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ABSTRACT 
Cities across the globe have faced serious challenges of road accidents and traffic jams in recent days 
thereby increasing huge human and economic losses. The key to improving Advanced Driver Assistance 
Systems (ADAS) is precise analysis and modeling of driver behavior in complex driving scenarios. To deal 
with such challenges, acoustic-based ADAS systems have come into the limelight due to their cost-
effectiveness and versatility. In this study, we suggest an AI-based Intelligent transportation system with 
smart ADAS technology to improve road safety and reduce traffic jams using acoustic data analysis 
techniques. We enhanced our integrated ITS and ADAS system using three acoustic datasets: IDMT Traffic 
for traffic assessment, LSA Vehicles for emergency sirens and road noise analysis, and RQA Road for road 
quality evaluation. The proposed methodology includes signal preprocessing by eliminating undesirable 
artifacts from the sound data, performed with a modified coati optimization (MCO) algorithm. Afterward, 
a feature extraction phase employs the Y-Net pretrained architecture that reveals hidden features that 
were optimized by the Emperor Penguin Optimization (EPO) algorithm to address dimensionality issues. 
Finally, a Recurrent Artificial Neural Network (RANN) with hybrid recurrent features is used to detect 
abnormalities in roadways and provide recommendations for drivers. The validation results on three 
benchmark datasets show promising results for prediction accuracy and false positive rate. The global 
results conclude that the proposed solution realized a superior classification accuracy score (96.252 %), 
precision (0.95), recall (0.94), and F-scores (0.95) compared to various baseline methods such as SVM, 
XG-Boost, t-SNE, CNN+LSTM, and SVM+LSTM. 
 
Keywords: Advanced driver assistance systems, modified coati optimization (MCO), Y-Net pre-trained 
architecture, Emperor Penguin Optimization (EPO), Recurrent Artificial Neural Network   
 
1. INTRODUCTION  
The fast-growing nature of urbanization and the increasing number of vehicles on city roads everywhere 
in the globe is leading to some serious challenges such as accidents and traffic congestion[1]. These cases 
not only claim human lives on a large scale but also cause economic loss that in turn causes cities to 
lag. Human involvement is one of the main reasons for these problems, which can be related to low 
concentration, distractions, lack of experience, tiredness, and drowsiness. To overcome these issues and 
boost the effectiveness of today’s Advanced Driver Assistance Systems (ADAS), we have to get exact 
insights and modeling of the driver behavior which could be later on implemented by the system. 
Specifically, these systems leverage deep learning (DL) to boost driver safety by analyzing complex real-
time data from sensors and cameras. DL models enable features like object detection for collision 
avoidance, lane-keeping, and adaptive cruise control, improving the system’s ability to navigate dynamic 
environments[2]. These AI-driven advancements are crucial for developing semi-autonomous and 
autonomous vehicles. 
Actuators and sensors are the foundation of the majority of advanced aid technologies used in ADAS 
systems. These components play a crucial part in the development of the automotive industry[3], as 
demonstrated by the vision sensors that identify traffic signs. Such systems aim to process the intricate 
aspects of vision, making it possible for computers to recognize and process images or videos like humans 
do[4]. AI, more specifically Deep Learning (DL) has demonstrated this duality by making significant 
strides and surpassing humans in several tasks involving object identification and recognition[5]. To 
furnish drivers with a smart, secure, and agreeable driving experience, present-day vehicles coordinate 
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ADASby utilizing a combination of active and passive sensors, including technologies like lidar and 
radar[6]. DL algorithms process the vast amounts of data from these sensors to detect objects, predict 
driver behavior, and make real-time decisions. Additionally, advanced signal processing techniques 
enhance the accuracy of sensor inputs by filtering noise and improving the detection of critical features, 
thereby boosting the overall performance of ADAS. 
Recently, Metaheuristic-based CNN optimization methods such as genetic algorithms, particle swarm 
optimization, simulated annealing, and ant colony optimization, have shown a significant role in AI-based 
multi-modal intelligent systems by boosting the effectiveness and efficiency of CNN models[7]. In contrast 
to conventional optimization techniques that require explicit representations of the problem structure or 
derivatives, metaheuristic algorithms are driven by high-level strategies that are related to natural 
phenomena, social behavior, or a mathematical principle[8]. Such algorithms work in the form of black 
boxes without assuming that the mathematical characteristics of the problem are known, increasing their 
broad applicability even to the types of optimization problems that have complex and dynamic 
environments. In addition, Metaheuristics are powerful in suppressing noise levels in data through the 
optimization processes which will increase the data quality and reliability and finally make it more 
suitable for forthcoming analysis tasks. In the same manner, among the metaheuristic algorithms, 
dimensionality reduction happens to have the best shot at finding the subsets of features containing the 
primary information and discarding the trivial[9][10][11]. Techniques such as genetic algorithms and 
particle swarm optimization are designed to either navigate or search the most high-dimensional search 
spaces or find relevant feature subsets[12]. These techniques simplify data representations and save 
computational efficiency. Mixed-integer programming, hill-climbing-based algorithms, and swarm 
optimization can help greatly improve the analysis of low-dimensional data from fields like signal 
processing, machine learning, and beyond, due to their flexibility and scalability[13]. 
In this study, we have introduced an advanced AI-driven multi Intelligent Transportation System (ITS) 
that incorporates smart ADAS technology by combining various functionalities of two metaheuristics: (1) 
Modified coati optimization (MCO) algorithm[14], and (2) Emperor Penguin Optimization 
(EPO)[15]algorithm with a newly proposed Y-shaped CNN architecture. The MCO algorithm has shown a 
significant role in noise reduction in various research domains of engineering. Similarly, EPO is a new but 
advanced search space optimization technique to determine the most relevant and significant feature 
during acoustic data analysis. Here, the proposed CNN architecture was used to extract deep hybrid 
features from the smoothed signals and then the extracted features were optimized using EPO algorithm. 
Finally, the optimized sound features were classified using a novel Recurrent Artificial Neural Network 
(RANN) model. The primary objective of the proposed approach is to enhance road safety and mitigate 
traffic congestion. Our approach involves the meticulous analysis of three distinct acoustic datasets, each 
serving a specific purpose in assessing traffic conditions, analyzing emergency vehicle sirens and road 
noises, and evaluating road quality.  
1. To ensure the quality of the acoustic signals, we implemented a signal pre-processing phase utilizing 

a modified coati optimization (MCO) algorithm, effectively removing unwanted artifacts.  
2. Following signal pre-processing, we employed the Y-Net pretrained architecture for feature 

extraction, revealing intricate details in the acoustic data.  
3. The extracted features underwent optimization through the Emperor Penguin Optimization (EPO) 

algorithm, addressing data dimensionality issues and ensuring the retention of pertinent features for 
subsequent analysis. 

4. The final component of our proposed system is a hybrid Y-shaped CNN architecture, designed to 
detect abnormalities in road conditions. This RANN employs a multi-class classification system to 
provide valuable suggestions to drivers, contributing to a more intelligent, safe, and enjoyable 
driving experience.  

The following is the structure of the remaining work. Section 2 reviews the audit of existing works 
associated with the ITS for ADAS. The issue depiction and the proposed procedure are discussed in 
Section 3 with the appropriate numerical capabilities. The outcomes and similar examination of 
proposed and existing shrewd transportation frameworks for savvy driver help are covered in Section 4. 
Finally, the conclusion and future scope are given in Section 5. 
 
2. RELATED WORK 
2.1 Baseline Models ForIntelligent Transportation Systems 
Several experiments have been carried out to enhance the efficiency of Advanced Driver Assistance 
Systems (ADAS). The details of few prominent studies are given in Table 1. In the past, models being used 
in Intelligent Transportation Systems (ITS) were predominantly based on statistical and heuristic models. 
But the emergence of deep learning (DL) has provided these systems with the basis to analyze data and 
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make decisions more accurately and flexibly with respect to the transport systems.For example,Kim et al. 
(2017) [16] have offered a means of estimating the risk of a collision that uses the lane-based 
probabilistic motion prediction of cars in the area to quantify the risk of a collision for a variety of local 
path options. Last but not least, each set of the tangential acceleration and the final lateral offset of the 
local path choices is represented by a trajectory plane. used to illustrate the collision risks.Chen et al. 
(2017) [17] have investigated road transport incidents involving hazardous materials that seriously 
endanger people's lives, property, and the environment. The purpose of this study is to examine 
hazardous material road transport accident data from seven regions of China using the eXtreme Gradient 
Boosting (XGBoost) algorithm. The suggested XGBoost approach offers the best modeling performance, 
according to the data.  
Nozaki et al. (2018) [18]employ 5G wireless networks to transfer photographic images from trucks, 
cranes, and other construction equipment equipped with 4K cameras to a database. Artificial intelligence 
is then used to analyze worker interactions and movements inside the database In this case, 4K photos 
from low-speed moving vehicles or cranes are sent to the database based on their speed and distance 
traveled to the 5G terminal that connects the base station and Internet of Things device. They analyze the 
relationship between the error of the system that uses AI to judge and identify the surrounding 
environment when video quality deteriorates, based on the error environment.Zhang et al. (2018) [19] 
presented an AI driven driver monitoring system to help drivers avoid accidents. The framework utilizes 
a two-layer long transient memory calculation to distinguish heart irregularities, a CNN architecture to 
recognize driver sluggishness from the scramble camera, and a front camera and GPS to recognize 
overspeeding. The proposed model integrates these inputs using a Neuro-Fuzzy controller, which then 
uses speed, heartbeat, and sleepiness variables to generate alerts and modulate brakes if needed.  
Singhal et al. (2020) [20]have focused on the road vehicle-train collision risk prediction assessment 
enabled by AI, which could result in the creation of a road vehicle-train collision avoidance system for 
unmanned railway level crossings. The study's boundaries are set around single-line rail-road segments' 
unmanned level crossings where vehicles collide with trains on the road. The study's primary goal is to 
evaluate the risk of rail-road collisions by developing a model to forecast the frequency and severity of 
road vehicle-train collisions using Poisson and Gamma-log regression, respectively. Saleem et al. (2022) 
[21] have proposed the development of smart cities and transportation networks in the future is road 
traffic safety. The European Commission launched the emergency call initiative to assist drivers by setting 
up a special number. They looked into how to classify the severity of accidents involving powered two-
wheelers using machine-learning techniques based on features that could be fairly acquired at the scene. 
It utilizes just eleven highlights to accomplish roughly 90% accuracy and review on a huge publically 
accessible corpus.  

 
Table 1. Summary of research gaps in the existing studies 
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3. PROPOSED METHODOLOGY 
In this section, we explained the proposed AI-based multi ITS with smart ADAS for improving road safety 
by reducing traffic congestion using acoustic data analysis techniques. 
 
3.1 Overview of the Proposed Method 
The overall system design of the proposed work, illustrated in Figure 1, involves a structured 
methodology comprising distinct phases. In the initial stage, data collection is carried out using various 
acoustic datasets, including the IDMT traffic dataset for assessing traffic conditions, the LSA vehicles 
dataset for analyzing emergency vehicle sirens and road noises, and the RQA road dataset for quality 
assessment of roads. Subsequently, the collected acoustic data undergoes a crucial signal pre-processing 
step aimed at eliminating unwanted artifacts, ensuring the accuracy of subsequent analyses. This involves 
the application of the modified coati optimization (MCO) algorithm to enhance the overall quality of the 
acoustic data. Following signal pre-processing, the pre-processed signal is subjected to feature extraction 
using the Y-Net pretrained architecture. This feature extraction phase aims to uncover hidden features 
within the acoustic data, providing a comprehensive understanding of underlying patterns. To address 
data dimensionality issues, the extracted features are then optimized using the emperor penguin 
optimization (EPO) algorithm, ensuring that the data remains informative and manageable. The 
subsequent abnormality detection phase involves the application of the hybrid CNN model to identify 
deviations from normal traffic patterns or road quality, leveraging the optimized features. Further, a 
multi-class classification is performed based on the nature of abnormalities detected in each dataset. For 
the IDMT traffic dataset, classes include Normal traffic and abnormal traffic. In the LSA dataset, classes 
comprise Vehicle sirens and Road noise. Lastly, the RQA dataset is divided into rough road, smooth road, 
and grassy road classes. Building on multi-class classification, the study defines smart driver assistance 
classes, including sudden acceleration (label-1), sudden right turn (label-2), sudden left turn (label-3), 
and sudden brake (label-4). 
The proposed approach is briefly discussed in the subsequent subsections. 
 
3.1 Acoustic Data Pre-Processing 
In this context, acoustic data pre-processing is a critical step aimed at enhancing the quality of the 
collected acoustic data by eliminating unwanted artifacts. The chosen method for this pre-processing task 
is the modified coati optimization (MCO) algorithm[14]. It operates as an optimization technique 
specifically designed for signal-processing applications. The MCO algorithm is employed to analyze and 
modify the acoustic data in a way that minimizes or eliminates undesirable elements, such as background 
noise, distortions, or irregularities, which may be present in the raw data. The algorithm utilizes an 
optimization process to adaptively adjust the parameters of a predefined model or filter, effectively 
suppressing unwanted components while preserving relevant information. 
The modification process carried out by the MCO algorithm is tailored to the characteristics of acoustic 
signals, taking into account factors such as frequency, amplitude, and temporal patterns. Through 
iterative optimization, the algorithm refines its adjustments to achieve an optimal configuration that 
enhances the clarity and accuracy of the acoustic data. By applying the MCO algorithm for signal pre-
processing, the unwanted artifacts within the acoustic data are effectively reduced or eliminated, 
resulting in a cleaner and more reliable dataset for subsequent analysis.  
 

 
Figure 1. Overall system design of proposed work 
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The initialization of the MCO algorithm continues as before with the parameter initialization 
corresponding to the position of each coati.In the preliminary phase, the position of each coati is 
randomly defined by Eq. 1.  
𝑋𝑖 ∶  𝑥i,j =  𝑙𝑏𝑗 + 𝑟 ·  ( 𝑢𝑏𝑗 −  𝑙𝑏𝑗 ) , 𝑖 =  1, 2, . . . ,𝑁, 𝑗 =  1, 2, . . . ,𝑚,                                (1) 
where Xi is the position of the ith coati in search space, xi,jis the value of the jth decision variable, N is the 
number of coatis, m is the number of decision variables, r is a random real number in the interval [0, 1], 
and lbjand ubj are the lower bound and upper bound of the jth decision variable, respectively. The 
population of coatis in the COA is mathematically represented using the following matrix X, called the 
population matrix, 
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The objective function (𝐹𝑖) of the problem is evaluated at various values as a result of the placement of 
potential solutions in  variables . The fitness function matrix is given in the Equation (3). 
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where 𝐹iis the objective function value derived from the ithcoati and F is the vector of the obtained 
objective function. The objective function's value refers to the quality of a candidate solution in COA. The 
process of updating the position of coatis (candidate solutions) in the COA is based on modeling two 
natural behaviors of coatis. These behaviors include (1) coatis’ hunting strategy when attacking iguanas, 
and (2) coatis’ escape strategy from predators.The study of the iguana attack's behavior correlates to the 
first stage of coati's population in the search space. One tactic involves having a group of coatis scale a 
tree to frighten the iguana away. A few more coatis are waiting for the iguana to fall to the ground from 
where they are caught beneath a tree. As the Iguana has fallen, to the floor, the coatis jump into it and 
catch it. Consequently, coatis shift their places in search space, and the COA exhibits its capacity to roam 
in global search inside its problem-solving domain. The position of the coatis is mathematically defined in 
Equation 4. 

𝑋𝑖
𝑝1 : 𝑋𝑖 ,𝑗

𝑝1 =  𝑋𝑖 ,𝑗 + 𝑟.  𝐼𝑔𝑢𝑎𝑛𝑎𝑗 − 𝐼.𝑋𝑖 ,𝑗  , 𝑓𝑜𝑟  𝑖 = 1, 2,… ,
𝑁

2
 𝑎𝑛𝑑 𝑗 = 1,2,…𝑚                             (4) 

In the search space, the iguana is positioned at random after it hits the ground. In the search space, which 
is simulated using Eqs. (5) and (6), coatis on the ground move based on this random position.  
𝐼𝑔𝑢𝑎𝑛𝑎𝐺 : 𝐼𝑔𝑢𝑎𝑛𝑎𝑗

𝐺 = 𝑙𝑏𝑗 + 𝑟 𝑈𝑏𝑗 − 𝐿𝑏𝑗  , 𝑗 = 1,2,…𝑚                                                  (5) 

𝑋𝑖
𝑝1 : 𝑋𝑖 ,𝑗

𝑝1 =   
𝑋𝑖 ,𝑗 + 𝑟.  𝐼𝑔𝑢𝑎𝑛𝑎𝑗

𝐺 − 𝐼.𝑋𝑖 ,𝑗  𝐹𝐼𝑔𝑢𝑎𝑛𝑎 𝐺<𝐹𝑖

𝑋𝑖 ,𝑗 + 𝑟.  𝑋𝑖 ,𝑗 −  𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺                𝑒𝑙𝑠𝑒

                                                        (6) 

𝑓𝑜𝑟  𝑖 =  
𝑁

2
+ 1,

𝑁

2
+ 2,… ,𝑁, 𝑗 = 1,2,…𝑚 

If each coati's new position enhances the value of the goal function, it is suitable for the update process; if 
not, the coati stays in its original location. This update condition is for𝑖 = 1, 2,…,.N is updatedaccording to 
Eq. 7.  

𝑋𝑖 =   
𝑋𝑖

𝑃1 ,                    𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖                                 𝑒𝑙𝑠𝑒
                                                                         (7) 

Here, 𝑋𝑖
𝑃1 is the updated position calculated for the ith coati, 𝐹𝑖

𝑃1  is its objective function value, r is a 

random real number in the interval [0, 1]. Iguana represents the iguana’s position in the search space, 
which refers to the position of the best member, Iguanajis its jth dimension, I is an integer, which is 
randomly selected from the set 1, 2.  
The second step of the position of coatis update in the destitute region is modeled mathematically on the 
principle of foraging behavior of coatis when the coatis are encountered by predators and escape from 
the predators. A predator, in most cases, attacks coati from its sitting area. So, there is a tendency for an 
animal to exit that perch. This behavior of Coati can be interpreted as the COA that puts it in a position 
that is close to its current position, but it is safe; it is exploiting its near the search To emulate the 
mentioned situatedness, a partly random position is generated near the position of the coatis based on 
Eqs. (8) and (9).  

𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙 =  

𝑙𝑏𝑗

𝑡
,  𝑈𝑏𝑗

𝑙𝑜𝑐𝑎𝑙 =  
𝑈𝑏𝑗

𝑡
,𝑤ℎ𝑒𝑟𝑒 𝑡 = 1,2…𝑇                                                     (8) 
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𝑋𝑖
𝑝2 : 𝑋𝑖 ,𝑗

𝑝2 =  𝑋𝑖 ,𝑗 +  1 − 2𝑟 .  𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙 + 𝑟.  𝑈𝑏𝑗

𝑙𝑜𝑐𝑎𝑙 −  𝑙𝑏𝑗
𝑙𝑜𝑐𝑎𝑙   , 𝑓𝑜𝑟  𝑖 = 1, 2,… ,𝑁 𝑎𝑛𝑑 𝑗 = 1,2,…𝑚 

𝑋𝑖
𝑝1 : 𝑋𝑖 ,𝑗

𝑝1 =   
𝑋𝑖 ,𝑗 + 𝑟.  𝐼𝑔𝑢𝑎𝑛𝑎𝑗

𝐺 − 𝐼.𝑋𝑖 ,𝑗  𝐹𝐼𝑔𝑢𝑎𝑛𝑎 𝐺<𝐹𝑖

𝑋𝑖 ,𝑗 + 𝑟.  𝑋𝑖 ,𝑗 −  𝐼𝑔𝑢𝑎𝑛𝑎𝑗
𝐺                𝑒𝑙𝑠𝑒

                                       (9) 

The updated position is better if it enhances the value of the objective function, which this condition 
simulates using Eq. (10). 

𝑋𝑖 =   
𝑋𝑖

𝑃2 ,                    𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖                                 𝑒𝑙𝑠𝑒
                                                              (10) 

Here, 𝑋𝑖
𝑃2 is the updated position calculated for the ith coati, 𝐹𝑖

𝑃2  is its objective function value, r is a 

random real number in the interval [0, 1]. Iguana represents the iguana’s position in the search space, 
which refers to the position of the best member, Iguanajis its jth dimension, I is an integer, which is 
randomly selected from the set 1, 2.t is the iteration counter, 𝑙𝑏𝑗

𝑙𝑜𝑐𝑎𝑙  and 𝑈𝑏𝑗
𝑙𝑜𝑐𝑎𝑙  are the local lower bound 

and local upper bound of the jth decision variable respectively, 𝑙𝑏𝑗  and 𝑈𝑏𝑗  are the lower bound and upper 

bound of the jthdecision variable, respectively. The sample output for optimized signals (for 3 samples) is 
shown in Figure 2.  
 
3.2 Feature Extraction And Optimization 
Feature extraction and optimization are crucial stages in the proposed methodology, contributing to the 
comprehensive analysis of the pre-processed acoustic data. After the signal pre-processing phase, the 
enhanced data undergoes feature extraction to reveal hidden patterns. This process is facilitated by 
leveraging the Y-Net pretrained architecture, a neural network model designed for effective feature 
extraction from complex datasets. Y-Net pretrained architecture is employed to extract intricate features 
embedded within the acoustic data. This architecture, likely pre-trained on relevant tasks, possesses the 
capability to discern and highlight valuable information within the signals. The extraction of hidden 
features is used for obtaining a nuanced understanding of the underlying patterns present in the acoustic 
data. The process involved in the Y-Net for feature extraction can be described as follows: 
 

 
Figure 2. Signal smoothing (3 samples) using modified coati optimization 

 
 The pre-processed acoustic data, refined through the signal pre-processing phase, serves as the 

input to the Y-Net for feature extraction. 
 Y-Net refers to a neural network architecture that is pre-trained on relevant tasks, possibly in the 

domain of audio signal processing. It is used to effectively capture and represent intricate features 
present in complex acoustic datasets. 

 The Y-Net comprises multiple layers, each responsible for extracting specific features from the input 
data. These layers may include convolutional layers, pooling layers, and fully connected layers, 
configured to discern hierarchical patterns within the acoustic signals. 

 By leveraging knowledge gained from previous tasks for which the Y-Net was trained, the model can 
effectively generalize its feature extraction capabilities to the specific characteristics of the acoustic 
data under consideration. 
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 As the acoustic data passes through the layers of the Y-Net, it undergoes transformations that result 
in a hierarchically organized set of features. These features are representations of relevant patterns, 
structures, and information present in the acoustic signals. 

 The extracted features are optimized to address data dimensionality issues. The emperor penguin 
optimization (EPO) algorithm is used for this, refining the representation of features to strike a 
balance between informativeness and manageability. 

 The output of the Y-Net's feature extraction process is a set of optimized features that capture the 
essential characteristics of the pre-processed acoustic data. These features are then used as input for 
subsequent stages, such as abnormality detection and multi-class classification. 

         Following feature extraction, the obtained features undergo optimization to address potential data 
dimensionality issues. High-dimensional data can pose challenges in terms of computational 
efficiency and the risk of overfitting. To mitigate these challenges, the emperor penguin optimization 
(EPO) algorithm[15] is applied. The EPO algorithm serves as an optimization technique specifically 
tailored for dimensionality reduction, ensuring that the extracted features retain their informative 
content while reducing the overall data dimensionality. The optimization process performed by the 
EPO algorithm involves modifying the representation of features to increase their relevance and 
reduce redundancy. This leads to a more concise and manageable feature set that facilitates more 
efficient analysis and model execution. To show the discriminability among features, the variation in 
probability distribution before and after the feature reduction step is shown in Figure 3. Three other 
performance parameters (Mean, standard Variation, and Skewness) for original features and 
optimized features are also shown in Figure 4. 

 

 
Figure 3: Variation in probability distribution function before and after the feature reduction step 

 

 
Figure 4: Variation in mean, standard variation, and skewness before and after the feature reduction step 
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3.3 Detection of road abnormality 
The final stage of the proposed methodology involves the application of the hybrid recurrent artificial 
neural network (RANN) for the detection of abnormalities in road conditions, ultimately providing 
suggestions for drivers across various multi-class categories. The hybrid nature of the RANN implies a 
combination of recurrent neural network (RNN) elements, known for their sequential data processing 
capabilities, and artificial neural network components. The Hybrid RANN is trained to detect 
abnormalities in road conditions based on the patterns and features present in the input data. This 
includes identifying deviations from normal traffic patterns, recognizing emergency vehicle sirens or road 
noises, and pinpointing variations in road quality such as roughness, smoothness, or the presence of 
grass. The abnormalities detected lead to a multi-class classification system. For the RQA dataset, the 
classes comprise rough roads, smooth roads, and grassy roads, indicating variations in road quality. 
Building on the multi-class classification, the study further computes smart driver assistance classes, 
categorizing the detected abnormalities into specific driver assistance scenarios. These incorporate 
unexpected speed increase (mark 1), abrupt right turn (name 2), abrupt left turn (name 3), and 
unexpected brake (mark 4). Each class addresses what is going on that requires consideration or activity 
from the driver. Setting the suitable organization construction and finding the ideal boundary esteem 
incredibly influenced the ANN's presentation. The result can be determined from the accompanying 
condition: 
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where 
PS donates the output of the node; Qa is the Q-th input; PQW , , is the association boundary;  

addresses the inclination of the hub, and gives the hub move capability. In many occurrences, the hub 
move capability is nonlinear. As a repetitive model, the wellness capability is communicated as follows: 
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where ))(( SWE and )(SW donate the mistake and boundaries in the conjunctions at the S-th emphasis, 

individually. The P addresses the quantity of examples and K addresses the quantity of result hub. The 
expected value of the Kth output node is given by kE, and the actual value is given by ka, O. ANN is a 
straightforward numerical model of the human cerebrum. The term can be found utilizing a RANN 
prepared to execute different conditions.  
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Explicit BCs and a∈Z, ∈r, d⊂r address the space, and x(y) is the surmised arrangement. The problem takes 
on a particular shape if Q's adjustable parameters serve as a test solution. 
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BC forced limitations. The experimental solver RANN is utilized in our proposed method, and the P 
parameters correspond to the neural structure's weights and biases. In many practical applications, ANNs 
are the most popular and widely used models because they are black-box tools. In the fields of hydro-
environmental engineering, ANN modeling is frequently used for prediction. The articulation condition to 
decide the result worth of ANN is as follows. 





n

Q

PagaQYgg

M

g

PJPP wZywfwfx
11

])([ˆ     (15) 

where Q, g, P, An, and w address the information, stowed away, and yield layers neurons, inclination and 
the applied weight (or predisposition) through the neuron, separately;  mean actuation capability for the 
covered up and yield layers, individually; b, a show individually input layer variable, number of 
information and number of stowed away neurons; what's more, x, represent noticed and processed 
upsides of the resulting neuron, separately. To get to memory we utilize an understanding regulator. The 
perusing regulator utilizes both the saw past direction and the unique situation (, ) as key and produces a 
read likelihood over every memory area Q. A removal investigation of regulator variations is accounted 
for. We initially register a previous read similitude sπ and a setting read closeness as follows: 
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We then feed 
Jt and 

Qt to a RANN F that mixes the read similarities, pondering past and setting position 

and can yield high scores for relevant examples and low scores for the others. The last perused 
probability is subsequently gotten as follows. 

),()( QQQ ttfrj       (18) 

We simply read the top-K samples with the highest inference time to achieve multimodality because each 
memory sample can be read and decoded independently. This is accomplished by composing it as an 

amount of two terms. In our specific approach, the test solution tx  RANN is used, and the i parameters 

match the weight and dependence of the neural structure. For the test operation, we choose the form 

)(yxt that satisfies the BCs. This can be achieved by writing a sum of two words: 

)),,(,()(),( hynyiynjQx yt      (19) 

where is a solitary result RANN with injuries and B input units took care of with the information vector Q. 
The term includes no movable boundaries and items the BCs. The second term, g, is designed to satisfy 
the BCs without providing coverage. For a given info Y, the result of the RANN is figured as follows.  
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where QPW  input unit Q epitomizes the heap that connects the secret unit to Q, the info unit Q describes 

the heap that joins Q to the result unit, and the secret unit portrays the reliance of Q, and is a sigmoidal 
transmission capability. The slant of the RANN is effectively gotten with esteem to the RANN settings.  
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Hybrid RANN acts as the intelligent decision-making component of the system, detecting anomalies and 
providing information to drivers through multi-class classification. The resulting smart driver assistance 
classes provide drivers with specific recommendations based on the nature of road conditions that help 
improve road safety and driving. 
 
4. RESULTS AND DISCUSSION 
In this section, we disclose the outcomes and comparative evaluation of our devised intelligent 
transportation-driven smart driver assistance systems, benchmarked against existing solutions. To 
ascertain the effectiveness of our proposed system, validation is conducted employing publicly accessible 
datasets, namely IDMT traffic, LSA, and ROA. The implementation of our proposed MCO-EPO-RANN 
system is executed within the Google Colab environment using the Python programming language. The 
performance of our system is juxtaposed with established state-of-the-art systems, employing diverse 
metrics including accuracy, precision, recall, and F-measure for a comprehensive comparative analysis. 
 
4.1 Dataset description 
To validate the effectiveness of our proposed system, validation is conducted employing publicly 
accessible datasets, namely IDMT traffic, LSA, and ROA. 
 IDMT traffic dataset [30]: It contains 15,706 2-second lengthy sound system brief snippets, which 

were removed from 4718 vehicle passing occasions caught with both excellent sE8 and mid-range 
quality MEMS amplifiers at two recording areas with speed cutoff points of 30 and 50 km/h. As the 
test set, recordings were used from the third location with a speed limit of 70 km/h. The IDMT traffic 
dataset is broken down into categories in Table 2 by the number of samples in each class. The 
dataset is separated into three sets: preparing, approval, and testing. For each set, the number of 
samples is specified for both normal traffic and abnormal traffic conditions. In the training set, there 
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are 2393 samples representing normal traffic and 2893 samples for abnormal traffic. The validation 
set consists of 266 samples for normal traffic and 322 samples for abnormal traffic. Finally, the 
testing set includes 1412 samples for normal traffic and 1445 samples for abnormal traffic. The total 
for the entire dataset sums up to 4071 samples for normal traffic and 4660 samples for abnormal 
traffic, encompassing all training, validation, and testing sets. We prepared all brain networks 
utilizing the Adam enhancer for 250 ages with a learning pace of 10-5. Early halting with the 
persistence of 50 ages is utilized on the approval misfortune to screen the preparation interaction. 

 
Table 2: Description of IDMT traffic dataset 

 Number of samples Normal traffic Abnormal traffic 

Training 2393 2893 

Validation 266 322 

Testing 1412 1445 

Total 4071 4660 

 
 LSA vehicle dataset[31]: A receiver mounted on the HD camera is utilized to catch an emergency 

vehicle on the streets. NCBC-ZU lab has introduced mouthpiece-coordinated HD cameras in twenty 
unique areas in Karachi. Nonetheless, just four areas have been chosen for information assortment. 
Table 3 provides a detailed description of the LSA vehicle dataset, outlining key characteristics and 
attributes. The dataset consists of two distinct categories: Emergency Siren Sounds and Road Noise. 
There are 900 samples for each category, resulting in a total of 1800 samples in the dataset. The total 
duration of the audio clips is 3.15 hours, with individual clips having lengths ranging from 3 to 15 
seconds. The audio clips are recorded at a sampling rate of 48 kHz, ensuring high-quality audio data 
for analysis. This dataset is specifically curated to capture and differentiate between emergency 
sirens and road noise, contributing to the comprehensive evaluation of the proposed system's 
performance. 

 
Table 3: Description of the LSA vehicle dataset 

Description  Values 

Emergency Siren Sounds 900 

Road noise 900 

Total samples 1800 

Total duration 3.15 hours 

Audio clip length 3-15 seconds 

Sampling rate  48 kHz 

 
 RQA road dataset [32]: It accumulates information from a few inactive methodologies. For 

information assortment, two sensor networks were utilized, every one comprising of single-board 
PC (SBC) Raspberry Pi and MPU-9250 modules, everyone furnished with an accelerometer, gyrator, 
magnetometer, and temperature sensor. An outside GPS source was likewise utilized, creating area 
and speed information, as well as a camera for catching encompassing video. The RQA road dataset, 
which includes three distinct road types, is presented in detail in Table 4, which provides: Rough, 
Smooth, and Grassy. In the training set, the dataset includes 5689 samples of Rough Road, 7458 
samples of Smooth Road, and 6325 samples of Grassy Road. For the validation set, there are 1568 
samples of Rough Road, 2154 samples of Smooth Road, and 1898 samples of Grassy Road. The 
testing set consists of 2300 samples for each road type. In total, the dataset comprises 19,472 
training samples, 5620 validation samples, and 6900 testing samples. 

 
Table 4: Description of the RQA road dataset 

Road type Training Validation Testing 

Rough 5689 1568 2300 

Smooth  7458 2154 2300 

Grassy 6325 1898 2300 

Total samples 19472 5620 6900 
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4.2 Comparative analysis 
4.2.1 Result comparison for IDMT traffic dataset 
In this section, we validate the performance of proposed and existing ITS with ADAS systems using the 
IDMT traffic dataset. The results of our MCO-EPO-RANN system are compared with the existing state-of-
art systems such as nearest neighbor[33], bayer’s[34], random forest[35], support vector machine 
(SVM)[36], artificial neural network (ANN)[37], and Neuro-Fuzzy [38]. Table 5 describes the 
comparative analysis of the IDMT traffic dataset with the training dataset. In terms of accuracy, the 
nearest neighbor system achieves 65.147%, followed by Bayer's at 70.383%, Random Forest at 75.619%, 
SVM at 80.855%, ANN at 86.091%, Neuro-Fuzzy at 91.327%, and finally, the proposed MCO-EPO-RANN 
system excels with an impressive 96.563%. This shows a substantial increase in accuracy with the 
proposed system. Precision, measuring the system's ability to correctly identify positive instances, 
follows a similar trend. The Nearest Neighbor system starts at 64.273%, progressing through the systems 
until the MCO-EPO-RANN system attains the highest precision at 95.689%. The proposed system exhibits 
an improvement in precision compared to the existing methods. Recall, indicating the system's capability 
to capture all positive instances, shows consistent improvement across systems. The Nearest Neighbor 
system starts at 63.819%, reaching its peak with the MCO-EPO-RANN system at 95.235%. This 
demonstrates the effectiveness of the proposed system in identifying abnormal traffic instances. F-
measure, a harmonic mean of precision and recall, follows a similar pattern. MCO-EPO-RANN system 
achieves the highest F-measure at 95.461%, emphasizing balanced performance in both precision and 
recall. 
The results for the testing phase further underscore the superior performance of the proposed MCO-EPO-
RANN system compared to existing systems in the IDMT traffic dataset. In terms of accuracy, the Nearest 
Neighbor system starts at 82.478%, followed by Bayer's at 85.041%, Random Forest at 87.604%, SVM at 
90.167%, ANN at 92.730%, Neuro-Fuzzy at 95.293%, and finally, the MCO-EPO-RANN system excels with 
an outstanding accuracy of 97.856%. This reflects a remarkable increase in accuracy for the proposed 
system. Precision, indicating the ability to correctly identify positive instances, exhibits a consistent 
improvement across systems.  
 

Table 5: Comparative analysis of proposed and existing systems for IDMT traffic dataset 
System Values in % 

Accuracy Precision Recall F-measure 

  Testing 

Nearest Neighbor [33] 65.147 64.273 63.819 64.045 

Bayer’s [34] 70.383 69.509 69.055 69.281 

Random Forest [35] 75.619 74.745 74.291 74.517 

SVM [36] 80.855 79.981 79.527 79.753 

ANN [37] 86.091 85.217 84.763 84.989 

Neuro-Fuzzy [38] 91.327 90.453 89.999 90.225 

MCO-EPO-RANN  [39] 96.563 95.689 95.235 95.461 

  Training 

Nearest Neighbor [33] 82.478 81.176 79.645 79.767 

Bayer’s [34] 85.041 83.739 82.208 82.330 

Random Forest [35] 87.604 86.302 84.771 84.893 

SVM [36] 90.167 88.865 87.334 87.456 

ANN [37] 92.730 91.428 89.897 90.019 

Neuro-Fuzzy [38] 95.293 93.991 92.460 92.582 

MCO-EPO-RANN  [39] 98.856 96.554 95.023 95.145 

 
The Nearest Neighbor system starts at 81.176%, progressing through the systems until the MCO-EPO-
RANN system attains the highest precision at 96.554%. This signifies a substantial enhancement in 
precision with the proposed methodology. Similarly, recall, measuring the system's capability to capture 
all positive instances, demonstrates a notable improvement. The Nearest Neighbor system starts at 
79.645%, reaching its peak with the MCO-EPO-RANN system at 95.023%. This highlights the effectiveness 
of the proposed system in identifying abnormal traffic instances during the testing phase. F-measure, 
reflecting the harmonic mean of precision and recall, follows a parallel trend. The proposed MCO-EPO-
RANN system achieves the highest F-measure at 95.145%, underlining its balanced performance in both 
precision and recall during the testing phase. Figures 5 and 6 show the proposed MCO-EPO-RANN 
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system outperforms existing systems in accuracy, precision, recall, and F-measure, indicating its superior 
ability to detect abnormalities in the IDMT traffic dataset with training and testing datasets, respectively. 
 

 
Figure 5. Results comparison of training dataset for IDMT traffic dataset 

 

 
Figure 6 Results comparison of the testing dataset for the IDMT traffic dataset 

 
4.2.2 Result comparison for LSA vehicle dataset 
In this section, we validate the performance of proposed and existing ITS with ADAS systems using the 
LSA vehicle dataset. The results of our MCO-EPO-RANN system are compared with the existing 
benchmark systems such as random forest (RF) [38], Naive Bayes (NB) [39], linear regression (LR) [40], 
k-nearest neighbor (k-NN) [33], SVM [36], and ANN [37]. Table 6 describes the comparative analysis of 
the LSA traffic dataset with the training dataset. The comparative analysis of the training phase for the 
LSA vehicle dataset reveals notable insights into the performance of various systems, including the 
proposed MCO-EPO-RANN methodology. In terms of accuracy, the RF system starts at 70.459%, followed 
by NB at 74.694%, LR at 78.929%, k-NN at 83.164%, SVM at 87.399%, ANN at 91.634%, and the MCO-
EPO-RANN system excelling with an accuracy of 95.869%. This illustrates a substantial increase in 
accuracy for the proposed methodology, showcasing its effectiveness in the training phase. Precision, 
measuring the accuracy of positive predictions, consistently improves across systems. The RF system 
starts at 69.446%, progressing through the systems until the MCO-EPO-RANN system achieves the 
highest precision at 94.856%. This indicates a significant enhancement in precision with the proposed 
methodology. Similarly, recall, indicating the system's ability to identify all positive instances, exhibits a 
steady improvement. The RF system begins at 69.825%, reaching its zenith with the MCO-EPO-RANN 
system at 95.235%. This underscores the efficiency of the proposed system in capturing emergency 
vehicle sirens and road noises during the training phase. F-measure, representing the harmonic mean of 
precision and recall, mirrors the trends observed in precision and recall. The MCO-EPO-RANN system 
attains the highest F-measure at 95.045%, affirming its balanced performance in both precision and recall 
during the training phase.  
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Table 6: Comparative analysis of proposed and existing systems for the LSA vehicle dataset 
System Values in % 

Accuracy Precision Recall F-measure 

  Testing 

RF [38] 70.459 69.446 69.825 69.635 

NB [39] 74.694 73.681 74.060 73.870 

LR [40] 78.929 77.916 78.295 78.105 

k-NN [33] 83.164 82.151 82.530 82.340 

SVM [36] 87.399 86.386 86.765 86.575 

ANN [37] 91.634 90.621 91.000 90.810 

MCO-EPO-RANN  95.869 94.856 95.235 95.045 

  Training 

RF [38] 82.797 81.666 81.041 81.352 

NB [39] 85.162 84.031 83.406 83.717 

LR [40] 87.527 86.396 85.771 86.082 

k-NN [33] 89.892 88.761 88.136 88.447 

SVM [36] 92.257 91.126 90.501 90.812 

ANN [37] 94.622 93.491 92.866 93.177 

MCO-EPO-RANN  96.987 95.856 95.231 95.542 

 
In the testing phase, the comparative analysis provides a comprehensive evaluation of the proposed MCO-
EPO-RANN methodology against existing systems. The RF system commences with an accuracy of 
82.797%, followed by NB at 85.162%, LR at 87.527%, k-NN at 89.892%, SVM at 92.257%, ANN at 
94.622%, and the MCO-EPO-RANN system excels with the highest accuracy of 96.987%. Precision, 
reflecting the accuracy of positive predictions, consistently improves across systems. Starting at 81.666% 
for RF, the precision gradually rises through the systems, culminating in the MCO-EPO-RANN system 
achieving the highest precision at 95.856%. Recall, representing the system's ability to identify all 
positive instances, exhibits consistent improvement across systems. Commencing at 81.041% with RF, 
recall advances steadily through the systems until the MCO-EPO-RANN system achieves the highest recall 
at 95.231%. F-measure, combining precision and recall, follows a similar trend, with the MCO-EPO-RANN 
system achieving the highest F-measure at 95.542%. Figures 7 and 8 highlight the balanced performance 
of the proposed methodology in accurately identifying and classifying emergency vehicle sirens and road 
noises during the training and testing phase. 
 

 
Figure 7. Results comparison of training dataset for LSA vehicle dataset 

 
Figure 8. Results comparison of the testing dataset for the LSA vehicle dataset 
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4.2.3 Result comparison for RQA road dataset 
In this section, we validate the performance of proposed and existing ITS with ADAS systems using the 
RQA road dataset. The results of our MCO-EPO-RANN system are compared with the existing benchmark 
systems such as random forest (RF) [38], Naive Bayes (NB) [39], linear regression (LR) [40], k-nearest 
neighbor (k-NN) [33], SVM [36] and K-means clustering (KMC) [41]. Table 7 describes the comparative 
analysis for the RQA road dataset during the training phase revealing valuable insights into the 
performance of the proposed MCO-EPO-RANN system and existing systems. The RF system initiates the 
accuracy metrics at 70.446%, succeeded by NB at 74.431%, LR at 78.416%, k-NN at 82.401%, SVM at 
86.386%, KMC at 90.371%, and finally, the MCO-EPO-RANN system attains the highest accuracy of 
94.356%. Precision, representing the accuracy of positive predictions, consistently improves across 
systems. The MCO-EPO-RANN system achieves the highest precision at 94.123%, indicating the ability to 
precisely classify rough, smooth, and grassy road types during the training phase. Recall, which measures 
the system's ability to identify all positive instances, displays a consistent upward trajectory across 
systems. Starting at 69.742% with RF, recall gradually improves, culminating in the MCO-EPO-RANN 
system achieving the highest recall at 93.652%. F-measure, combining precision and recall, follows a 
similar trend, with the MCO-EPO-RANN system achieving the highest F-measure at 93.887%.  
The testing phase comparative analysis for the RQA road dataset provides crucial insights into the 
performance of both the proposed MCO-EPO-RANN system and existing systems. Commencing with the 
RF system at 68.138% accuracy, followed by NB at 72.762%, LR at 77.385%, k-NN at 82.009%, SVM at 
86.632%, KMC at 91.256%, and finally, the MCO-EPO-RANN system excels with the highest accuracy of 
95.879%. Precision metrics, representing the accuracy of positive predictions, consistently improve 
across systems during the testing phase. MCO-EPO-RANN system achieves the highest precision at 
95.016%, indicating the ability to precisely classify rough, smooth, and grassy road types. Recall, that 
measuring the system's ability to identify all positive instances, demonstrates a consistent upward trend 
across systems during testing. Commencing at 66.611% with RF, recall gradually improves, culminating 
in the MCO-EPO-RANN system achieving the highest recall at 94.352%. This highlights the efficacy of the 
proposed methodology in capturing various road types during the testing phase. F-measure, a 
harmonized metric of precision and recall, follows a similarly positive trend, with the MCO-EPO-RANN 
system achieving the highest F-measure at 94.683%.  Figures 9 and 10 indicate a well-balanced 
performance in accurately identifying and classifying different road types during the training and testing 
phases, respectively. 
 

Table 7: Comparative analysis of proposed and existing systems for the RQA road dataset 
System Values in % 

Accuracy Precision Recall F-measure 

  Testing 

RF [38] 70.446 70.213 69.742 69.977 

NB [39] 74.431 74.198 73.727 73.962 

LR [40] 78.416 78.183 77.712 77.947 

k-NN [33] 82.401 82.168 81.697 81.932 

SVM [36] 86.386 86.153 85.682 85.917 

KMC [41] 90.371 90.138 89.667 89.902 

MCO-EPO-RANN  94.356 94.123 93.652 93.887 

  Training 

RF [38] 68.138 67.275 66.611 66.941 

NB [39] 72.762 71.899 71.235 71.565 

LR [40] 77.385 76.522 75.858 76.189 

k-NN [33] 82.009 81.146 80.482 80.812 

SVM [36] 86.632 85.769 85.105 85.436 

KMC [41] 91.256 90.393 89.729 90.059 

MCO-EPO-RANN  95.879 95.016 94.352 94.683 
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Figure 9. Results comparison of training dataset for RQA road dataset 

 

 
Figure 10. Results comparison of the testing dataset for the RQA road dataset 

 
4.4 Comparative analysis of proposed and existing state-of-art techniques 
Table 8 shows the comparative analysis of proposed and existing state-of-the-art techniques for ITS on 
smart ADAS technology. The table presents an overview of various techniques, their roles, and 
corresponding values in terms of accuracy, precision, recall, and F-measure. Starting with the existing 
methods, MIMO-NN [42], VGG-Net [43], and t-SNE [44] demonstrate accuracy values of 76.525%, 
73.025%, and 69.856%, respectively, in the domain of driving assistance. SVM [36] for road accident 
detection achieves an accuracy of 71.245%, while XGBoost, focused on hazardous detection, records 
65.235%. PGLR for vehicle-train collision detection and LPM for traffic collision detection exhibit 
accuracy rates of 75.234% and 89.652%, respectively. CNN-LSTM and SVM+LSTM, addressing road 
accident detection, show accuracies of 83.265% and 85.632%, respectively. Our MCO-EPO-RANN 
technique is used for smart driver assistance, outperforms these existing methods with a remarkable 
accuracy of 96.252%.  

 
Table 8.Result comparison of proposed and existing state-of-art techniques for ITS for smart ADAS 

technology 

Technique used Role Values in % 
Accuracy Precision Recall F-measure 

MIMO-NN [42] Driving assistance  76.525 60.344 74.185 66.552 

VGG-Net [43] Driving assistance  73.025 65.894 70.685 68.205 

t-SNE [44] Driving assistance  69.856 65.332 67.516 66.406 

SVM [36] Road accident detection 71.245 70.145 68.905 69.519 

XGBoost [45] Hazardous detection 65.235 60.198 62.895 61.517 

PGLR [20] Vehicle-train collision detection 75.234 71.247 72.894 72.061 

LPM [46] Traffic collision detection 89.652 83.698 87.312 85.467 

CNN-LSTM [47] Road accident detection 83.265 81.278 80.925 81.101 
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5. CONCLUSION 
We have introduced an innovative AI-based multi-intelligent transportation system (ITS) for smart 
advanced driver assistance system (ADAS) technology, aimed at improving road safety and alleviating 
traffic congestion through the analysis of acoustic data. Our approach commences with a robust signal 
preprocessing phase, where the modified coati optimization (MCO) algorithm effectively eliminates 
unwanted artifacts from the acoustic data. Subsequently, the preprocessed signal undergoes feature 
extraction using the Y-Net pretrained architecture, and the extracted features are optimized using the 
emperor penguin optimization (EPO) algorithm to address data dimensionality issues. In the sphere of 
future developments, our proposed project is laying a path for further development of AI-driven driver 
guidance systems. In the future, blending sensor fusion methodologies will be critical in achieving a better 
perception of driving by fusing data from radar, LiDAR, and cameras[49]. Additionally, there is an urgent 
need to develop improved real-time decision-making functions that allow prompt and precise responses 
to changing road conditions. Behavioral analysis[50] is yet another frontier, where AI can drive insights 
about drivers and pedestrians to predict and prevent accidents. Integration of Vehicle-to-Everything 
(V2X) communication[51] will drive a networked approach to traffic management, while adaptive 
learning mechanisms are expected to yield continuous improvements in functionality. With aspirations 
shifting toward autonomous driving, our system’s evolution will involve high-end algorithms for route 
planning, object detection, and decision-making[52]. At the same time, focus on improving user interfaces 
will promote trust and adoption by drivers.  
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