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ABSTRACT  
The Adaptive Data Enrichment Pre-processing System (ADEPS) is a comprehensive and flexible 
framework designed to optimize data quality for analytical and machine learning tasks. ADEPS integrates 
four critical preprocessing functions: duplicate detection, outlier handling, imputation, and categorical 
encoding. Each component is developed to address common data quality issues that can adversely affect 
model accuracy and reliability. ADEPS’s duplicate detection uses advanced similarity algorithms to 
identify redundant entries, ensuring dataset integrity. Outlier handling leverages clustering and 
normalization techniques to effectively identify and process anomalies. For missing values, enhanced 
MICE-based imputation fills gaps using adaptive modeling with error terms, while categorical encoding 
techniques, such as Target Encoding, transform high-cardinality categorical data for machine 
compatibility. The ADEPS framework enhances model performance by delivering a high-quality, enriched 
dataset ready for robust analysis and predictive modeling. Its modular design also allows for adjustments 
based on data type, resource requirements, and analysis needs, making it suitable for a wide range of 
applications. 
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1. INTRODUCTION 
Insurance fraud detection is vital globally, as fraudulent activities cause billions of dollars in annual losses 
and significant financial risk. Fraud takes various forms, including staged accidents, identity theft, and 
fraudulent claims. Effectively detecting and handling these claims not only protects financial stability but 
also ensures fair premiums for policyholders. Machine learning (ML) and artificial intelligence (AI) 
techniques have emerged as essential tools for fraud detection, leveraging data insights to recognize 
trends in transaction histories and claims data. 
 
Importance of Data Mining and Pre-processing  
Fraud detection now heavily relies on data mining, which uncovers hidden patterns and anomalies in 
large datasets. However, for optimal algorithm performance, data pre-processing cleaning and organizing 
raw data—is essential. Pre-processing mitigates noise, outliers, and missing values, ensuring that 
algorithms perform with enhanced accuracy. Techniques such as feature scaling, dimensionality 
reduction, and class balancing (oversampling and under sampling) are crucial to developing reliable, 
unbiased models capable of detecting fraud. 
 
Key Components of Pre-processing 

1. Data Cleaning and Imputation: Addresses errors, missing values, and inconsistencies that can 
mislead models, ensuring clean datasets for reliable training. 

2. Normalization and Scaling: Standardizes numerical features, crucial for algorithms sensitive to 
data magnitude, allowing fraud indicators to surface across variable scales. 

3. Handling Imbalanced Data: Fraud cases are often sparse. Techniques like oversampling, under 
sampling, and synthetic data generation balance datasets, supporting model precision in spotting 
fraud. 

 
Developing a Robust Pre-processing Strategy 
Effective fraud detection relies on a comprehensive pre-processing strategy, which strengthens data 
mining efforts and builds accurate models. Each pre-processing step contributes to a well-prepared 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 2, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                             903                                                                            R. Nisha et al 902-911 

dataset, paving the way for robust fraud detection frameworks. This study emphasizes the intricate role 
of pre-processing in achieving reliable and adaptable fraud detection systems. 
 
2. LITERATURE REVIEW 
2.1 Receiver Operating Characteristic - Area Under the Curve (ROC-AUC) 
Abd Halim KN et al. (2020) proposed a data pre-processing algorithm for enhancing neural network 
binary classification in bank telemarketing. Addressing client targeting challenges, the method involves 
normalization, imbalance handling, and data cleaning using Missing Common and Tomek Links, with 
MaxAbsScaler or MinMaxScaler for scaling. Tested on diverse datasets, the approach achieved high AUC 
scores (0.9129 and 0.9464), demonstrating improved classification performance. Future applications in 
various fields are suggested. 
 
2.2 Automated PRE-Processing for Data Mining (APREP-DM) 
H. Nagashima et al. (2019) introduced APREP-DM, an automated data pre-processing framework based 
on CRISP-DM, designed for sensor data analysis in fields like fault prediction, robot autonomy, and 
customer behavior. APREP-DM addresses key pre-processing tasks such as handling missing data, 
formatting, and detecting outliers, enhancing analysis reliability and consistency. In a pedestrian 
trajectory tracking scenario, APREP-DM outperformed alternative frameworks, underscoring the 
importance of well-defined success criteria and analytical goals. Future research will focus on further 
APREP-DM implementations. 
 
2.3 Association Rule Mining (ARM) 
S. Kareem et al. (2017) proposed a framework utilizing association rule mining to identify fraudulent 
health insurance claims, addressing the sector's substantial financial losses due to intentional fraud. 
Given the high volume and complexity of claims, manual detection is impractical. This research 
demonstrates that association rules effectively identify attribute relationships within claim documents, 
reducing inconsistencies and enhancing fraud detection in health insurance. Data mining thus offers a 
promising approach for combating fraud. 
 
2.4 Tabulated Vector Approach (TVA) 
Gutierrez RJ et al. (2018) proposed a cyber anomaly detection framework that uses tabulated vectors 
and embedded analytics to efficiently analyze high-speed internet traffic in large enterprises. By 
transforming firewall data into meaningful state vectors and applying multivariate methods, including 
factor analysis and Mahalanobis distance, the study enhances anomaly detection, enabling efficient, 
repeatable analysis through open-source tools for network intrusion detection. 
 
2.5 Convolutional Neural Network - Gated Recurrent Unit (CNN-GRU) 
Ayub N et al. (2020) proposed an electricity theft detection framework utilizing a Convolutional Neural 
Network (CNN) and Gated Recurrent Unit (GRU) optimized with the Manta Ray Foraging Optimization 
(MRFO) algorithm. The approach addresses data imbalances through the Synthetic Minority Over-
sampling Technique (SMOTE) and achieves 91.1% accuracy in handling missing data. It outperforms 
existing methods, including ARM, CNN-GRU, and logistic regression, while focusing on enhancing real-
time theft detection in high-incident datasets. 
 
3. Proposed Methodology 
Data Collection 
https://www.kaggle.com/datasets/mykeysid10/insurance-claims-fraud-detection. The dataset at the 
link you provided, Insurance Claims Fraud Detection on Kaggle, contains: 
 Number of records: 1,000 records (claims). 
 Number of attributes: 39 features (columns) are available in the dataset. 

These features represent a variety of information related to each claim, including details about the 
insured person, the nature of the claim, policy details, and incident specifics. 
This dataset is structured in a way that enables you to focus on claims analysis, particularly for fraud 
detection 
The Adaptive Data Enrichment Pre-processing System (ADEPS) is a structured and adaptable framework 
designed to streamline the data preparation process, targeting four essential pre-processing tasks: 
duplicate detection, outlier handling, imputation, and encoding. Each component of ADEPS is tailored to 
enhance data quality and suitability for analysis and machine learning, enabling more accurate and 
reliable model performance. 

https://www.kaggle.com/datasets/mykeysid10/insurance-claims-fraud-detection
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The four steps in pre-processing the insurance fraud data: 
 Duplicate Rows: Algorithms like Levenshtein Distance, Jaccard Similarity, and DBSCAN can help in 

detecting subtle duplicates. 
 Numerical Features: Algorithms such as PCA and DBSCAN help in identifying outliers and patterns, 

while normalization techniques like Z-score or min-max scaling prepare the data for machine 
learning. 

 Missing Values: KNN Imputation and MICE are effective at filling in missing values using 
relationships between features. 

 Categorical Features: Encoding techniques like One-Hot Encoding, Target Encoding, and Binary 
Encoding transform categorical variables into numerical forms that can be used in models. 

 
1. Duplicate Rows 
Algorithms like Levenshtein Distance can help in detecting subtle duplicates. 
 
Levenshtein Distance 
Levenshtein Distance (also known as Edit Distance) is a string metric used to measure the minimum 
number of single-character edits (insertions, deletions, or substitutions) required to change one string 
into another. This metric is widely used in various applications, including spell-checking, DNA 
sequencing, and natural language processing. 
Given two strings  𝐴  and 𝐵 , the Levenshtein distance 𝑑(𝐴, 𝐵) is the minimum number of operations 
needed to transform 𝐴 into  𝐵 . The allowed operations are: 
1. Insertion of a character. 
2. Deletion of a character. 
3. Substitution of one character with another. 
Let |𝐴| and |𝐵| represent the lengths of strings 𝐴 and 𝐵 , respectively. 
The Levenshtein distance 𝑑(𝐴, 𝐵) is calculated using a dynamic programming approach where the 
distance is computed based on the distances between smaller substrings of  𝐴 and B. 
 
Recurrence Relation 
Let 𝐷[𝑖][𝑗] represent the Levenshtein distance between the first 𝑖 characters of string 𝐴 and the first 𝑗 
characters of string 𝐵. The distance 𝐷[𝑖][𝑗] can be computed recursively as follows: 

 
Where: 
𝐷[𝑖 − 1][𝑗]: Deletion cost 
𝐷[𝑖][𝑗 − 1]: Insertion cost 
𝐷[𝑖 − 1][𝑗 − 1]: Substitution cost 
 
Algorithm 
Step 1: Initialize a matrix 𝐷 of size   𝐴 + 1 × (|𝐵| + 1), where |𝐴| and |𝐵| are the lengths of strings 𝐴 
and 𝐵 respectively. Set the first row and the first column of  𝐷 such that 𝐷[𝑖][0]  =  𝑖 for 𝑖 = 0 to |𝐴| and 
𝐷[0][𝑗]  =  𝑗 for 𝑗 = 0 to |𝐵|. 
Step 2: For each character pair 𝐴[𝑖 − 1] and 𝐵[𝑗 − 1], calculate the minimum cost of transforming 𝐴 into 
𝐵 by considering insertion, deletion, or substitution operations. Update the matrix 𝐷 based on the 
recurrence relation 𝐷[𝑖][𝑗] = 𝑚𝑖𝑛 { 𝐷[𝑖 − 1][𝑗] + 1 (𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛), 𝐷[𝑖][𝑗 − 1] + 1) (𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛), 𝐷[𝑖 − 1][𝑗 −
1]  + 𝑐𝑜𝑠𝑡 (𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛)), where the cost is 0 if 𝐴[𝑖 − 1] =  𝐵[𝑗 − 1], otherwise the cost is 1. 
Step 3: The Levenshtein distance between strings 𝐴 and 𝐵 will be the value at 𝐷[|𝐴|][|𝐵|], representing 
the minimum number of edits required to transform 𝐴 into 𝐵. 
Let's compute the Levenshtein distance between two strings: 
𝐴 =  "𝑘𝑖𝑡𝑡𝑒𝑛"  
𝐵 =  "𝑠𝑖𝑡𝑡𝑖𝑛𝑔"  
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 0 s i t t i n g 

0 0 1 2 3 4 5 6 7 

k 1 1 2 3 4 5 6 7 

i 2 2 1 2 3 4 5 6 

t 3 3 2 1 2 3 4 5 

t 4 4 3 2 1 2 3 4 

e 5 5 4 3 2 2 3 4 

n 6 6 5 4 3 3 2 3 

 
The Levenshtein distance is 𝐷[6][7]  =  3. Therefore, "kitten" can be transformed into "sitting" with 3 
edits (substitute 'k' with 's', substitute 'e' with 'i', and insert 'g'). 
The Levenshtein Distance is a robust and intuitive way to measure the similarity between strings, 
providing a clear path to transforming one string into another through well-defined operations. Its 
dynamic programming implementation ensures that it can be computed efficiently, even for relatively 
large strings. 
 
2. Numerical Features:  
Algorithms DBSCAN help in identifying outliers and patterns, while normalization techniques like Z-score 
or min-max scaling prepare the data for machine learning.  
 
DBSCAN 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a popular clustering algorithm 
used primarily for numerical data. Unlike algorithms such as k-means that require specifying the number 
of clusters in advance, DBSCAN identifies clusters based on the density of data points and can also detect 
noise (outliers). 
1. Epsilon (ε): The maximum distance between two data points for them to be considered as part of 

the same neighbourhood. 
2. MinPts: The minimum number of points required to form a dense region (i.e., a cluster). 
3. Core Point: A point is a core point if it has at least MinPts neighbours within distance ε. 
4. Border Point: A point that is not a core point but is within the neighbourhood of a core point. 
5. Noise Point: A point that is neither a core point nor a border point. 

 
DBSCAN Algorithm 
Let’s denote the dataset as 𝐷 = {𝑥1 , 𝑥2, … , 𝑥𝑛 }, where 𝑥𝑖  is a point in the feature space, typically  ℝ𝑚 . 
Step 1: Initialize the parameters 𝜖 (epsilon) and MinPts, setting all points in the dataset 𝐷 as unvisited. 
Step 2: Select an arbitrary unvisited point 𝑝 from the dataset 𝐷. 
Step 3: For the selected point 𝑝, find all points within an 𝜖 -radius using a distance metric (such as 
Euclidean distance). This set of points is called the neighborhood  𝑁𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑛 (𝑝) and is defined as  𝑁𝜖(𝑝)  =

{ 𝑞 ∈ 𝐷 |𝑑 𝑝, 𝑞 ≤ 𝜖} , where 𝑑(𝑝, 𝑞) is the distance metric. 
Step 4: Check the core point conditions by determining if the size of 𝑁𝜖(𝑝) is greater than or equal to 
MinPts. If  𝑁𝜖 𝑝  ≥ MinPts, classify 𝑝 as a core point; otherwise, mark 𝑝 as noise, with the possibility of 
later reclassifying it as a border point. 
Step 5: If 𝑝 is identified as a core point, create a new cluster and recursively expand it by including all 
points in 𝑁𝜖(𝑝) that are reachable from 𝑝 and meet the density condition. For each point q in  𝑁𝜖(𝑝), if 𝑞 is 
a core point, add its neighborhood to the cluster; if  𝑞 is a border point, simply add it to the cluster. 
 
3. Missing Values:  
Enhanced MICE are effective at filling in missing values using relationships between features.  
 
Enhncement of MICE for Missing Values 
Multiple Imputations by Chained Equations (MICE) is a popular method for handling missing data in 
datasets. The basic concept is to impute missing values multiple times by generating several complete 
datasets, then combining the results to account for the uncertainty of missing data. However, to improve 
the accuracy and robustness of MICE, some enhancements can be applied. These include improving the 
prediction model for imputation, handling multicollinearity, and improving efficiency in large datasets. 
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MICE Algorithm  
Step 1: Initialize missing values for each feature using a basic imputation method, such as the mean, 
median, or random sampling, and let the initial complete dataset be  𝑋(0). 
Step 2: Define an iterative imputation model by selecting an appropriate predictor model for each feature 
 𝑋𝑗   with missing values, based on data type (e.g., linear regression for continuous data, logistic regression 

for binary data). 
Step 3: For iterative imputation using chained equations, for each feature 𝑋𝑗  with missing values, denote 

𝑋 −𝑗   as all other features except 𝑋𝑗 . Use the current imputed values of 𝑋(−𝑗 ) to predict missing values in 

𝑋𝑗 . 

Step 4: For each feature 𝑋𝑗 , fit the regression model to predict 𝑋𝑗  using available data in  𝑋(−𝑗 ) and update 

imputed values for missing entries in 𝑋𝑗  with the model prediction plus an error term  𝜖𝑗  to account for 

variability: 𝑋 𝑗
 𝑡+1 

 =  𝑓𝑗 (𝑋 −𝑗  
(𝑡)

)  + 𝜖𝑗 . 

Step 5: To enhance regularization and prevent overfitting in regression-based models, if necessary, apply 
a regularization technique to the model, aiming to minimize ∥ 𝑋𝑗 − 𝑋−𝑗𝛽𝑗 ∥2

2+ 𝜆 ∥ 𝛽𝑗 ∥2
2), where 𝜆   the 

regularization parameter is. 
Step 6: Repeat this iterative imputation for each feature 𝑋𝑗  with missing values, iterating through all 

features until the imputed values stabilize, and indicating convergence. 
Step 7: Check for convergence, continuing the iteration until the change in imputed values across all 

features is below a threshold ( 𝛿 ), such that ( ||𝑋 𝑡+1  −  𝑋 𝑡 ||  < 𝛿). 
Step 8: To account for uncertainty, repeat the imputation process M times to generate multiple complete 
datasets ( 𝑋1

∗, 𝑋2
∗, … , 𝑋𝑀

∗   ), with each iteration yielding slightly different imputed values. 
Step 9: Pool the results from multiple imputed datasets by applying statistical methods such as Rubin’s 

rules, calculating the pooled estimate   𝜃  =  
1

𝑀
  𝜃 𝑚

𝑀
𝑚=1 , where 𝜃 𝑚  is the parameter estimate from the 

𝑚𝑡ℝ dataset, and compute the total variance 𝑇 = 𝑊 + (1 +
1

𝑀
)𝐵 where 𝑊 is within-imputation variance 

and 𝐵 is between-imputation variance. 
Step 10: Use one of the 𝑀 imputed datasets or the pooled results for final analysis, providing a completed 
dataset for subsequent modeling or analysis. 
Model-based imputation with tailored models and an error term to account for data-type-specific needs 
and add variability, regularization to prevent overfitting and enhance stability in model predictions, 
multiple imputation and pooling to account for uncertainty and provide robust aggregated results, and 
convergence thresholding for efficient, high-quality imputation. 
 
4. Categorical Features:  
Encoding techniques like One-Hot Encoding, Target Encoding, and Binary Encoding transform categorical 
variables into numerical forms that can be used in models.  
 
Target Encoding for Categorical Features 
Target encoding is a technique used to convert categorical features into numerical features by using the 
relationship between the feature and the target variable. This is particularly useful in cases where the 
dataset contains categorical variables with many unique levels (high cardinality), which may not be well-
handled by one-hot encoding. Target encoding is especially effective for fraud detection, where 
categorical variables like "Transaction Type," "Location," or "Customer ID" may have specific interactions 
with the target variable (fraud or no fraud). 
 
1. Target Encoding Overview 
In target encoding, the categorical values are replaced with a summary statistic (usually the mean) of the 
target variable (fraud or not fraud) for each category. For fraud detection, the target variable 𝑦 would 
typically be binary (fraud = 1, no fraud = 0). 
 
Equation for Target Encoding 
Let 𝑋𝑖  be a categorical feature, and 𝑦 be the target variable. For each category 𝑐 ∈ 𝑋𝑖  , the target encoding 
is calculated as: 

𝑇𝐸(𝑐) =
 𝑦𝑗 𝑗 ∈  𝑋𝑖=𝑐  

|{𝑋𝑖 =  𝑐}|
 

Where: 
 𝑇𝐸(𝑐) is the target encoding for category 𝑐 of feature 𝑋𝑖 , 
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  𝑦𝑗 𝑗 ∈  𝑋𝑖=𝑐   is the sum of target values where 𝑋𝑖 =  𝑐, 

 |{𝑋𝑖 =  𝑐}| is the number of occurrences of category 𝑐 in feature 𝑋𝑖 . 
 
2. Smoothing the Encoding 
Target encoding can lead to overfitting, especially when categories have few samples. To avoid this, 
smoothing is applied by incorporating the global mean of the target variable 𝜇. 
The smoothed target encoding can be calculated as: 

𝑇𝐸𝑠𝑚𝑜𝑜𝑡 ℝ(𝑐) =
𝑛𝑐 ⋅ 𝑇𝐸(𝑐) + 𝑘 ⋅ 𝜇

𝑛𝑐 + 𝑘
 

Where: 
 𝑇𝐸𝑠𝑚𝑜𝑜𝑡 ℝ(𝑐) is the smoothed target encoding for category 𝑐, 
 𝑛𝑐  is the number of occurrences of category 𝑐, 
 𝜇 is the global mean of the target variable (i.e., the overall fraud rate), 
 𝑘 is a smoothing factor that controls the trade-off between the category mean and the global 

mean. 
 
3. Handling New Categories 
For unseen categories during inference, the global mean 𝜇 can be used as a fallback. This ensures that the 
model can still make predictions when new categories are encountered in production. 

𝑇𝐸𝑛𝑒𝑤 = 𝜇 
Algorithm for Target Encoding  
Input: 

 𝑋: Categorical feature to be encoded 
 𝑦: Target variable (fraud or no fraud) 
 𝑘: Smoothing parameter 

Output: 
 Encoded feature 𝑋𝑒𝑛𝑐𝑜𝑑𝑒𝑑  

Step 1: Initialize by calculating the global mean of the target variable 𝜇 =
1

𝑛
 𝑦𝑖

𝑛
𝑖=1 , where 𝑛 is the total 

number of samples. 
Step 2: For each unique category 𝑐 in the categorical feature 𝑋, calculate 𝑛𝑐 , the number of occurrences of 

category 𝑐, and compute the target encoding for 𝑐 using the formula 𝑇𝐸 𝑐 =
 𝑦𝑗 𝑗∈ 𝑋 𝑖=𝑐  

𝑛𝑐
. 

Step 3: Apply smoothing by calculating the smoothed encoding for each category 𝑐 as 𝑇𝐸𝑠𝑚𝑜𝑜𝑡 ℝ(𝑐) =
𝑛𝑐 ⋅𝑇𝐸 𝑐 +𝑘⋅𝜇

𝑛𝑐+𝑘
, where 𝑘 is a smoothing parameter to balance category-level and global estimates. 

Step 4: Assign encodings by replacing each instance of category 𝑐 in 𝑋 with its corresponding smoothed 
target encoding 𝑇𝐸𝑠𝑚𝑜𝑜𝑡 ℝ(𝑐). 
Step 5: For any new category 𝑐𝑛𝑒𝑤  that appears in the test set but not in the training set, assign the global 
mean 𝜇 as the encoding. 
Step 6: Return the encoded feature 𝑋𝑒𝑛𝑐𝑜𝑑𝑒𝑑 , where each categorical value is replaced by its 
corresponding target encoding. 
Target encoding is a powerful technique for dealing with categorical variables in fraud detection tasks, 
especially when the dataset contains high-cardinality features. It captures the relationship between 
categories and the target variable, improving the model's predictive power. Applying smoothing helps 
mitigate overfitting, making the encoded values more reliable when category frequency is low. 
 
4. Experimental result 
4.1 Accuracy  
Accuracy is the degree of closeness between a measurement and its true value. The formula for accuracy 
is:  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
(𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆 −  𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 𝒗𝒂𝒍𝒖𝒆)

𝒕𝒓𝒖𝒆 𝒗𝒂𝒍𝒖𝒆
 ∗ 𝟏𝟎𝟎 

 
Table 1.Comparison Table of Accuracy 

Dataset ARM TVA Proposed 
ADEPS 

100 80 81 92 
200 73 84 94 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 2, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                             908                                                                            R. Nisha et al 902-911 

300 83 67 96 
400 88 86 98 
500 95 79 100 

 
The Comparison table of Accuracy demonstrates the different values of existing ARM, TVA and Proposed 
ADEPS. While comparing the Existing algorithm and Proposed ADEPS, provides the better results. The 
existing algorithm values start  from 73 to 95, 67 to 86 and Proposed ADEPS values starts from 90 to 99. 
The proposed method provides the great results. 


 
Figure 1.Comparison Chart of Accuracy 

 
The Figure 1 Shows the comparison chart of Accuracy demonstrates the existing ARM, TVA and Proposed 
ADEPS. X axis denote the Dataset and y axis denotes the Accuracy. The Proposed ADEPS values are better 
than the existing algorithm. The existing algorithm values start from 73 to 95, 67 to 86 and Proposed 
ADEPS values starts from 90 to 99. The proposed method provides the great results.  
 
4.2 Precision 
Precision is a measure of how well a model can predict a value based on a given input.  

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆

(𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 +  𝒇𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆)
 

Table 2.Comparison Table of Precision 
Dataset ARM TVA Proposed 

ADEPS 
100 82.12 80.37 94.67 
200 84.69 92.82 95.26 
300 81.62 90.54 96.21 
400 76.55 82.63 93.58 
500 73.94 77.72 89.87 

 
The Comparison table 2 of Precision demonstrates the different values of existing ARM, TVA and 
Proposed ADEPS. While comparing the Existing algorithm and Proposed ADEPS, provides the better 
results. The existing algorithm values start from 73.94 to 84.69, 77.72 to 92.82 and Proposed ADEPS 
values starts from 89.87 to 96.21. The proposed method provides the great results. 
 

 
Figure 2.Comparison Chart of Precision 

 
The Figure 2 Shows the comparison chart of Precision demonstrates the existing ARM, TVA and Proposed 
ADEPS. X axis denote the Dataset and y axis denotes the Precision ratio. The Proposed ADEPS values are 
better than the existing algorithm. The existing algorithm values start from 73.94 to 84.69, 77.72 to 92.82 
and Proposed ADEPS values starts from 89.87 to 96.21. The proposed method provides the great results.  
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4.3 Recall 
Recall is a measure of a model's ability to correctly identify positive examples from the test set: 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

(𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 +  𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔)
 

 
Table 3.Comparison Table of Recall 

 
 
 
 
 
 
 
 
The Comparison table 3 of Recall demonstrates the different values of existing ARM, TVA and Proposed 
ADEPS. While comparing the Existing algorithm and Proposed ADEPS, provides the better results. The 
existing algorithm values start from 0.75 to 0.87, 0.68 to 0.83 and Proposed ADEPS values starts from 
0.88 to 0.99. The proposed method provides the great results. 
 

 
Figure 3.Comparison Chart of Recall 

 
The Figure 3 Shows the comparison chart of Recall demonstrates the existing ARM, TVA and Proposed 
ADEPS. X axis denote the Dataset and y axis denotes the Recall ratio. The Proposed ADEPS values are 
better than the existing algorithm. The existing algorithm values start from 0.75 to 0.87, 0.68 to 0.83 and 
Proposed ADEPS values starts from 0.88 to 0.99. The proposed method provides the great results. 
 
4.4 F -Measure  
F1-measure is a test's accuracy that combines precision and recall. It is calculated by taking the harmonic 
mean of precision and recall. 

𝑭𝟏 − 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 =
(𝟐 ∗  𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗  𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +  𝑹𝒆𝒄𝒂𝒍𝒍)
 

 
Table 4.Comparison Table of F -Measure 

Dataset ARM TVA Proposed 
ADEPS 

100 0.93 0.84 0.98 
200 0.95 0.82 0.99 
300 0.88 0.75 0.90 
400 0.97 0.73 0.96 
500 0.86 0.74 0.94 

 
The Comparison table 4 of F -Measure Values explains the different values of existing ARM, TVA and 
Proposed ADEPS. While comparing the Existing algorithm and Proposed ADEPS, provides the better 
results. The existing algorithm values start from 0.86 to 0.97, 0.73 to 0.84 and Proposed ADEPS values 
starts from 0.90 to 0.99. The proposed method provides the great results. 

Dataset ARM TVA Proposed 
ADEPS 

100 0.75 0.83 0.88 
200 0.77 0.79 0.95 
300 0.83 0.68 0.96 
400 0.86 0.78 0.97 
500 0.87 0.73 0.99 
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Figure 4.Comparison Chart of F -Measure 

 
The Figure 4 Shows the comparison chart of F -Measure demonstrates the existing ARM, TVA and 
Proposed ADEPS. X axis denote the Dataset and y axis denotes the F -Measure ratio. The Proposed ADEPS 
values are better than the existing algorithm. The existing algorithm values start from 0.86 to 0.97, 0.73 to 
0.84 and Proposed ADEPS values starts from 0.90 to 0.99.  The proposed method provides the great 
results. 
 
CONCLUSION 
The ADEPS framework demonstrates a highly effective approach to data preprocessing, combining 
adaptability with precision across multiple critical steps: duplicate detection, outlier handling, 
imputation, and encoding. Through advanced techniques in each module, ADEPS ensures that datasets 
are cleansed, enriched, and transformed in a way that optimally supports analytical and machine learning 
outcomes. By using adaptive models and regularization, ADEPS minimizes common issues like overfitting 
and bias, providing a reliable basis for training models. The modular design not only improves data 
quality but also offers flexibility, enabling users to adapt the system to various datasets and analytical 
needs. Ultimately, ADEPS represents a significant advancement in data preprocessing, providing a 
streamlined solution that addresses common data quality challenges, improves model reliability, and 
enhances analytical accuracy. 
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