substrings of 𝐴 and B.

Recurrence Relation
Let 𝐷[𝑖][𝑗] represent the Levenshtein distance between the first 𝑖 characters of string 𝐴 and the first 𝑗
characters of string 𝐵. The distance 𝐷[𝑖][𝑗] can be computed recursively as follows:

Where:
𝐷[𝑖 − 1][𝑗]: Deletion cost
𝐷[𝑖][𝑗 − 1]: Insertion cost
𝐷[𝑖 − 1][𝑗 − 1]: Substitution cost

Algorithm
Step 1: Initialize a matrix 𝐷 of size 𝐴 + 1 × (|𝐵| + 1), where |𝐴| and |𝐵| are the lengths of strings 𝐴
and 𝐵 respectively. Set the first row and the first column of 𝐷 such that 𝐷[𝑖][0] = 𝑖 for 𝑖 = 0 to |𝐴| and
𝐷[0][𝑗] = 𝑗 for 𝑗 = 0 to |𝐵|.
Step 2: For each character pair 𝐴[𝑖 − 1] and 𝐵[𝑗 − 1], calculate the minimum cost of transforming 𝐴 into
𝐵 by considering insertion, deletion, or substitution operations. Update the matrix 𝐷 based on the
recurrence relation 𝐷[𝑖][𝑗] = 𝑚𝑖𝑛 { 𝐷[𝑖 − 1][𝑗] + 1 (𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛), 𝐷[𝑖][𝑗 − 1] + 1) (𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛), 𝐷[𝑖 − 1][𝑗 −
1] + 𝑐𝑜𝑠𝑡 (𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛)), where the cost is 0 if 𝐴[𝑖 − 1] = 𝐵[𝑗 − 1], otherwise the cost is 1.
Step 3: The Levenshtein distance between strings 𝐴 and 𝐵 will be the value at 𝐷[|𝐴|][|𝐵|], representing
the minimum number of edits required to transform 𝐴 into 𝐵.
Let's compute the Levenshtein distance between two strings:
𝐴 = "𝑘𝑖𝑡𝑡𝑒𝑛"
𝐵 = "𝑠𝑖𝑡𝑡𝑖𝑛𝑔"

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 905 R. Nisha et al 902-911

 0 s i t t i n g

0 0 1 2 3 4 5 6 7

k 1 1 2 3 4 5 6 7

i 2 2 1 2 3 4 5 6

t 3 3 2 1 2 3 4 5

t 4 4 3 2 1 2 3 4

e 5 5 4 3 2 2 3 4

n 6 6 5 4 3 3 2 3

The Levenshtein distance is 𝐷[6][7] = 3. Therefore, "kitten" can be transformed into "sitting" with 3
edits (substitute 'k' with 's', substitute 'e' with 'i', and insert 'g').
The Levenshtein Distance is a robust and intuitive way to measure the similarity between strings,
providing a clear path to transforming one string into another through well-defined operations. Its
dynamic programming implementation ensures that it can be computed efficiently, even for relatively
large strings.

2. Numerical Features:
Algorithms DBSCAN help in identifying outliers and patterns, while normalization techniques like Z-score
or min-max scaling prepare the data for machine learning.

DBSCAN
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a popular clustering algorithm
used primarily for numerical data. Unlike algorithms such as k-means that require specifying the number
of clusters in advance, DBSCAN identifies clusters based on the density of data points and can also detect
noise (outliers).
1. Epsilon (ε): The maximum distance between two data points for them to be considered as part of

the same neighbourhood.
2. MinPts: The minimum number of points required to form a dense region (i.e., a cluster).
3. Core Point: A point is a core point if it has at least MinPts neighbours within distance ε.
4. Border Point: A point that is not a core point but is within the neighbourhood of a core point.
5. Noise Point: A point that is neither a core point nor a border point.

DBSCAN Algorithm
Let’s denote the dataset as 𝐷 = {𝑥1 , 𝑥2, … , 𝑥𝑛 }, where 𝑥𝑖 is a point in the feature space, typically ℝ𝑚 .
Step 1: Initialize the parameters 𝜖 (epsilon) and MinPts, setting all points in the dataset 𝐷 as unvisited.
Step 2: Select an arbitrary unvisited point 𝑝 from the dataset 𝐷.
Step 3: For the selected point 𝑝, find all points within an 𝜖 -radius using a distance metric (such as
Euclidean distance). This set of points is called the neighborhood 𝑁𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑛 (𝑝) and is defined as 𝑁𝜖(𝑝) =

{ 𝑞 ∈ 𝐷 |𝑑 𝑝, 𝑞 ≤ 𝜖} , where 𝑑(𝑝, 𝑞) is the distance metric.
Step 4: Check the core point conditions by determining if the size of 𝑁𝜖(𝑝) is greater than or equal to
MinPts. If 𝑁𝜖 𝑝 ≥ MinPts, classify 𝑝 as a core point; otherwise, mark 𝑝 as noise, with the possibility of
later reclassifying it as a border point.
Step 5: If 𝑝 is identified as a core point, create a new cluster and recursively expand it by including all
points in 𝑁𝜖(𝑝) that are reachable from 𝑝 and meet the density condition. For each point q in 𝑁𝜖(𝑝), if 𝑞 is
a core point, add its neighborhood to the cluster; if 𝑞 is a border point, simply add it to the cluster.

3. Missing Values:
Enhanced MICE are effective at filling in missing values using relationships between features.

Enhncement of MICE for Missing Values
Multiple Imputations by Chained Equations (MICE) is a popular method for handling missing data in
datasets. The basic concept is to impute missing values multiple times by generating several complete
datasets, then combining the results to account for the uncertainty of missing data. However, to improve
the accuracy and robustness of MICE, some enhancements can be applied. These include improving the
prediction model for imputation, handling multicollinearity, and improving efficiency in large datasets.

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 906 R. Nisha et al 902-911

MICE Algorithm
Step 1: Initialize missing values for each feature using a basic imputation method, such as the mean,
median, or random sampling, and let the initial complete dataset be 𝑋(0).
Step 2: Define an iterative imputation model by selecting an appropriate predictor model for each feature
 𝑋𝑗 with missing values, based on data type (e.g., linear regression for continuous data, logistic regression

for binary data).
Step 3: For iterative imputation using chained equations, for each feature 𝑋𝑗 with missing values, denote

𝑋 −𝑗 as all other features except 𝑋𝑗 . Use the current imputed values of 𝑋(−𝑗) to predict missing values in

𝑋𝑗 .

Step 4: For each feature 𝑋𝑗 , fit the regression model to predict 𝑋𝑗 using available data in 𝑋(−𝑗) and update

imputed values for missing entries in 𝑋𝑗 with the model prediction plus an error term 𝜖𝑗 to account for

variability: 𝑋 𝑗
 𝑡+1

 = 𝑓𝑗 (𝑋 −𝑗
(𝑡)

) + 𝜖𝑗 .

Step 5: To enhance regularization and prevent overfitting in regression-based models, if necessary, apply
a regularization technique to the model, aiming to minimize ∥ 𝑋𝑗 − 𝑋−𝑗𝛽𝑗 ∥2

2+ 𝜆 ∥ 𝛽𝑗 ∥2
2), where 𝜆 the

regularization parameter is.
Step 6: Repeat this iterative imputation for each feature 𝑋𝑗 with missing values, iterating through all

features until the imputed values stabilize, and indicating convergence.
Step 7: Check for convergence, continuing the iteration until the change in imputed values across all

features is below a threshold (𝛿), such that (||𝑋 𝑡+1 − 𝑋 𝑡 || < 𝛿).
Step 8: To account for uncertainty, repeat the imputation process M times to generate multiple complete
datasets (𝑋1

∗, 𝑋2
∗, … , 𝑋𝑀

∗), with each iteration yielding slightly different imputed values.
Step 9: Pool the results from multiple imputed datasets by applying statistical methods such as Rubin’s

rules, calculating the pooled estimate 𝜃 =
1

𝑀
 𝜃 𝑚

𝑀
𝑚=1 , where 𝜃 𝑚 is the parameter estimate from the

𝑚𝑡ℝ dataset, and compute the total variance 𝑇 = 𝑊 + (1 +
1

𝑀
)𝐵 where 𝑊 is within-imputation variance

and 𝐵 is between-imputation variance.
Step 10: Use one of the 𝑀 imputed datasets or the pooled results for final analysis, providing a completed
dataset for subsequent modeling or analysis.
Model-based imputation with tailored models and an error term to account for data-type-specific needs
and add variability, regularization to prevent overfitting and enhance stability in model predictions,
multiple imputation and pooling to account for uncertainty and provide robust aggregated results, and
convergence thresholding for efficient, high-quality imputation.

4. Categorical Features:
Encoding techniques like One-Hot Encoding, Target Encoding, and Binary Encoding transform categorical
variables into numerical forms that can be used in models.

Target Encoding for Categorical Features
Target encoding is a technique used to convert categorical features into numerical features by using the
relationship between the feature and the target variable. This is particularly useful in cases where the
dataset contains categorical variables with many unique levels (high cardinality), which may not be well-
handled by one-hot encoding. Target encoding is especially effective for fraud detection, where
categorical variables like "Transaction Type," "Location," or "Customer ID" may have specific interactions
with the target variable (fraud or no fraud).

1. Target Encoding Overview
In target encoding, the categorical values are replaced with a summary statistic (usually the mean) of the
target variable (fraud or not fraud) for each category. For fraud detection, the target variable 𝑦 would
typically be binary (fraud = 1, no fraud = 0).

Equation for Target Encoding
Let 𝑋𝑖 be a categorical feature, and 𝑦 be the target variable. For each category 𝑐 ∈ 𝑋𝑖 , the target encoding
is calculated as:

𝑇𝐸(𝑐) =
 𝑦𝑗 𝑗 ∈ 𝑋𝑖=𝑐

|{𝑋𝑖 = 𝑐}|

Where:
 𝑇𝐸(𝑐) is the target encoding for category 𝑐 of feature 𝑋𝑖 ,

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 907 R. Nisha et al 902-911

 𝑦𝑗 𝑗 ∈ 𝑋𝑖=𝑐 is the sum of target values where 𝑋𝑖 = 𝑐,

 |{𝑋𝑖 = 𝑐}| is the number of occurrences of category 𝑐 in feature 𝑋𝑖 .

2. Smoothing the Encoding
Target encoding can lead to overfitting, especially when categories have few samples. To avoid this,
smoothing is applied by incorporating the global mean of the target variable 𝜇.
The smoothed target encoding can be calculated as:

𝑇𝐸𝑠𝑚𝑜𝑜𝑡 ℝ(𝑐) =
𝑛𝑐 ⋅ 𝑇𝐸(𝑐) + 𝑘 ⋅ 𝜇

𝑛𝑐 + 𝑘

Where:
 𝑇𝐸𝑠𝑚𝑜𝑜𝑡 ℝ(𝑐) is the smoothed target encoding for category 𝑐,
 𝑛𝑐 is the number of occurrences of category 𝑐,
 𝜇 is the global mean of the target variable (i.e., the overall fraud rate),
 𝑘 is a smoothing factor that controls the trade-off between the category mean and the global

mean.

3. Handling New Categories
For unseen categories during inference, the global mean 𝜇 can be used as a fallback. This ensures that the
model can still make predictions when new categories are encountered in production.

𝑇𝐸𝑛𝑒𝑤 = 𝜇
Algorithm for Target Encoding
Input:

 𝑋: Categorical feature to be encoded
 𝑦: Target variable (fraud or no fraud)
 𝑘: Smoothing parameter

Output:
 Encoded feature 𝑋𝑒𝑛𝑐𝑜𝑑𝑒𝑑

Step 1: Initialize by calculating the global mean of the target variable 𝜇 =
1

𝑛
 𝑦𝑖

𝑛
𝑖=1 , where 𝑛 is the total

number of samples.
Step 2: For each unique category 𝑐 in the categorical feature 𝑋, calculate 𝑛𝑐 , the number of occurrences of

category 𝑐, and compute the target encoding for 𝑐 using the formula 𝑇𝐸 𝑐 =
 𝑦𝑗 𝑗∈ 𝑋 𝑖=𝑐

𝑛𝑐
.

Step 3: Apply smoothing by calculating the smoothed encoding for each category 𝑐 as 𝑇𝐸𝑠𝑚𝑜𝑜𝑡 ℝ(𝑐) =
𝑛𝑐 ⋅𝑇𝐸 𝑐 +𝑘⋅𝜇

𝑛𝑐+𝑘
, where 𝑘 is a smoothing parameter to balance category-level and global estimates.

Step 4: Assign encodings by replacing each instance of category 𝑐 in 𝑋 with its corresponding smoothed
target encoding 𝑇𝐸𝑠𝑚𝑜𝑜𝑡 ℝ(𝑐).
Step 5: For any new category 𝑐𝑛𝑒𝑤 that appears in the test set but not in the training set, assign the global
mean 𝜇 as the encoding.
Step 6: Return the encoded feature 𝑋𝑒𝑛𝑐𝑜𝑑𝑒𝑑 , where each categorical value is replaced by its
corresponding target encoding.
Target encoding is a powerful technique for dealing with categorical variables in fraud detection tasks,
especially when the dataset contains high-cardinality features. It captures the relationship between
categories and the target variable, improving the model's predictive power. Applying smoothing helps
mitigate overfitting, making the encoded values more reliable when category frequency is low.

4. Experimental result
4.1 Accuracy
Accuracy is the degree of closeness between a measurement and its true value. The formula for accuracy
is:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆 − 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝒗𝒂𝒍𝒖𝒆)

𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆
 ∗ 𝟏𝟎𝟎

Table 1.Comparison Table of Accuracy

Dataset ARM TVA Proposed
ADEPS

100 80 81 92
200 73 84 94

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 908 R. Nisha et al 902-911

300 83 67 96
400 88 86 98
500 95 79 100

The Comparison table of Accuracy demonstrates the different values of existing ARM, TVA and Proposed
ADEPS. While comparing the Existing algorithm and Proposed ADEPS, provides the better results. The
existing algorithm values start from 73 to 95, 67 to 86 and Proposed ADEPS values starts from 90 to 99.
The proposed method provides the great results.

Figure 1.Comparison Chart of Accuracy

The Figure 1 Shows the comparison chart of Accuracy demonstrates the existing ARM, TVA and Proposed
ADEPS. X axis denote the Dataset and y axis denotes the Accuracy. The Proposed ADEPS values are better
than the existing algorithm. The existing algorithm values start from 73 to 95, 67 to 86 and Proposed
ADEPS values starts from 90 to 99. The proposed method provides the great results.

4.2 Precision
Precision is a measure of how well a model can predict a value based on a given input.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆

(𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝒇𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆)

Table 2.Comparison Table of Precision
Dataset ARM TVA Proposed

ADEPS
100 82.12 80.37 94.67
200 84.69 92.82 95.26
300 81.62 90.54 96.21
400 76.55 82.63 93.58
500 73.94 77.72 89.87

The Comparison table 2 of Precision demonstrates the different values of existing ARM, TVA and
Proposed ADEPS. While comparing the Existing algorithm and Proposed ADEPS, provides the better
results. The existing algorithm values start from 73.94 to 84.69, 77.72 to 92.82 and Proposed ADEPS
values starts from 89.87 to 96.21. The proposed method provides the great results.

Figure 2.Comparison Chart of Precision

The Figure 2 Shows the comparison chart of Precision demonstrates the existing ARM, TVA and Proposed
ADEPS. X axis denote the Dataset and y axis denotes the Precision ratio. The Proposed ADEPS values are
better than the existing algorithm. The existing algorithm values start from 73.94 to 84.69, 77.72 to 92.82
and Proposed ADEPS values starts from 89.87 to 96.21. The proposed method provides the great results.

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 909 R. Nisha et al 902-911

4.3 Recall
Recall is a measure of a model's ability to correctly identify positive examples from the test set:

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

(𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔)

Table 3.Comparison Table of Recall

The Comparison table 3 of Recall demonstrates the different values of existing ARM, TVA and Proposed
ADEPS. While comparing the Existing algorithm and Proposed ADEPS, provides the better results. The
existing algorithm values start from 0.75 to 0.87, 0.68 to 0.83 and Proposed ADEPS values starts from
0.88 to 0.99. The proposed method provides the great results.

Figure 3.Comparison Chart of Recall

The Figure 3 Shows the comparison chart of Recall demonstrates the existing ARM, TVA and Proposed
ADEPS. X axis denote the Dataset and y axis denotes the Recall ratio. The Proposed ADEPS values are
better than the existing algorithm. The existing algorithm values start from 0.75 to 0.87, 0.68 to 0.83 and
Proposed ADEPS values starts from 0.88 to 0.99. The proposed method provides the great results.

4.4 F -Measure
F1-measure is a test's accuracy that combines precision and recall. It is calculated by taking the harmonic
mean of precision and recall.

𝑭𝟏 − 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 =
(𝟐 ∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)

Table 4.Comparison Table of F -Measure

Dataset ARM TVA Proposed
ADEPS

100 0.93 0.84 0.98
200 0.95 0.82 0.99
300 0.88 0.75 0.90
400 0.97 0.73 0.96
500 0.86 0.74 0.94

The Comparison table 4 of F -Measure Values explains the different values of existing ARM, TVA and
Proposed ADEPS. While comparing the Existing algorithm and Proposed ADEPS, provides the better
results. The existing algorithm values start from 0.86 to 0.97, 0.73 to 0.84 and Proposed ADEPS values
starts from 0.90 to 0.99. The proposed method provides the great results.

Dataset ARM TVA Proposed
ADEPS

100 0.75 0.83 0.88
200 0.77 0.79 0.95
300 0.83 0.68 0.96
400 0.86 0.78 0.97
500 0.87 0.73 0.99

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 910 R. Nisha et al 902-911

Figure 4.Comparison Chart of F -Measure

The Figure 4 Shows the comparison chart of F -Measure demonstrates the existing ARM, TVA and
Proposed ADEPS. X axis denote the Dataset and y axis denotes the F -Measure ratio. The Proposed ADEPS
values are better than the existing algorithm. The existing algorithm values start from 0.86 to 0.97, 0.73 to
0.84 and Proposed ADEPS values starts from 0.90 to 0.99. The proposed method provides the great
results.

CONCLUSION
The ADEPS framework demonstrates a highly effective approach to data preprocessing, combining
adaptability with precision across multiple critical steps: duplicate detection, outlier handling,
imputation, and encoding. Through advanced techniques in each module, ADEPS ensures that datasets
are cleansed, enriched, and transformed in a way that optimally supports analytical and machine learning
outcomes. By using adaptive models and regularization, ADEPS minimizes common issues like overfitting
and bias, providing a reliable basis for training models. The modular design not only improves data
quality but also offers flexibility, enabling users to adapt the system to various datasets and analytical
needs. Ultimately, ADEPS represents a significant advancement in data preprocessing, providing a
streamlined solution that addresses common data quality challenges, improves model reliability, and
enhances analytical accuracy.

REFERENCES
[1] Abd Halim KN, Jaya AS, Fadzil AF. Data pre-processing algorithm for neural network binary

classification model in bank tele-Marketing. International Journal of Innovative Technology and
Exploring Engineering (IJITEE). 2020; 9:272-7.

[2] C. Hines and A. Youssef, "Class Balancing for Fraud Detection in Point Of Sale Systems," 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 4730-4739, doi:
10.1109/BigData47090.2019.9006040.

[3] C. Lawrencia and W. Ce, "Fraud Detection Decision Support System for Indonesian Financial
Institution," 2019 International Conference on Information Management and Technology
(ICIMTech), Jakarta/Bali, Indonesia, 2019, pp. 389-394, doi: 10.1109/ICIMTech.2019.8843719.

[4] G. F. Monkam, M. J. D. Lucia and N. D. Bastian, "Preprocessing Network Traffic using Topological Data
Analysis for Data Poisoning Detection," 2023 IEEE Conference on Dependable and Secure Computing
(DSC), Tampa, FL, USA, 2023, pp. 1-8, doi: 10.1109/DSC61021.2023.10354143.

[5] Gutierrez RJ, Bauer KW, Boehmke BC, Saie CM, Bihl TJ. Cyber anomaly detection: Using tabulated
vectors and embedded analytics for efficient data mining. Journal of Algorithms & Computational
Technology. 2018 Dec; 12(4):293-310.

[6] H. Luo, Y. Zheng, K. Chen and S. Zhao, "Probabilistic Temporal Fusion Transformers for Large-Scale
KPI Anomaly Detection," in IEEE Access, doi: 10.1109/ACCESS.2024.3353201.

[7] H. Nagashima and Y. Kato, "APREP-DM: a Framework for Automating the Pre-Processing of a Sensor
Data Analysis based on CRISP-DM," 2019 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), Kyoto, Japan, 2019, pp. 555-560, doi:
10.1109/PERCOMW.2019.8730785.

[8] J. Lu, A. Hales, D. Rew and M. Keech, "Timeline and episode-structured clinical data: Pre-processing
for Data Mining and analytics," 2016 IEEE 32nd International Conference on Data Engineering
Workshops (ICDEW), Helsinki, Finland, 2016, pp. 64-67, doi: 10.1109/ICDEW.2016.7495618.

[9] J. Saikam and K. Ch, "EESNN: Hybrid Deep Learning Empowered Spatial-Temporal Features for
Network Intrusion Detection System," in IEEE Access, doi: 10.1109/ACCESS.2024.3350197.

[10] J. Vimala Devi and K. S. Kavitha, "Fraud Detection in Credit Card Transactions by using Classification
Algorithms," 2017 International Conference on Current Trends in Computer, Electrical, Electronics

Journal of Computational Analysis and Applications VOL. 33, NO. 2, 2024 VOL. 33, NO. 2, 2024

 911 R. Nisha et al 902-911

and Communication (CTCEEC), Mysore, India, 2017, pp. 125-131, doi:
10.1109/CTCEEC.2017.8455091.

[11] N. Ayub, K. Aurangzeb, M. Awais and U. Ali, "Electricity Theft Detection using CNN-GRU and Manta
Ray Foraging Optimization Algorithm," 2020 IEEE 23rd International Multitopic Conference (INMIC),
Bahawalpur, Pakistan, 2020, pp. 1-6, doi: 10.1109/INMIC50486.2020.9318196.

[12] N. Choudhry, J. Abawajy, S. Huda and I. Rao, "A Comprehensive Survey of Machine Learning Methods
for Surveillance Videos Anomaly Detection," in IEEE Access, vol. 11, pp. 114680-114713, 2023, doi:
10.1109/ACCESS.2023.3321800.

[13] N. Prabha and S. Manimekalai, "Imbalanced data Classification in Credit Card Fraudulent Activities
Detection using Multi-Class Neural Network," 2022 Second International Conference on Artificial
Intelligence and Smart Energy (ICAIS), Coimbatore, India, 2022, pp. 131-138, doi:
10.1109/ICAIS53314.2022.9742878.

[14] R. Purohit, J. P. Verma, R. Jain and M. Bhavsar, "WePaMaDM-Outlier Detection: Weighted Outlier
Detection using Pattern Approaches for Mass Data Mining," 2023 International Conference on
Advancement in Computation & Computer Technologies (InCACCT), Gharuan, India, 2023, pp. 1-6,
doi: 10.1109/InCACCT57535.2023.10141778.

[15] S. Goyal, S. Rawat and A. G, "Credit Card Fraud Detection using Logistic Regression and Decision
Tree," 2022 10th International Conference on Emerging Trends in Engineering and Technology -
Signal and Information Processing (ICETET-SIP-22), Nagpur, India, 2022, pp. 1-5, doi:
10.1109/ICETET-SIP-2254415.2022.9791743.

