
Journal of Computational Analysis and Applications                                                                              VOL. 31, NO. 4, 2023 
     VOL. 33, NO. 2, 20 

 

                                                                                 728                                            Sudhir Kumar Pundir et al 728-740 

Thermoconvective Instability in A Porous Maxwell 

Ferromagnetic Fluid 
 

Sudhir Kumar Pundir
1
, Richa Rani

2*
, Rimple Pundir

3
 

 
1,2,3

Department of Mathematics, S.D. (P.G.) College, Muzaffarnagar Uttar Pradesh, 251001, India 

Email: richachaudhary601@gmail.com 

*Corresponding Author 

 

         Received: 13.10.2023               Revised: 20.11.2023                       Accepted: 13.12.2023 

 

ABSTRACT 

The study considers a porous Maxwell ferromagnetic fluid layer which is assumed to be heated from below.The 

boundaries are infinite and free-free. AMaxwell model is implicated on this fluid layer under realistic boundary 

conditions and the Galerkin approach is followed to solve the concerned eigenvalue problemfor which the 

Rayleigh number is obtained in stationary and oscillatory convection. At stationary state, it is noticed that the 

Maxwell ferromagnetic fluid behaves similar to a Newtonian ferromagnetic fluid. The effects of concerned 

parameters are analysed and the results have been depicted both analytically and graphically. It has been noticed 

that the presence of porous medium delays the convection as compared to the continuous medium. A 

comparative study between stationary and oscillatory convection results that the oscillatory convection sets in 

earlier.  

 

Keywords: Convection, Maxwell model, ferromagnetic fluid, porous medium. 

 

1. INTRODUCTION 

Ferrromagnetic fluids are well-known fluids and proves to be of great importance in today’s techonological 

world due to their large applications as they are colloidal liquids composed of ferromagnetic nano substances. It 

was since 1960’s when they came to existence andsoon several researchers have contributed to their 

development. It was Finlayson [1] who first worked on the convective instability problemin a ferroliquid placed 

within free boundaries by using heating and found the exact solution for the concerned problem. Past research 

studies shows that they play a crucial role in one’s life as they are responsiblefor daily magnetism. 

Chandrasekhar [2] worked on convection problems in Newtonian type fluids and gave a descriptive account 

regarding his study. Rosensweig [3,4] worked specially on “ferrohydrodynamics” and wrote his monograph on 

it.  

Following this, many researchers like,Lalas and Carmi [5], Shliomis [6], Sunil etal.[7-10] worked on 

ferromagnetic fluids and tried to obtain some more information on them. Further, Jasmine [11] also found the 

topic interesting and studied ferrofluids with the application of magnetic field. Prakashet al.[12]carried out the 

convection problem in ferrofluid layer by taking viscosity as magnetic field dependent. Siddheshwaret al. [13] 

discussed some concept regardingfinite-amplitude ferro-convection and electro-convection.Pundiret al. [14, 15] 

introduced the concept of couple stress in ferromagnetic fluids. A study on Rayleigh–Bénard convection was 

given by Meghana and Pranesh [16]for a ferromagnetic fluid layer by introducing couple-stress and discussed 

four types of rotation modulation. 

The convection studies of non-Newtonian fluids within porous mediumdraws the attention of researchers since 

from the very beginning due to its importance in diverse areas of real life. Significantly,Vaidyanathan et al. 

[17]examined ferroliquids for theSoret-driven effect on ferro thermohaline convection.Sekar et al. [18] worked 

in an anisotropic porous medium and performed a study on thermohaline convection regarding ferrofluidwith 

Soret driven effect. 

The very first viscoelastic model has been initiated by Maxwell and is still in focus. Narayana et al. [19] worked 

on porous media effectively and carried out a study on binary Maxwell fluid by analysing linear and nonlinear 

stability. Chand and Kumar [20] also worked on thermal rotatory Maxwell fluid with porous medium. Gaikwad 

and Kamble [21] put through a convection problem in porous layer of Maxwell fluid to examine the effects of 

cross diffusion on it. Mahajan et al. [22] has also done a significant work in area of porous media. He 

considered a linear approach of penetrative convection in ferroliquid via internal heating. Awasthi et al. [23] 

discussed a triply diffusive convective study in a Maxwell fluid in porous media taking concept of internal heat 

source.Pundir et al. [24] considered a study on thermally heated Maxwell ferromagnetic fluid layer within 

porous medium. Another study by Pundir et al. [25] in porous media considered a double-diffusive convection 
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on a rotatory nanofluid including couple-stress. Recently, Pundir et al. [26] worked on a double-diffusive 

convection problem of a Darcy couple-stress nanofluid with magnetic field. 

The present work accounts a problem of thermoconvective instabilityina porous ferromagnetic fluid using 

Maxwell model to perform some comparative studies which have not been considered yet. Therefore, an attempt 

has been made to fill this gap.This research work is an extension of the study given by Pundir et al. [24]. In this 

study, an incompressible Maxwell ferromagnetic fluid of depth d is allowed to be kept between two free 

boundaries. The medium is taken to be Darcy porous. Theobjective of this study is to check the effects of time 

relaxation parameter and magnetization parameterson the system that govern the concerned problem. Both the 

stationary convection and the oscillatory convection cases have been taken into consideration. The problem 

follows the normal mode approach and the Galerkin method to find out the stationary and oscillatory thermal 

Rayleigh number. Various comparative studies have also been performed to obseve the behavior of convection 

under different conditions. 

 

2. Mathematical Formulation 
An infinite, horizontalMaxwell ferromagnetic fluid layerhas been considered. The layer is incompressible and 

having depth equal to d .The layer is constricted within two free boundaries. The medium is taken to be porous. 

The corresponding layer is allowed to heat from downwards.The value of temperature corresponding to bottom 

and top surfaceis 0T  and 
1T  respectively. A temperature gradient (uniform)is sustained (which is 

dT

dz
  ). 

The gravity is given as (0,0, )g g 


. 

 
Figure 1: Physical Configuration 

 

The equations governing the physical model are as follows: 

0 (1)q 


     0
0 1 0

1

1 1 1 (2)
q

p T T g H B q
t t t k

 
   



     
            

     


   

  2

0 , 0 0 1

, ,

1 (3)V H s s

V H V H

M dT T M d H
C H c T K T

T dt t T dT
     
      
           

       

  


where q


  is velocity, p is pressure, 1k is permeability, is porosity,  is relaxation time parameter,   is 

viscosity, H


is magnetic field,  0,0,g g 


 is gravity, 0  is magnetic permeability, T  is temperature, 

,V HC  is heat capacity at constant volume and magnetic field,  is the coefficient of volume expansion, M


 is 

magnetization, 1K  is thermal conductivity and   is the fluid density and 0  is the fluid density at 

temperature 0T . 

The Maxwell’s equations are given by 
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0, (4)B 


0, (5)H 


                                                                                                                                                                     

where the magnetic induction is given by 

 0 , (6)B H M 
  

The magnetization is defined by the equation: 

 , , (7)
H

M M H T
H

 
  
 




The linearized magnetic equation of state is given by 

   0 0 2 0 , (8)M M H H K T T    

where 
0M is the magnetization when magnetic field is 0H and temperature 0T , 

0 0,H T

M

H


 
  

 



 is the 

magnetic susceptibility and 

0 0

2

,H T

M
K

T

 
  

 



 is the pyromagnetic coefficient. 

 

3. Basic State 

The solution of equations (1) to (7) in the basic state is given by 

      0 1
0

2 2
0 0 0 0 0

0, , p p , , ,

, , (9)
1 1

b b b b

ext

b b

T T
q q z z T T z T z

d

K z K z
H H k M M k H M H

   

 

 


       

   
        

    

 

   

 
4. Perturbed State 

Following Finlayson[1], the perturbations in the basic state are given by; 

     

   

, , , ,

, (10)

b b b b

b b

q q q z p p z p T T z

H H z H M M z M

             

    

  

     

                                                                                                                                                             

where  , , , , , , ,q u v w p H M         
  

denotes velocity, density, pressure, temperature, magnetic field 

intensity, and magnetization in the perturbed state. Using (10), the perturbation equations in linear formbecome: 

0, (11)
u v w

x y z

    
  

  

 0 1
0 0 0

1

1 1 (12)
Hu p

H M u
t t t x z k

 
  



         
                   

 0 2
0 0 0

1

1 1 (13)
Hv p

H M v
t t t y z k

 
  



         
                   

  3
0 0 0 0

0

2
10 2

0 2 3

1 1 (14)

1

Hp
g H M

w z z
w

t t t kK
K H

  
 

 
  

 


  
    

                      
  

 
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2
2 0 0 2

1 0 0 2 1 2 (15)
1

T K
C T K K C w

t t z

  
    



      
       

      
where 

 1 0 , 0 2 0 1 , (16)V H s sC C K H C       

and

2 0 , 0 2 0 , (17)V HC C K H   

     1 1 2 2 3 3 0, , (18)H M H M H M H
x y z


                
  



                                                                                                                                                                                     

where   is the perturbed magnetic potential, and 

   0
3 3 3 2 1 1

0

1 , 1 , 1,2 . (19)i

M
H M H K H M H i

H
 

 
             

 

where we have assumed   2 0.1K d H    

Eliminating , ,u v p    between (12), (13) and (14) and using (11), we get 

2 2

0 1 0 2 1

20

2 2

0 2 1 1

1 1 (20)

1

g K
z

w w
Kt t t k

     
 

 
  



 
                          

  
From (18) and (19) we obtain, 

 
2

20
1 22

0

1 1 0 (21)
M

K
z H z

 
 

   
      

  
 

5. Normal Mode Method 

Analysing the disturbances intonormal mode, the perturbed quantities take the form

          , , , , , , , exp (22)x yw x y z t W z z z i k x k y nt              
Using (22), in (20), (15) and (21) and non dimensionalising the variables by keeping 

 

 

 

   

 

   

2

1/2
* * * * * 1

2

2

1/2

1 2 1* 1

2

2 2 0 1 1

4 2 2
2 0 2 0 0 2

1 2

1 0 2

0

2

0
3 0 2

, W, , t , , ,

1
, , , P , P ,

, , M ,
1 1

1

M , , , (23)
1

l r r

K aRz d t
z W a kd D Dd

d d C d

K aR C Ck
p

K C d K Kd

g d C K T K
R M

K g C

M

H nd

d




  

    
 

  

    

    


 

 

      


     

  
 



  


                                                                                                                                                                           

where 1 2 3, ,M M M  are magnetization parameters and 0  is time relaxation constant. 

For simplification, removing the *,we obtain 

     
1 2 2 1/2 1/2

0 1 1

1
1 1 0 (24)

l

D a W aR M aR M D
p


   



 
       

 

   1/2 2 2

2 21 0 (25)r rM aR W D a P P M D        
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 2 2

3 0 (26)D D a M   

 

6. Solution Methodology 

Applying Galerkin method, the above system of equations (24) – (26) subject to the boundary conditions  
20 0 1 (27)W D w D at z and z      

                                                                                                                                                                                                                

is written in the form  

0
0 0sin , sin , cos (28)W W z z z


     


   

where 0 0 0, ,W    are constants.  

Utilising (28) into (24) – (26), we obtain 

     
1 2 2 1/2 1/2

0 0 1 0 1 0

1
1 1 0 (29)

l

a W aR M aR M
p


    



 
        
 

   1/2 2 2

2 0 0 2 01 P P 0 (30)r rM aR W a M        

 2 2 2

0 3 0 0 (31)a M      

For the non-trivial solutions of the above system, the determinant of the coefficients of  0 0 0, ,W    in equations 

(29), (30) and (31) has to vanish. 

   
1 2 2 1/2 1/2

0 1 1

0

1/2 2 2

2 2 0

2 2 2
03

1
1 (1 )

0

(1 ) ( Pr ) Pr 0 (32)

00 ( )

l

a aR M aR M
p W

M aR a M

a M


  



   

 

  
       
      

            
       

 
 
 

 

7. Stationary Convection 

For stationary convection, putting 0   and 2 0M   in (32), the stationary Rayleigh number becomes

   
2

2 2 2 2

3

. 2 2 2

1 3

(33)
a [ (1 ) ]

st

l

a a M
R

p a M M

 



 


 

 

The expression (33) shows that .stR is independent of the viscoelastic parameter and is similar tothe Rayleigh 

Number of Newtonian ferromagnetic fluidsin porous medium. 

In absence of 3M , eq. (33) reduces to 

 
2

2 2

. 2
(34)

a
st

l

a
R

p

 


 

which is the same as the Rayleighnumber for ordinary fluids in porous medium. 

To examine the role of permeability,buoyancy magnetization, non-buoyancy magnetization, we check the 

behavior of 
.st

l

dR

dp
,

.

1

stdR

dM
,

.

3

stdR

dM
analytically. 
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   
 

2
2 2 2 2

3.

2 2 2 2

1 3

(35)
1

st

l l

a a MdR

dp p a a M M

 



 


   

   

 

2
2 2 2 2

3 3.

2
2 2

1 1 3

(36)
1

st

l

a M a MdR

dM p a M M

 



 
 

   
 

    

 

 
 

2 2
2 2 2 2 2 2

1 3.

2 2 22 2
3 1 31 3

1
(37)

11

st

ll

a M a M adR

dM p a M Mp a M M

  



   
  

       
 

It is clearly found from the above derivatives that all of the three, lp , 
1M , 

3M always have destabilizing effect 

on the system. 

 

8. Oscillatory Convection 

Putting i   in (32), it reduces to 

1 2 (38)R i   

 

where 

       

       

 
      

2 2 2 2 2 2 2 2 2 2 2 2 2

0 3 0 2

2
2 2 2 2 2 2 2 2 2

3 3 0

2 2 2 2

2 0

1 2 2 2 2 2

2 0 1 3

1 1

(39)
1 1 1

l r l r

r

r

l

p a P a M p a P M

a a M a P a M

a P M

a M p a M M

         

       

    

   

      

     

 
 

   

 

and 

        

    
      

2 2
2 2 2 2 2 2 2 2 2 2

0 3 0 3

2 2 2 2 2 2 2

3 2

2 2 2 2 2 2

2 0 1 3

1

(40)
1 1 1

l

r r

l

p a a M a a M

a a M P a P M

a M p a M M

       

     

   

     

    
 

   

 

For oscillatory convection 0  , we have 2 0  , which yields the frequency of oscillation as 

       

    

   

2 2
2 2 2 2 2 2 2 2

3 0 3

2 2 2 2 2 2 2

3 22

2
2 2 2 2 2

0 3

(41)

l

r r

l

p a a M a a M

a a M P a P M

p a a M

     

     


  

     

    


 

 

The existence of oscillatory instability depends on value of 
2 . If there is no positive value of 

2 then there 

is no chance of oscillatory instability. From equation (41), 
2 does not admit any positive value if  

            
2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 0 3 2l r rp a a M a a M P a a M a P M                     
 

If there exist positive values of 
2 , then the thermal oscillatory Rayleigh number is given by  



Journal of Computational Analysis and Applications                                                                             VOL. 31, NO. 4, 2023                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 734                                            Sudhir Kumar Pundir et al 728-740 

        
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      

2 2 2 2 2 2 2 2 2 2 2 2 2

3 0 2 0

2
2 2 2 2 2 2 2 2 2
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2 2 2 2
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. 2 2 2 2 2

2 0 1 3

1 1

(42)
1 1 1

l r l r

r

r
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l

p a a M P p a P M

a a M a a M P

a P M
R

a M p a M M

         

       

    

   

      

     

 


   

 

where 
2 is given by equation (41). 

 

9. RESULTS AND DISCUSSION 

To discuss the effect of the parameters governing the problem on the system, we have plotted the graph of  
.stR

vs. a  for fixed values of the parameter.The value of 
1M  is assumed to be 1000 [1]. The value of 

2M  will be 

considered negligiblei.e., 
610

. The Darcy model has been used which takes the value of permeability lp in the 

range of 0.001to 0.009 [7-10] and 
3M  is taken to have value from 1 to 25 [18] and cannot be less than 1. The 

value of rP is taken to be 0.01 [17]. The value of porosity   lies between 0 and 1. The value of relaxation time 

constant 0  can be between 0.001 to 0.01. For this problem, we have taken fixed values of parameters as

6

1 2 3 00.002, 1000, 10 , 1, 0.4, 0.005, 0.01, 0.005l r rp M M M P P          .  

Figures 2-5 shows the curves for stationary convection. Figure 2 depicts the curve between 
.stR and a for 

1 31000, 1M M  and 0.002,0.003,0.004,0.005lp  . Figure 3 depicts the curve between 
.stR and a

for 
30.002, 1lp M  and 

1 1000,1500,2000,2500M  . Figure 4 depicts the curve between 
.stR and 

a for 10.002, 1000lp M  and 3 1,2,3,4M  .  On increasing the value of 1 3, ,lp M M , the value of 

.stR decreases, thus making the system destabilizing. Figure 5 shows the comparative study in continuous and 

porous medium. The curves shows clearly that the Rayleigh number .stR falls largely in continuous medium and 

results to early convection. 

Figures6-8 shows the curves for oscillatory convection. Figure 6 depicts the curve between osc.R and a for 

6

1 2 3 01000, 10 , 1, 0.4, 0.005, 0.01, 0.005r rM M M P P         and 

0.002,0.003,0.004lp  . Figure 7 depicts the curve between 
osc.R and a for 

6

1 2 3 00.002, 1000, 10 , 1, 0.005, 0.01, 0.005l r rp M M M P P         and 0.4,0.5,0.6  . 

Figure 8 depicts the curve between osc.R and a for 

6

1 2 30.002, 1000, 10 , 1, 0.4, 0.01, 0.005l r rp M M M P P        and for relaxation time 

constant 0 0.005,0.006,0.007  .  On increasing the value of lp , osc.R decreases and thereby destabilizing 

the system whereas increasing  and 0 increases osc.R , thus making the system stabilizing. 
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Figure 2: Variation of stationary Rayleigh number 
.stR with wavenumber a 

for different values of permeability lp  

Figure 3: Variation of stationary Rayleigh number .stR with wavenumber a for 

different values of 1M  
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Figure 4: Variation of stationary Rayleigh number 
.stR with wavenumber a for 

different values of 
3M  

 

Figure 5: A Comparative study of continuous and porous medium 
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Figure 6: Variation of oscillatory Rayleigh number 
osc.R with wavenumber a 

for different values of permeability lp  

 

Figure 7: Variation of oscillatory Rayleigh number osc.R with wavenumber a 

for different values of porosity  
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Figure 9: Effect of permeability lp  on stationary and oscillatory convection 
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Figure 9 shows the effect of lp  on stationary and oscillatory convection. It is noticed from the curves that for 

same value of lp (i.e., 0.002), the oscillatory convection sets earlier as compared to the stationary one. Further, 

it is also noticed that as the value of lp increases, the value of osc.R decreases for the oscillatory convection, 

thus making the onset of convection easier. Figure 10 shows the comparative study of stationary and oscillatory 

convection. It is noticed that the oscillatory convection commences earlier. 

 

10. CONCLUSION 

In this study, a heated porous layer of Maxwell ferromagnetic fluid has been considered using the normal mode 

approach. To obtain the solution of porous Maxwell ferromagnetic fluid layer which is kept within free 

boundaries, a Galerkin procedure is used and thermal Rayleigh number is obtained for both the stationary and 

oscillatory cases. The effects of time relaxation constant 0 , buoyancy magnetization parameter 1M , non-

buoyancy magnetization parameter 3M  and medium permeability parameter lp  have been examined. The 

observations are as follows: 

 (i)It is observed that for the stationary convection, the Maxwell ferromagnetic fluid converts to a Newtonian 

ferromagnetic fluid.  

(ii) It is found that all the three parameters 1M , 3M  and lp  have destabilizing effect on the system in 

stationary mode.  

(iii) In stationary convection, a comparative study with and without porous medium shows that the convection 

sets earlier in continuous medium as compared to the porous. 

(iv) In oscillatory state, the porosity parameter  stabilizes the system whereas the permeability  lp destabilizes 

the system. 

(v) The effect of relaxation time constant stabilizes the system. 

(vi) The comparative study of stationary and oscillatory convection accounts that the presence of oscillatory 

modes sets the convection earlier. 

(vii) The condition for non-existence of oscillatory instability is achieved. 
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Figure 10: Comparative study of stationary and oscillatory convection 
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