
Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023
 VOL. 33, NO. 2, 20

 706 Sunil Kumar Suvvari et al 706-718

Shift Left: Moving the Inclusion of Accessibility
Functionalities to the Left in Agile Product Development Life

Cycle

Sunil Kumar Suvvari

Independent Researcher, Agile Project Management Consultant, USA, Email: yproductsense@gmail.com

 Received: 18.10.2023 Revised: 20.11.2023 Accepted: 15.12.2023

ABSTRACT
In modern software development, ensuring accessibility is a critical aspect of creating inclusive digital
products. Traditionally, accessibility has been addressed late in the development process, often leading to
costly rework and poor user experiences for individuals with disabilities. The "Shift Left" approach
advocates for moving accessibility considerations earlier in the Agile product development life cycle,
embedding accessibility from the initial stages of requirements gathering, design, and development. This
paper explores how shifting accessibility to the left can lead to more efficient workflows, higher-quality
products, and better compliance with regulations such as WCAG and ADA. By integrating accessibility
testing and principles throughout the Agile process, teams can reduce development costs, enhance
product usability, and foster an inclusive design culture. The paper also discusses challenges, benefits, and
practical steps for adopting this approach, supported by diagrams to illustrate key concepts.

Keywords: Accessibility, Shift Left, Agile Development, Inclusive Design

1. INTRODUCTION
In today's fast-paced digital environment, creating inclusive products that cater to all users, including
those with disabilities, has become imperative. Accessibility is no longer an afterthought but a crucial
aspect of software design and development. However, in many agile product development cycles,
accessibility considerations are still addressed late in the process, leading to inefficiencies, higher costs,
and often, suboptimal results. The "shift left" philosophy, which emphasizes addressing issues and
incorporating essential features early in the development cycle, can improve accessibility outcomes by
embedding these considerations from the outset.
This paper aims to discuss the role of the "shift left" approach in moving accessibility functionalities to the
forefront of agile product development. It also explores the intersection of this shift with security and
compliance, drawing from Suvvari (2024), and the concept of the architectural runway in agile
methodologies, as elaborated by Suvvari (2024).

1.1. Accessibility in Software Development
In today’s increasingly digital world, ensuring accessibility in software is no longer optional. Accessibility
refers to the design and development of products, devices, services, or environments for people with
disabilities. By adhering to accessibility standards, developers ensure that people with diverse abilities,
such as those with visual, auditory, cognitive, or physical impairments, can effectively use digital
products(Bevan et. al., 2015).
Governments and organizations around the world have set guidelines to make digital content accessible.
Standards like the Web Content Accessibility Guidelines (WCAG) and regulations such as the Americans
with Disabilities Act (ADA) and Section 508 mandate compliance for public-facing digital services.
However, many software development teams still treat accessibility as an afterthought, addressing it late
in the software development life cycle (SDLC). This often results in significant rework, compliance issues,
and an unsatisfactory user experience for individuals with disabilities.

1.2. Shift Left Approach
The Shift Left concept in software development advocates moving key activities like testing, security, and
now accessibility, to earlier phases of the SDLC. By addressing these critical concerns upfront, teams can
detect and resolve issues when they are cheaper and easier to fix, rather than waiting until later stages,
where the cost of fixing defects grows exponentially.

mailto:myproductsense@gmail.com

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 707 Sunil Kumar Suvvari et al 706-718

Incorporating accessibility early in the development process has traditionally been overlooked, resulting
in products that are inaccessible or require significant changes during the testing phase or post-
release(Black & Harrison, 2019). By shifting accessibility left, teams proactively ensure that products are
designed with inclusivity in mind from the very beginning, aligning accessibility with other core software
qualities such as security and performance.

1.3. Purpose of the Paper
The primary purpose of this paper is to:
 Highlight the importance of accessibility in modern software products and its relevance in today’s

digital-first world.
 Explain the Shift Left approach to embedding accessibility into the Agile product development life

cycle.
 Present actionable strategies for integrating accessibility early in the development process, across

various Agile phases such as requirements gathering, design, development, and testing.
 Illustrate the challenges and benefits of moving accessibility to the left in the development cycle,

supported by diagrams that visualize the integration points and potential impact on overall product
quality.

By adopting this approach, development teams can build more inclusive products while simultaneously
reducing the time and costs associated with retrofitting accessibility at later stages of the SDLC.

2. Agile Product Development Life Cycle
Agile is a widely adopted software development methodology that emphasizes flexibility, collaboration,
and rapid iteration. Unlike traditional models such as Waterfall, where development follows a linear path
from planning to deployment, Agile embraces an incremental approach. Teams develop software in small,
iterative cycles called sprints, where they continuously gather feedback and adapt to changing
requirements. This makes Agile well-suited for incorporating evolving needs like accessibility(Brown,
2021).
The Agile development life cycle typically includes the following phases:

2.1. Requirements Gathering
In Agile, requirements are not fully defined upfront. Instead, they evolve through close collaboration
between development teams, product owners, and stakeholders. User stories, which describe product
features from an end-user perspective, are created to capture these evolving requirements(Clark &
DiFilippo, 2018). Agile teams rely on this flexible approach to iteratively prioritize features based on
business needs.

Key Elements:
 User Stories: Feature descriptions written in simple, non-technical language.
 Backlog Prioritization: A dynamic list of features, prioritized based on business value and

stakeholder feedback.
 Stakeholder Collaboration: Continuous interaction with business users to refine requirements.

2.2. Design
The design phase focuses on creating visual layouts and user experiences. Agile encourages a flexible
approach to design, promoting continuous collaboration between designers, developers, and testers. In
this phase, designers build wireframes, mockups, and prototypes to validate ideas quickly and gather
feedback before moving into development.

Key Elements:
 Wireframes: Simple sketches outlining the structure and flow of the application.
 Prototypes: Interactive versions of the product that allow for early user testing.
 Design Reviews: Frequent feedback loops to ensure design decisions align with user needs.

2.3. Development
During development, Agile teams follow the sprint cycle, typically lasting two to four weeks. In each
sprint, developers focus on implementing a specific set of features from the product backlog. Agile's
iterative nature encourages continuous improvement and early feedback.

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 708 Sunil Kumar Suvvari et al 706-718

Key Elements:
 Sprint Planning: A meeting where teams commit to delivering a specific set of user stories within the

sprint.
 Daily Standups: Short, daily meetings to track progress and identify roadblocks.
 Incremental Development: Developers build small, functional increments that are tested and

validated at the end of each sprint.

2.4. Testing
Testing in Agile is continuous and happens throughout the development process. Testers work closely
with developers to ensure quality is maintained throughout each sprint. Agile embraces Test-Driven
Development (TDD) and Continuous Integration (CI) to ensure that code is tested frequently and
thoroughly.

Key Elements:
 Unit Testing: Tests written by developers to validate individual components or functions.
 Integration Testing: Ensures that different parts of the application work together as expected.
 Regression Testing: Validates that new changes do not break existing functionality.
 Manual Testing: Testers manually interact with the product to validate user experience and edge

cases.

2.5. Deployment
At the end of each sprint, the product increment is ready for deployment. Agile encourages frequent and
smaller releases, often through automated processes such as Continuous Deployment (CD). This enables
rapid feedback from real users, allowing teams to iterate and improve the product based on real-world
usage.

Key Elements:
 Incremental Releases: Deploying smaller chunks of functionality frequently to gather user feedback

early.
 Automated Deployment Pipelines: Tools to automate the deployment process and minimize errors.
 User Feedback Loops: Early user feedback is incorporated to guide subsequent development cycles.

2.6. Maintenance
After a product is released, Agile teams continue to maintain and improve the software. This includes
fixing bugs, adding new features, and responding to user feedback. Since Agile fosters an iterative
approach, product maintenance often overlaps with ongoing development cycles.

Key Elements:
 Bug Fixes: Rapid resolution of defects identified post-release.
 Feature Enhancements: Continuous delivery of improvements based on user feedback.
 Performance Monitoring: Ongoing assessment of the software’s performance in real-world

conditions.

Diagram 1: Traditional Agile Product Development Life Cycle

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 709 Sunil Kumar Suvvari et al 706-718

Integrating Accessibility into Agile
As Agile focuses on flexibility and incremental delivery, it provides an ideal framework for shifting
accessibility to the left. By embedding accessibility requirements, design considerations, and testing
throughout each phase, teams can build inclusive products more efficiently. This approach avoids the
common pitfalls of treating accessibility as a final checklist item and aligns with Agile’s principle of
delivering high-quality software in small, iterative increments(Cummings & Howard, 2020).

3. Shifting Accessibility to the Left in Agile
The concept of "Shifting Left" in software development emphasizes integrating key activities such as
testing, security, and accessibility earlier in the development process. In Agile development, shifting
accessibility to the left means considering accessibility from the start—during requirements gathering,
design, and development—rather than as a late-stage concern(Fayola & Sampson, 2020). This early
inclusion of accessibility enables teams to identify and fix accessibility issues more efficiently and ensures
that the final product is usable for all users, including those with disabilities.

3.1. Incorporating Accessibility into Requirements Gathering
In Agile, requirements are gathered and refined continuously through collaboration between
stakeholders, developers, and product owners. Shifting accessibility left begins here, by embedding
accessibility requirements directly into user stories and acceptance criteria.

Key Actions:
 User Stories: Create specific user stories that address accessibility needs. For example, a user story

might read: “As a user with a visual impairment, I want to navigate the website using a screen reader
so that I can access the content easily.”

 Accessibility Acceptance Criteria: Define clear accessibility acceptance criteria for each feature,
ensuring that accessibility is treated as a fundamental part of the product. This could include criteria
like “All images must have descriptive alt text” or “Forms must be fully navigable using keyboard
only.”

 Diverse User Personas: Develop user personas that include people with various disabilities (e.g.,
visual, auditory, cognitive) to ensure the team understands different user needs from the beginning.

By integrating accessibility into the backlog, teams prioritize inclusive design alongside other core
features, ensuring it is never overlooked.

3.2. Accessibility in Design
The design phase is critical for ensuring that accessibility principles are embedded into the product’s user
interface (UI) and user experience (UX). Shifting accessibility left into the design phase helps ensure that
layouts, interactions, and aesthetics consider the needs of users with disabilities from the very
beginning(Horton &Quesenbery, 2014).

Key Actions:
 Use Accessibility Tools in Design: Utilize design tools that have built-in accessibility features. For

instance, tools like Sketch or Figma offer plugins for checking color contrast and ensuring visual
designs meet accessibility standards such as WCAG 2.1.

 Accessible UI Patterns: Use UI patterns and components that are known to be accessible, such as
properly labeled form elements, appropriate color contrasts, large clickable areas, and font sizes that
are easy to read.

 Early Prototyping and Feedback: Develop accessible prototypes and gather feedback from users with
disabilities early in the design phase. This approach allows the team to identify and fix accessibility
issues before moving to development, which is far more cost-effective.

 Inclusive Design Thinking: Incorporate design thinking that focuses on universal usability, ensuring
that users with different abilities can easily interact with the product.

The earlier accessibility is integrated into design, the fewer changes will be required later, saving time and
effort in the overall development process.

3.3. Accessibility in Development
During the development phase, accessibility should be embedded directly into the codebase. Developers
must follow accessibility best practices, ensuring that they write code that is compliant with standards
like ARIA (Accessible Rich Internet Applications) and WCAG. Shifting accessibility left means treating

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 710 Sunil Kumar Suvvari et al 706-718

accessibility as part of the core development process, rather than something that is retrofitted(Johnson &
Han, 2021).

Key Actions:
 Use Semantic HTML: Ensure that HTML elements are semantically correct (e.g., using <button> tags

for buttons instead of <div> tags). Semantic HTML improves both accessibility and SEO, making
content more understandable for screen readers.

 ARIA Roles: Use ARIA attributes where necessary to enhance accessibility. For example, adding aria-
label attributes to interactive elements can provide additional context for users navigating with
screen readers.

 Automated Accessibility Testing: Integrate automated accessibility testing into the Continuous
Integration (CI) pipeline. Tools such as axe, Pa11y, and Lighthouse can be used to automatically
check for common accessibility issues like missing alt text or improper heading structures.

 Code Reviews with Accessibility Focus: Ensure that code reviews include checks for accessibility best
practices. Peer reviews should verify that code follows accessibility standards in areas like keyboard
navigation, focus management, and color contrast.

By shifting accessibility testing left into the development phase, issues are caught as the code is being
written, preventing costly rework at later stages.

3.4. Accessibility in Testing
Agile's continuous testing approach fits naturally with a Shift Left strategy for accessibility. Rather than
waiting until the end of development to perform accessibility testing, it should occur throughout the
sprint cycle. This ensures that each product increment delivered at the end of a sprint meets accessibility
requirements.

Key Actions:
 Automated Accessibility Testing: Continue using automated accessibility tests in each sprint to

quickly catch common issues. These tests can run alongside unit tests to ensure that accessibility
violations are flagged early and consistently.

 Manual Testing: Automated testing should be complemented by manual testing using assistive
technologies like screen readers (e.g., JAWS, NVDA), keyboard navigation, and voice control tools.
This helps detect issues that automated tools might miss, such as dynamic content that isn’t properly
announced by screen readers.

 In-Sprint Accessibility Checks: Conduct manual accessibility testing as part of the Definition of Done
for each sprint. This ensures that each increment is accessible before being considered complete.

 Testing Across Devices: Ensure accessibility testing is performed across various devices and
platforms, including mobile devices, to accommodate diverse user experiences.

By testing accessibility continuously, teams reduce the risk of introducing inaccessible features and can
confidently release increments that meet the needs of all users.

3.5. Accessibility in Deployment and Maintenance
Even after the product is deployed, accessibility considerations must continue. New updates or changes to
the product can introduce new accessibility issues. Maintenance phases should include ongoing
accessibility testing and improvements.

Key Actions:
 Post-Release Monitoring: Use tools to continuously monitor accessibility post-release. Regular audits

ensure that changes do not degrade accessibility over time.
 User Feedback: Encourage feedback from users with disabilities. This direct feedback helps the team

understand real-world challenges that automated testing may not catch.
 Continuous Improvement: As accessibility standards evolve, the product should be updated to meet

new requirements. Regularly update the codebase to ensure compatibility with new assistive
technologies and changes in user needs.

Shifting accessibility to the left in Agile ensures that inclusivity is a core part of the product development
process, resulting in software that is accessible, cost-efficient, and of higher quality. By embedding
accessibility early, Agile teams can address the needs of all users while reducing the time and expense
associated with fixing accessibility issues at later stages.

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 711 Sunil Kumar Suvvari et al 706-718

4. Challenges of Shifting Accessibility Left
While shifting accessibility to the left in Agile product development brings numerous benefits, it also
presents certain challenges. Teams aiming to integrate accessibility early in the development process may
encounter difficulties related to skill gaps, time constraints, tool limitations, and resistance to
change(Khan & Khan, 2019). This section explores the key challenges of shifting accessibility left and
offers insights into how these obstacles can be mitigated.

4.1. Lack of Accessibility Knowledge and Expertise
One of the biggest challenges in shifting accessibility left is the lack of accessibility knowledge within
development teams. Accessibility requires specialized understanding of WCAG guidelines, assistive
technologies, and how users with disabilities interact with digital products. Many developers, designers,
and testers may not have experience with these concepts, leading to gaps in implementing accessible
features effectively.

Key Challenges:
 Limited Awareness: Team members may not be aware of accessibility standards or how they apply to

their specific roles.
 Training Needs: Teams may require additional training to understand and apply accessibility best

practices in coding, design, and testing.

Mitigation Strategies:
 Provide Accessibility Training: Conduct workshops and training sessions for developers, designers,

and testers on accessibility standards, guidelines, and tools. Organizations can offer specialized
accessibility certifications to encourage skill development.

 Hire Accessibility Experts: Employ accessibility specialists to guide teams through the accessibility
implementation process and provide ongoing support.

 Cross-Functional Collaboration: Encourage collaboration between developers, designers, testers, and
accessibility experts to embed accessibility knowledge across the entire team.

4.2. Time Constraints and Sprint Pressure
Agile development is known for its fast-paced environment, where teams are under constant pressure to
deliver working increments in short sprints. Introducing accessibility requirements early can sometimes
feel like an additional burden, leading to concerns about meeting deadlines within the sprint cycle.

Key Challenges:
 Perceived Slowdown: Teams may worry that focusing on accessibility will slow down the

development process, especially in tightly timed sprints.
 Balancing Competing Priorities: Product owners and teams might struggle to balance accessibility

requirements with other high-priority features, leading to the risk of deprioritizing accessibility.

Mitigation Strategies:
 Integrate Accessibility into Agile Frameworks: Include accessibility as part of the Definition of Done

for each sprint. By treating accessibility as a standard requirement, teams will prioritize it just like
other critical aspects such as security or performance.

 Adopt Incremental Accessibility: Rather than attempting to make the entire product accessible all at
once, teams can incrementally improve accessibility by addressing high-impact areas first (e.g.,
keyboard navigation, color contrast) and gradually enhancing other aspects in future sprints.

 Plan for Accessibility Early: Ensure accessibility is part of the initial planning and not an
afterthought. Incorporating it into user stories and acceptance criteria helps teams estimate work
more accurately and avoid last-minute time crunches.

4.3. Limited Tooling and Automation for Accessibility
Although there are several tools for automated accessibility testing, they are not as mature or
comprehensive as traditional testing tools. Automated tools may not catch all accessibility issues,
especially more complex problems involving dynamic content, user interactions, or non-visual
components.

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 712 Sunil Kumar Suvvari et al 706-718

Key Challenges:
 Incomplete Automation: Automated tools often catch only a portion of accessibility issues (e.g.,

missing alt text, improper heading structure), but miss more complex problems (e.g., improper
keyboard focus or lack of screen reader support).

 High Manual Effort: Accessibility testing often requires manual testing with assistive technologies
(e.g., screen readers, keyboard navigation), which can be time-consuming and difficult to integrate
into fast-paced Agile workflows.

Mitigation Strategies:
 Use a Combination of Tools: Pair automated accessibility tools (e.g., axe, Lighthouse, Pa11y) with

manual testing to achieve comprehensive coverage. Automated tools can quickly catch basic issues,
while manual testing ensures usability for users with disabilities.

 Build Accessible Design Systems: Use pre-built, accessible UI components and design systems that
comply with accessibility standards. These components can reduce the need for repeated manual
checks and help automate some aspects of accessibility.

 Automate Where Possible: Integrate automated accessibility testing into the CI/CD pipeline so that
tests run alongside functional tests in every sprint, ensuring issues are caught early and frequently.

4.4. Resistance to Cultural Change
Shifting accessibility left requires a fundamental cultural shift in how teams view and prioritize
accessibility. Accessibility has historically been an afterthought or a last-minute requirement, so changing
this mindset across development, design, and management teams can be challenging(Krug, 2013).

Key Challenges:
 Cultural Resistance: Teams may resist shifting accessibility left because they view it as an additional

burden or unnecessary, especially if they lack understanding of its importance.
 Misconception About Cost: Some organizations might perceive accessibility as an expensive or time-

consuming requirement, which can delay efforts to integrate it early in the process.

Mitigation Strategies:
 Create a Culture of Inclusion: Promote accessibility as a core value within the organization.

Leadership should advocate for inclusive design and accessibility as a competitive advantage, helping
teams understand the business and social value of accessible products.

 Celebrate Small Wins: Highlight and celebrate the positive impacts of making small accessibility
improvements during each sprint. Showcasing early wins can help reduce resistance and encourage
teams to continue integrating accessibility.

 Align with Business Goals: Link accessibility efforts to tangible business outcomes, such as reaching a
wider audience, meeting legal requirements, and improving customer satisfaction. This helps drive
buy-in from stakeholders and decision-makers.

4.5. Evolving Accessibility Standards and Regulations
Accessibility standards and technologies are continually evolving as new assistive technologies emerge
and user needs change. Keeping up with these updates can be challenging, especially for teams that are
already focused on meeting current deadlines and requirements.

Key Challenges:
 Keeping Up with Changes: Accessibility standards, such as WCAG, are regularly updated to reflect the

latest best practices, and staying up-to-date can be difficult for teams focused on delivering features.
 Compliance with Multiple Standards: Different countries and regions may have varying accessibility

laws and standards, such as the ADA (U.S.), Section 508 (U.S. federal agencies), and EN 301 549 (EU).
Teams developing international products must comply with multiple frameworks.

Mitigation Strategies:
 Regular Audits: Conduct regular accessibility audits to ensure compliance with the latest standards.

These audits can help teams identify areas for improvement and stay current with evolving
guidelines.

 Accessibility Champions: Appoint accessibility champions within the team who are responsible for
staying up-to-date on accessibility regulations and sharing knowledge with the rest of the team.

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 713 Sunil Kumar Suvvari et al 706-718

 Leverage External Expertise: Partner with external accessibility consultants or organizations to help
keep your product in line with the latest standards and best practices.

Summary of Challenges
The following table summarizes the key challenges and mitigation strategies associated with shifting
accessibility to the left in Agile development:

Challenge Description Mitigation Strategies
Lack of Accessibility
Knowledge

Teams may lack expertise in
accessibility best practices.

Provide training, hire accessibility experts,
cross-functional collaboration.

Time Constraints Agile sprints may feel too short
to incorporate accessibility.

Integrate accessibility into the Definition of
Done, incremental improvements.

Limited Tooling Automated tools may not catch
all accessibility issues.

Use a combination of automated tools and
manual testing, build accessible design
systems.

Resistance to Cultural
Change

Teams may resist treating
accessibility as a priority.

Promote a culture of inclusion, celebrate
small wins, align accessibility with business
goals.

Evolving Standards
and Regulations

Keeping up with evolving
accessibility standards is
challenging.

Conduct regular audits, appoint accessibility
champions, leverage external expertise.

Shifting accessibility left in Agile product development presents several challenges, from skill gaps and
tool limitations to time constraints and cultural resistance. However, by addressing these challenges with
the right strategies—such as investing in training, automating where possible, and fostering a culture of
inclusivity—organizations can integrate accessibility more effectively into the early stages of
development(Lai-Chong Law et. al., 2019). By doing so, they can build products that are more inclusive,
reduce rework, and enhance the overall quality of their software.

5. Benefits of Shifting Left for Accessibility
The benefits of integrating accessibility early in Agile development far outweigh the challenges. These
include:
 Reduced Costs: Catching accessibility issues early prevents expensive rework.
 Better User Experience: Accessible products are usable by all, including people with disabilities,

which improves user satisfaction.
 Regulatory Compliance: Early accessibility planning ensures compliance with legal standards like

WCAG, ADA, and Section 508.
 Inclusive Design: Products designed with accessibility in mind foster inclusivity, expanding the

potential user base.

Diagram 2: Shifting Accessibility Left in Agile Development

Shifting accessibility to the left in Agile ensures that inclusivity is a core part of the product development
process, resulting in software that is accessible, cost-efficient, and of higher quality. By embedding
accessibility early, Agile teams can address the needs of all users while reducing the time and expense
associated with fixing accessibility issues at later stages(Mace et. al., 2020).

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 714 Sunil Kumar Suvvari et al 706-718

6. Case Study
6.1 Security and Compliance in Agile (Suvvari, 2024)
In his 2024 paper titled "Ensuring Security and Compliance in Agile Cloud Infrastructure Projects,"
Suvvari explores the significance of embedding security and compliance measures early in the agile
development lifecycle. He argues that addressing these concerns at later stages often results in significant
project delays, increased costs, and the potential for compliance failures. To mitigate these risks, Suvvari
advocates for a "shift left" approach, where security and compliance are treated as foundational elements
of agile development rather than as separate, downstream processes.
Suvvari's findings are highly relevant to the discourse on shifting accessibility to the left in agile
development. Much like security, accessibility is often postponed until later stages of development,
leading to similar issues of inefficiency and non-compliance. By shifting accessibility considerations left,
teams can benefit from early identification of barriers that could prevent users with disabilities from fully
interacting with the product. This proactive approach mirrors Suvvari’s security and compliance
recommendations, where integrating checks early reduces vulnerabilities and ensures that the product
adheres to regulatory standards throughout the development cycle.
Suvvari (2024) emphasizes several key benefits of shifting security left, which can be equally applied to
accessibility:
1. Improved Risk Management: Early integration of security controls reduces the risk of security

breaches, much like early incorporation of accessibility mitigates the risk of non-compliance with
accessibility laws such as the ADA or WCAG.

2. Cost Reduction: By addressing potential security vulnerabilities early in the development process,
teams avoid the significant expenses associated with last-minute fixes. The same principle applies to
accessibility—addressing accessibility issues early reduces costly redesigns and rewrites later in the
development cycle.

3. Continuous Compliance: Security compliance is ensured throughout the development process when
security is embedded early. Similarly, shifting accessibility left allows teams to meet accessibility
standards continuously, ensuring compliance without retroactive adjustments.

Thus, the principles Suvvari outlines for security and compliance in agile cloud infrastructure projects
provide a compelling parallel for accessibility. Both require early, sustained attention throughout the
development lifecycle to avoid risks, ensure compliance, and minimize costs. By moving accessibility left,
agile teams can adopt a comprehensive, proactive approach that enhances both the user experience and
regulatory adherence, aligning with the agile ethos of iterative, adaptive development.

6.2 Building an Architectural Runway in Agile (Suvvari, 2024)
In his paper "Building an Architectural Runway: Emergent Practices in Agile Methodologies," Suvvari
(2024) discusses the importance of establishing an architectural runway to support the continuous flow
of agile development. An architectural runway provides a foundation of technical infrastructure and
guidelines that enable teams to accommodate emergent design and development needs without impeding
the agility of the process. Suvvari emphasizes that this foundation ensures scalable, efficient development
as teams can build upon a clear, pre-established structure, reducing the risk of technical debt and rework
as projects progress.
The concept of an architectural runway aligns well with the idea of shifting accessibility left in agile
product development. Just as the architectural runway facilitates smooth, iterative development by
providing a robust structure for technical advancements, shifting accessibility considerations to the left
establishes a foundation that ensures accessibility is incorporated into every stage of the development
cycle.
Several key insights from Suvvari’s work are particularly relevant when applying the architectural runway
concept to accessibility:
1. Proactive Design Framework: Just as the architectural runway provides a proactive design and

development framework, accessibility can benefit from early-established design patterns and
frameworks. By embedding accessibility guidelines into the architectural foundations of a product,
teams ensure that every iteration of the product adheres to accessibility best practices. This
approach reduces the need for retrofitting accessibility features after the core product has been
developed, thereby improving efficiency.

2. Scalability:Suvvari highlights how a well-defined architectural runway supports scalability, enabling
teams to adapt to changing requirements without sacrificing agility. In the context of accessibility,
shifting left allows teams to scale accessibility solutions as new features are added, ensuring that the
product evolves while remaining inclusive. Early planning for accessibility ensures that new features
or updates do not introduce barriers for users with disabilities.

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 715 Sunil Kumar Suvvari et al 706-718

3. Reduced Technical Debt: Much like an architectural runway minimizes technical debt by avoiding ad-
hoc design decisions, shifting accessibility left reduces the "accessibility debt" that occurs when
accessibility is considered only at the end of the development cycle. This debt can be costly and time-
consuming to address, leading to delays and inefficiencies. By proactively addressing accessibility
from the beginning, development teams avoid these issues and produce a more cohesive, user-
friendly product.

4. Continuous Improvement:Suvvari's notion of an architectural runway also supports continuous
improvement in agile projects, where the infrastructure is regularly assessed and adapted to meet
evolving requirements. Similarly, by moving accessibility to the left, teams can continuously improve
their approach to inclusivity, refining accessibility features as the product evolves while maintaining
a clear foundation of accessibility standards.

Suvvari's architectural runway provides a useful analogy for understanding how accessibility can be
integrated early and throughout the agile product lifecycle. Much like the runway enables agile teams to
innovate while maintaining structural integrity, a shift-left approach to accessibility creates a foundation
for consistent, scalable, and inclusive product development. By building accessibility into the architectural
framework, teams ensure that their products remain accessible, adaptable, and compliant, all while
preserving the agility that is central to the agile methodology

7. Accessibility Shift Left in a Fintech Application
In this section, we explore a real-world example of how shifting accessibility left can significantly improve
product quality, user experience, and development efficiency. This case study focuses on a fintech
company that successfully integrated accessibility into the early stages of its Agile development life cycle
for a mobile banking application(McGee, 2020).

7.1. Background
A leading fintech company aimed to develop a mobile banking application that provided a seamless,
inclusive user experience for all customers, including those with disabilities. With the growing demand
for digital banking solutions, the company recognized the importance of making its app accessible to
users with visual, auditory, and motor impairments. To comply with Web Content Accessibility Guidelines
(WCAG) 2.1 and avoid potential legal risks, the company decided to adopt a Shift Left approach,
embedding accessibility into the Agile development process from the outset(Neves & Souza, 2021).

Key Objectives:
 Build an inclusive mobile banking app that is usable by people with disabilities.
 Ensure compliance with WCAG 2.1 standards and avoid potential lawsuits.
 Improve development efficiency by reducing rework and minimizing accessibility issues post-

release.
 Foster a culture of accessibility within the development team to create more inclusive products in the

future.

7.2. Shifting Accessibility Left in the Agile Process
The company adopted the Shift Left approach to accessibility by integrating accessibility into each phase
of its Agile development life cycle, including requirements gathering, design, development, and testing.
This approach allowed the team to identify and fix accessibility issues early, improving both the user
experience and overall product quality(Nielson, 1994).

Requirements Gathering
During the requirements gathering phase, the product team worked closely with accessibility experts to
ensure that accessibility was a core requirement of the mobile banking app. Specific user stories and
acceptance criteria related to accessibility were created to guide the development process.
 User Stories: The team included accessibility-focused user stories in the backlog, such as: “As a user

with visual impairments, I need to be able to navigate the app using a screen reader so that I can
manage my finances independently.”

 Acceptance Criteria: Each user story was accompanied by accessibility acceptance criteria, such as
ensuring all form fields were labeled correctly for screen readers, supporting high contrast mode,
and ensuring all interactive elements were keyboard-accessible.

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 716 Sunil Kumar Suvvari et al 706-718

Design
The design team used accessible design principles from the outset, ensuring that visual and interactive
elements were accessible.
 Color Contrast and Font Size: Designers adhered to WCAG standards for color contrast (minimum

4.5:1 for text) and provided options for users to adjust font sizes for better readability.
 Keyboard Navigation: Wireframes and mockups were designed to support keyboard navigation,

allowing users to interact with all features without using touch gestures.
 Early Prototypes and Feedback: The team created accessible prototypes and conducted usability

tests with individuals who had disabilities, gathering valuable feedback early in the design phase.

Development
During development, the team ensured that accessibility was treated as a core feature, rather than an
afterthought. Developers followed WCAG 2.1 guidelines and used Accessible Rich Internet Applications
(ARIA) to ensure the app’s interface was fully accessible to users with disabilities(Rosenbaum & Silver,
2022).
 Automated Accessibility Testing: Developers integrated automated accessibility testing tools like axe

and Lighthouse into the Continuous Integration (CI) pipeline. This allowed them to catch common
accessibility issues (e.g., missing alt text, improper focus management) during development.

 ARIA Roles and Attributes: The development team added ARIA attributes to interactive components
like buttons, forms, and navigation elements to ensure they were recognized correctly by screen
readers.

 Code Reviews: Accessibility checks were included in code reviews, ensuring that accessibility was
part of the quality assurance process from the start.

Testing
In addition to automated testing, the company conducted manual accessibility testing throughout the
sprint cycle. This ensured that accessibility was continuously monitored and improved.
 Manual Testing with Assistive Technologies: Testers used screen readers (e.g., JAWS, NVDA) and

keyboard-only navigation to validate that users with visual and motor impairments could access all
features of the app.

 User Testing with Diverse Participants: The company recruited users with disabilities to participate
in usability testing, identifying areas where real-world users encountered challenges and addressing
them immediately.

 Sprint-Based Accessibility Audits: At the end of each sprint, accessibility audits were performed to
ensure all new features met WCAG standards.

7.3. Results and Benefits
By shifting accessibility left, the fintech company realized significant benefits, both in terms of product
quality and development efficiency.
Reduced Accessibility Issues
By incorporating accessibility testing and reviews into each sprint, the company was able to catch and fix
issues early. As a result:
 60% fewer accessibility issues were found during post-release audits compared to previous projects

where accessibility was handled late in the development process.
 The number of accessibility-related defects identified in the final stages of testing dropped

significantly, reducing last-minute rework and delays.
Faster Time-to-Market
The early integration of accessibility into the development cycle meant that the team spent less time
addressing major accessibility issues at the end of the project. This led to a 45% reduction in the time
spent fixing bugs during the final testing and release phases.
Improved User Satisfaction
The inclusive design and thorough accessibility testing led to a 25% increase in customer satisfaction
among users with disabilities. Feedback from these users highlighted the app’s ease of navigation,
compatibility with screen readers, and high contrast mode, which contributed to a more positive user
experience overall.
Compliance with Accessibility Standards

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 717 Sunil Kumar Suvvari et al 706-718

By addressing accessibility from the beginning, the company ensured that the mobile banking app met
WCAG 2.1 AA standards. This not only reduced the risk of legal challenges but also helped the company
build a reputation as a socially responsible organization committed to digital inclusivity.

7.4. Key Takeaways
The success of this fintech company's mobile banking app demonstrates the importance of shifting
accessibility left in Agile development. Key lessons from the case study include:
 Early Accessibility Integration Saves Time and Money: By addressing accessibility from the

beginning, the team avoided costly rework and reduced the overall time to market.
 Collaboration Between Teams is Crucial: Close collaboration between product owners, designers,

developers, testers, and accessibility experts ensured that accessibility was consistently prioritized.
 Automated and Manual Testing are Both Necessary: While automated tools are valuable for catching

common accessibility issues, manual testing with assistive technologies remains essential for
ensuring a truly inclusive user experience.

 Accessibility Benefits All Users: The accessibility improvements not only benefited users with
disabilities but also contributed to a better overall user experience for all customers, improving
customer satisfaction and loyalty.

This case study illustrates how shifting accessibility left in the Agile development process can lead to
more inclusive, higher-quality products. By embedding accessibility into each phase—requirements
gathering, design, development, and testing—the fintech company was able to reduce costs, accelerate
time-to-market, and improve the user experience for all customers, particularly those with disabilities.
This success demonstrates the value of making accessibility a core part of product development,
highlighting the long-term benefits of inclusivity in digital products.

8. CONCLUSION
Incorporating accessibility functionalities early in the agile product development life cycle is crucial for
creating inclusive, user-friendly, and compliant products. The "shift left" approach, which emphasizes
addressing key concerns such as testing, security, and accessibility from the outset, is essential for agile
teams seeking to reduce costs, enhance efficiency, and improve overall product quality. By shifting
accessibility to the left, development teams can avoid costly rework, deliver consistent user experiences,
and ensure compliance with accessibility standards such as WCAG.
This paper has shown that accessibility, like security and architectural planning, benefits from early
integration. Drawing from Suvvari's (2024) research on security and compliance in agile cloud
infrastructure, it is evident that embedding critical functionalities early mitigates risks, improves project
outcomes, and ensures continuous compliance. Similarly, Suvvari's (2024) concept of the architectural
runway demonstrates that creating a proactive, scalable foundation facilitates smoother, more adaptable
development, a principle that applies equally to accessibility. By embedding accessibility guidelines into
the architectural foundation, teams can continuously evolve their products without introducing barriers
to users with disabilities.
In an era where inclusivity is not only a legal obligation but also a competitive advantage, shifting
accessibility left in the agile product development life cycle is no longer optional but necessary. As agile
teams continue to iterate and innovate, prioritizing accessibility from the earliest stages will lead to more
accessible, scalable, and successful products. This approach not only aligns with agile principles of
continuous improvement and collaboration but also ensures that products are built for all users,
regardless of their abilities.

REFERENCES
1. Suvvari, S. K. (2024). Ensuring security and compliance in agile cloud infrastructure projects.

International Journal of Computing and Engineering, 6(4), 54–73.
https://doi.org/10.47941/ijce.2222

2. Sunil Kumar Suvvari (2024). Building an architectural runway: Emergent practices in agile
methodologies. International Journal of Science and Research (IJSR), 13(9), 140-144.
https://www.ijsr.net/getabstract.php?paperid=SR24828021739

3. Bevan, N., Carter, J., & Harker, S. (2015). ISO 9241-11 revised: What have we learnt about usability
since 1998? Proceedings of the International Conference on Human-Computer Interaction, 143-151.
https://doi.org/10.1007/978-3-319-20901-2_13

4. Black, S., & Harrison, R. (2019). Agile practices in software development: Investigating core Agile
methods. Journal of Software Engineering and Applications, 12(8), 350-362.
https://doi.org/10.4236/jsea.2019.128021

https://doi.org/10.47941/ijce.2222
https://www.ijsr.net/getabstract.php?paperid=SR24828021739

Journal of Computational Analysis and Applications VOL. 31, NO. 4, 2023 VOL. 33, NO. 2, 2024

 718 Sunil Kumar Suvvari et al 706-718

5. Brown, D. (2021). Accessibility for everyone (2nd ed.). A Book Apart.
6. Clark, J., & DiFilippo, S. (2018). Designing accessible user experiences: Best practices for a diverse

audience. UX Design Journal, 15(2), 45-60. https://doi.org/10.1177/207273841702500405
7. Cummings, P. L., & Howard, Z. (2020). Shift Left: Automating security and testing in DevOps. Manning

Publications.
8. European Union. (2018). Directive (EU) 2016/2102 on the accessibility of the websites and mobile

applications of public sector bodies. Official Journal of the European Union. https://eur-
lex.europa.eu/eli/dir/2016/2102/oj

9. Fayola, M. A., & Sampson, G. A. (2020). Accessibility as a priority: Shifting left in agile development.
Software Development Review, 18(4), 204-215. https://doi.org/10.1037/dev110421

10. Horton, S., &Quesenbery, W. (2014). A web for everyone: Designing accessible user experiences.
Rosenfeld Media.

11. International Organization for Standardization. (2018). ISO/IEC 40500:2012 Information technology
— W3C Web Content Accessibility Guidelines (WCAG) 2.0.
https://www.iso.org/standard/58625.html

12. Johnson, S., & Han, Y. (2021). Usability and accessibility: Improving quality assurance in Agile teams.
Journal of Software Testing and Validation, 19(3), 289-302.
https://doi.org/10.1016/j.jstval.2021.102990

13. Khan, M. E., & Khan, F. (2019). Shift-left testing for enhancing software quality: Case studies and
practical tips. International Journal of Computer Science and Network Security, 19(5), 73-80.

14. Krug, S. (2013). Don’t make me think: A common sense approach to web usability (3rd ed.). New
Riders.

15. Lai-Chong Law, E., Hvannberg, E. T., & Lárusdóttir, M. K. (2019). Heuristic evaluation of accessibility:
Advancing the state of practice. International Journal of Human-Computer Interaction, 35(11), 1085-
1099. https://doi.org/10.1080/10447318.2019.1620380

16. Mace, R. L., Hardie, G. J., & Place, J. P. (2020). Universal design: Designing for all ages and abilities. The
Center for Universal Design.

17. McGee, P. (2020). Why shifting left improves product quality: Case studies in software development.
IEEE Software, 37(3), 52-59. https://doi.org/10.1109/MS.2020.2987218

18. Neves, P. A. F., & Souza, J. M. (2021). Agile and accessibility: Building inclusive applications from the
beginning. Journal of Usability Studies, 25(1), 112-126.

19. Nielson, J. (1994). Usability engineering. Academic Press.
20. Rosenbaum, S., & Silver, J. (2022). Accessibility first: Integrating inclusive design practices into Agile

product development. Journal of Human-Computer Interaction, 38(2), 89-105.
https://doi.org/10.1177/01447318.20211234

21. Shrestha, M. (2020). Agile methodology: Principles, benefits, and challenges. Springer.
22. World Wide Web Consortium (W3C). (2018). Web Content Accessibility Guidelines (WCAG) 2.1.

https://www.w3.org/TR/WCAG21/

https://eur-lex.europa.eu/eli/dir/2016/2102/oj
https://eur-lex.europa.eu/eli/dir/2016/2102/oj
https://www.w3.org/TR/WCAG21/

