Square Difference Edge Cordial Labeling Of Some Special Graphs

Kalamani D1, Geetha T2,3*

¹Professor, Department of Mathematics, Bharathiar University PG Extension and Research Center, Erode-638052, Tamil Nadu, India.

²Research Scholar, Department of Mathematics, Bharathiar University PG Extension and Research Center, Erode- 638052, Tamil Nadu, India.

³Assistant Professor, PG and Research Department of Mathematics, Bharathidasan College of Arts and Science, Erode- 638116, Tamil Nadu, India.

Email: kalamanikec@gmail.com1, geetha15520@gmail.com**2,3**

*Corresponding Author

ABSTRACT

A graph G with p vertices and q edges is said to admit a square difference edge cordial labeling if there is a bijectionf : $V(G) \rightarrow \{1,2,..., p\}$ such that for each edge e =uv, the induced mapf^{*}: E(G) \rightarrow {0,1} is defined byf^{*}(uv) = 1 if|f(u)² − f(v)²| is odd, otherwise 0 and|e_f(0)-e_f(1)| ≤1 wheree_f(0) = edges with label zero ande_f(1) = edges with label one. If a graph admits square difference edge cordial labeling, then it is said to be square difference edge cordial graph. In this paper, it is investigated that the square graph P_n^2 , the shadow graph $D_2(P_n)$, the duplication of apex vertex of bistar $B_{n,n}$, the lotus inside a circleLC_n, the bistar $B_{n,n}$, the one point union of cycle C_3 with the star graph $K_{1,n}(n$ is even), the graph $[P_n: S_2]$, the comb graph P_n^+ , the jewel graphJ_n, the graph (K_n-e) _nand the total graph $T(P_n)$ are square difference edge cordial graph.

Keywords: Square difference edge cordial labeling, Square difference edge cordial graph.

1. INTRODUCTION

All graphs considered in this paper are finite, simple and undirected graphs. The symbolV (G) and $E(G)$ denotes the vertex set and the edge set of a graph G. The cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called (p,q) graph. The concept of graph labeling was introduced by Rosa [13] in 1967. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. Cordial labeling was first introduced in 1987 by Cahit [4]. Ponraj et.al.,[9] found a new labeling called difference cordial labeling in 2013. Ponraj et.al.,[10,11,12] studied the difference cordial labeling behaviour of several graphs like path, cycle, complete graph, complete bipartite graph, bistar, wheel, web and some more standard graphs. Shiama [14]profounded an idea of square difference labeling in 2012. Alfred Leo et.al.,[2] initiated the divided square difference cordial labeling in 2018. In this paper, a new labeling called the square difference edge cordial labeling is introduced. Further notations and terminologies are followed from Harary [5] and Bondy and Murty [3]. The following definitions are used in the present study.

Definition 1.1 [11] A mapping f : $V(G) \rightarrow \{0,1\}$ is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f. The induced edge labeling f^* : $E(G) \rightarrow \{0,1\}$ is given by $f^*(e = uv) = |f(u)|$ $-f[v]$. Let $v_f(0)$, $v_f(1)$ be the number of vertices of G having 0 and 1 respectively under f and $e_f(0)$, $e_f(1)$ be the number of edges of G having labels 0 and 1 respectively under f^{*}.

Definition 1.2 [11]A binary vertex labeling f of a graph G is called a cordial labeling if

| $v_f(0)$ – $v_f(1)$ | ≤1 and| $e_f(0)$ – $e_f(1)$ | ≤1. A graph G is cordial if it admits cordial labeling.

Definition 1.3 [15] A square difference labeling of a graph G is a bijection f :V(G) →{0,1,2,3,4,…,p−1} such that the induced function f^* : E(G)→N defined by $f^*(uv) = |f(u)^2 - f(v)^2|$ for every uv∈E(G) are all distinct. A graph that admits square difference labeling is called a square difference graph.

Definition 1.4A graph G with p vertices and q edges is said to admit a square difference edgecordial labeling if there is a bijection f: V(G) \rightarrow {1,2,..., p} such that for each edge e =uv, the induced map f^{*}: E(G) \rightarrow {0,1} is defined by f^{*}(uv) = 1 if| f(u)²-f(v)²| is odd, otherwise 0 and|e_f(0)-e_f(1)| ≤1 where e_f(0) = edges with label zero and $e_f(1)$ = edges with label one. If a graph admits square difference edge cordial labeling, then it is said to be square differenceedge cordial graph.

Definition 1.5 [16]A complete bipartite graph $K_{1,n}$ is called a **star** and it has $n+1$ vertices and nedges. It is also denoted by Sn.

Definition 1.6 [6]The **bistar**B_{n,n}is the graph obtained by joining the center (apex) vertices of the two copies of $K_{1,n}$ by an edge. The vertex set $B_{n,n}$ is $V(B_{n,n}) = \{u,v,u_i,v_i/1 \le i \le n\}$, where u,v are apex vertices and u_i, v_i are pendant vertices. The edge set of B_{n,n}is E(B_{n,n}) ={uv,uu_i,vv_i/1 ≤i ≤n}. So,|V(B_{n,n})| = 2n+2 and $|E(B_{n,n})| = 2n+1$.

Definition 1.7 [8] The graph $[P_n : S_2]$ is obtained from a path P_n by joining every vertex ofa path to a root of a star S_2 by an edge.

Definition 1.8 [7] The graph obtained by joining n pendant edges at one vertex of the cycle C_3 is called the one point union of cycle C_3 with a star graph $K_{1,n}$.

Definition 1.9 [6] The duplication of a vertex v of a graph G produces a new graph G'by adding vertex **v** with $N(v') = N(v)$. In other words, a vertex **v** is said to be a duplication of v if all the vertices which are adjacent to v are then adjacent to **′** .

Definition 1.10 [17] The graph $(K_n - e)_n$ is the one edge union of $(K_n - e)$.

Definition 1.11 [15]The total graph of a graph G is the graph whose vertex set V(G)∪E(G)and two vertices are adjacent whenever they are either adjacent or incident in G. The total graphof G is denoted by T(G).

Definition 1.12 [18]For a simple connected graph G, the square graph G is denoted by G²and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^2 ifthey are at a distance 1 or 2 apart in G.

Definition 1.13 [1]The jewel graph I_n is obtained from a 4-cycle with vertices x,y,u,v by joiningx and y with a prime edge and by appending an edge from u and v which meets at the common vertices $v_i, 1 \le i \le n$. The prime edge in a jewel graph is defined to be the edge joining the vertices x and y.

Definition 1.14 [18] The shadow graphD₂(G) of a connected graph G is constructed by taking the two copies of G which may be G' and G'' and each vertex u' is joined with G' to the neighbours of the corresponding vertex v'in G".

Definition 1.15 [11] The lotus inside a circleLC_n is a graph obtained from the cycle $c_n:u_1u_2...u_nu_1$ and a star $K_{1,n}$ with the central vertex v_0 and the end vertices $v_1,v_2,...,v_n$ by joiningeach v_i to u_i and u_{i+1} (mod n).

Definition 1.16 [8]The graph obtained by joining a single pendant edge to each vertex of a path is called comb^{p+} where n denotes the number of vertices in the path.

2. Main results

In this section, it is shown that the comb graph P_n^+ , the graph $[P_n: S_2]$, the one point union of the cycle C_3 with the star graph $K_{1,n}$ (n is even), the shadow graph $D_2(P_n)$, the duplication of apex vertex of bistar $B_{n,n}$, the square graph P_n^2 , the lotus inside a circleLC_n, the bistarB_{n,n}, the graph $(K_n - e)$ _n, the total graph T(P_n) and the jewel graphJ_nare square difference edge cordial graph.

Theorem 2.1 The comb graph P_n^+ is a square difference edge cordial graph.

Proof. Let G be the comb graph P_n^+ . Let $V(G) = {u_i,v_i/1 \le i \le n}$ and $E(G) = {u_iu_{i+1}/1 \le i \le n-1} \cup {u_iv_i/1 \le i \le n}$. $|S_0| |V(G)| = 2n$ and $|E(G)| = 2n-1$. A functionf : $V(G) \rightarrow \{1,2,3,...,2n\}$ is defined as follows: f(ui) = 2i−1;1 ≤i ≤n, f(v_i) = 2i:1 $\leq i \leq n$. The induced edge labels are $f^*(u_iu_{i+1}) = 0; 1 \le i \le n-1$ $f^*(u_iv_i) = 1; 1 \le i \le n$. Thus, $|e_f(0) - e_f(1)| \leq 1$. Hence the comb graph P_n^+ admits a square difference edge cordial labeling. Therefore

the comb graph P_n^+ is a square difference edge cordial graph.

Example 2.4 Let the comb graph P_6^+ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.1.

Figure 1: Square difference edge cordial graph of the comb graph P_6^+

Clearly, $|e_i(0)|$ = 5 and $|e_i(1)|$ = 6. Thus, $|e_i(0) - e_i(1)| \le 1$. Hence the comb graph P_6^+ admits a square difference edge cordial labeling. Therefore the comb graph P_6^+ is a square difference edge cordial graph

Theorem 2.3 The graph $[P_n: S_2]$ is a square difference edge cordial graph. Proof. Let G be the graph $[P_n: S_2]$. LetV(G) = { u_i , v_i , v_i' , $v_i''/1 \le i \le n$ } and $E(G) = \{u_i u_{i+1} / 1 \le i \le n-1\} \cup \{u_i v_i, v_i v_i v_i v_i v_i'' / 1 \le i \le n\}.$ So, $|V(G)| = 4n$ and $|E(G)| = 4n-1$. A functionf : $V(G) \rightarrow \{1,2,3,...,4n\}$ is defined as follows: f(u_i) = 2i−1;1 ≤i ≤n, f(v_i) = 2i;1 ≤i ≤n, f(v_i) =2(n+i)−1;1 ≤i ≤n, $f(v''_i) = 2(n+i); 1 ≤ i ≤ n.$ The induced edge labels are $f^*(u_i u_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(u_i v_i) = 1; 1 \le i \le n,$ $f^*(v_i v_i') = 1; 1 \le i \le n,$ $f^*(v_i v_i'') = 0; 1 \le i \le n$. Thus, $|e_f(0)-e_f(1)| \leq 1$.Hence the graph $[P_n: S_2]$ is a square difference edge cordial graph.

Example 2.4 Let the graph $[P_5: S_2]$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.2.

Figure 2:Square difference edge cordial graph of $[P_5: S_2]$

Clearly, $|e_f(0)| = 9$ and $|e_f(1)| = 10$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph $[P_5: S_2]$ admits a square difference edge cordial labeling. Therefore the graph $[P_5: S_2]$ is a square difference edge cordial graph.

Theorem 2.5The shadow graph $D_2(P_n)$ is a square difference edge cordial graph. Proof. Let G be the shadow graph $D_2(P_n)$. LetV(G) ={ u_i , v_i /1 ≤i ≤n} and E(G) ={ $u_i u_{i+1}$, $u_i v_{i+1}$, $u_{i+1} v_i$, $v_i v_{i+1}$ /1 ≤i ≤n-1}. $|S_0| |V(G)| = 2n$ and $|E(G)| = 4n-4$. A functionf : $V(G) \rightarrow \{1,2,3,...,2n\}$ is defined as follows: f(u_i) = 2i-1;1 ≤i ≤n, f(v_i) = 2i;1 ≤i ≤n. The induced edge labels are $f^*(u_iu_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(v_i v_{i+1}) = 0; 1 \le i \le n-1,$

 $f^*(u_i v_{i+1}) = 1; 1 \le i \le n-1,$

 $f^*(u_{i+1}v_i) = 1; 1 \le i \le n-1.$

Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph $D_2(P_n)$ is a square difference edge cordial graph. **Example 2.6** Let the shadow graph $D_2(P_8)$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.3.

Figure 3: Square difference edge cordial graph of $D_2(P_8)$

Clearly, $|e_f(0)|$ = 14 and $|e_f(1)|$ = 14. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the shadow graph $D_2(P_8)$ admits a square difference edge cordial labeling. Therefore the shadow graph $D_2(P_8)$ is a square difference edge cordial graph.

Theorem 2.7The square graph P_n^2 is a square difference edge cordial graph.

Proof. Let G be the square graph P_n^2 . Let $V(G) = \{v_i / 1 \le i \le n\}$ and $E(G) = \{v_i v_{i+1} / 1 \le i \le n-1\} \cup \{v_i v_{i+2} / 1 \le i \le n-2\}$. $|V(G)| = n$ and $|E(G)| = 2n-3$. A functionf : $V(G) \rightarrow \{1,2,3,...,n\}$ is defined as follows: $f(v_i) = i; 1 \le i \le n$. The induced edge labels are $f^*(v_i v_{i+1}) = 1; 1 \le i \le n-1,$ $f^*(v_i v_{i+2}) = 0; 1 \le i \le n-2.$ Thus, $|e_f(0) - e_f(1)| \leq 1$. Hence the square graph P_n^2 is a square difference edge cordial graph.

Example 2.8 Let the square graph P^2_9 be considered. The square difference edge cordial labeling pattern is shown in Figure 2.4.

Figure 4: Square difference edge cordial graph of square graph P_9^2

Clearly, $|e_i(0)| = 7$ and $|e_i(1)| = 8$. Thus, $|e_i(0) - e_i(1)| \le 1$. Hence the square graph P_9^2 admits a square difference edge cordial labeling. Therefore the square graph P_9^2 is a square difference edge cordial graph.

Theorem 2.9 The total graph $T(P_n)$ is a square difference edge cordial graph. Proof. Let G be the total graph $T(P_n)$. LetV(G) ={ $u_i / 1 \le i \le n$ } ∪{ $v_i / 1 \le i \le n-1$ } and $E(G) = \{u_i u_{i+1}, u_i v_i, u_{i+1} v_i / 1 \le i \le n-1\} \cup \{v_i v_{i+1} / 1 \le i \le n-2\}.$ So, $|V(G)|$ = 2n−1 and $|E(G)|$ = 4n−5. A functionf : V(G) →{1,2,3,...,2n−1}is defined as follows: f(u_i) = 2i−1;1 ≤i ≤n, $f(v_i) = 2i; 1 ≤ i ≤ n-1.$

The induced edge labels are $f^*(u_iu_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(v_i v_{i+1}) = 0; 1 \le i \le n-2,$ $f^*(u_i v_i) = 1; 1 \le i \le n-1,$ $f^*(u_{i+1}v_i) = 1; 1 \le i \le n-1.$ Thus, $|e_f(0)-e_f(1)| \leq 1$. Hence the total graphT(P_n) is a square difference edge cordial graph.

Example 2.10 Let the total graphT(P_7) be considered. The square difference edge cordial labeling pattern is shown in Figure 2.5.

Figure 5: Square difference edge cordial graph of the total graphT(P7)

Clearly, $|e_f(0)| = 11$ and $|e_f(1)| = 12$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the total graphT(P₇) admits a square difference edge cordial labeling. Therefore the total graphT(P_7) is a square difference edge cordial graph.

Theorem 2.11 The one point union of the cycle C_3 with the star graph $K_{1,n}$ is a square difference edge cordial graph.

Proof. Let G be the one point union of the cycle C_3 with the star graph $K_{1,n}$. LetV(G) = $\{u, v, w, v_i /1 \le i \le n\}$ and $E(G) = \{ uv, vw, wu, wv, /1 \le i \le n \}$ So, $|V(G)| = n+3$ and $|E(G)| = n+3$. A functionf : $V(G) \rightarrow \{1,2,3,...,n+3\}$ is defined as follows: $f(u) = 1$, $f(v) = 2$, $f(w) = 3$, f(v_i) = 3+i;1 ≤i ≤n. The induced edge labels are $f^*(uv) = 1$, $f^*(vw) = 1$, $f^*(wu) = 0,$ For $1 \leq i \leq n$, $f^*(wv_i) = \}$ 1 if i is odd 0 if i is even

Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the be the one point union of the cycle C₃ with the star graph K_{1,n} is a square difference edge cordial graph.

Example 2.12 Let the one point union of cycle C_3 with the star graph $K_{1,8}$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.6.

Figure 6: Square difference edge cordial graph of one point union of C_3 with $K_{1,8}$

Clearly, $|e_f(0)|=5$ and $|e_f(1)|=6$. Thus, $|e_f(0)-e_f(1)|\leq 1$. Hence the one point union of the cycle C₃ with the star graph $K_{1,8}$ admits a square difference edge cordial labeling. Therefore the one point union of the cycle C_3 with the star graph $K_{1,8}$ is a square difference edge cordial graph.

Theorem 2.13 The duplication of any vertex of a bistarB_{n,n}is a square difference edgecordial graph. Proof. Let G be a graph obtained by the duplication of apex vertex v (or u) in a bistar $B_{n,n}$. LetV(G) ={ $u, v, u_i, v_i, v' / 1 \le i \le n$ } and E(G) ={ $uv, uv', uu_i, vv_i, v' v_i / 1 \le i \le n$ }. So, $|V(G)| = 2n+3$ and $|E(G)| = 3n+2$. A functionf : $V(G) \rightarrow \{1,2,3,...,2n+3\}$ is defined as follows: $f(u) = 1$, $f(v) = 2n+2$, $f(v') = 2n+3$, $f(u_i) = i+1; 1 \le i \le n,$ $f(v_i) = n+1+i; 1 \le i \le n$. **Case (i)** : n is odd For $1 \leq i \leq n$,

 $f^*(uu_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}$ 0 if i is even $f^*(vv_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}$ 0 if i is even $f^*(v'v_i) = \begin{cases} 1 & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd} \end{cases}$ 0 *if* i is odd

 $f^*(uv') = 0,$ $f^*(uv) = 1.$

Case(ii) : n is even For $1 \leq i \leq n$,

 $f^*(uu_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}$ 0 if i is even $f^*(vv_i) = \begin{cases} 1 & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd} \end{cases}$ 0 if i is odd $f^*(v'v_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}$ 0 if i is even

 $f^*(uv') = 0,$ $f^*(uv) = 1.$

Thus, $|e_f(0)-e_f(1)| \leq 1$. Hence the graph obtained by the duplication of any vertex of a bistarBn,n is a square difference edge cordial graph.

Example 2.14 Let the duplication of the apex vertex of the bistar $B_{5,5}$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.7.

Figure 7: Square difference edge cordial graph of the duplication of the apex vertex of B_{5,5}

Clearly, $|e_f(0)| = 8$ and $|e_f(1)| = 9$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the duplication of the apex vertex of bistar B5,5 admits a square difference edge cordial labeling. Therefore the duplication of the apex vertex of bistar B_{5,5} is a square difference edge cordial graph.

Theorem 2.15 The lotus inside a circle LC_n is a square difference edge cordial graph. Proof. Let G be the lotus inside a circle LC_n . LetV(G) = { v_0 , u_i , v_i /1 ≤i ≤n}and $E(G) = \{u_n u_{1,} u_n v_1, u_i u_{i+1}, u_i v_{i+1} / 1 \le i \le n-1\} \cup \{v_0 v_i, u_i v_i / 1 \le i \le n\}.$ $|S_0| |V(G)| = 2n + 1$ and $|E(G)| = 4n$. A functionf : $V(G) \rightarrow \{1,2,3,...,2n+1\}$ is defined as follows: $f(v_0) = 1$, $f(v_i) = 2i+1; 1 ≤ i ≤ n,$ f(u_i) = 2i;1 ≤i ≤n. The induced edge labels are $f^*(u_n u_{1,}) = 0,$ $f^*(u_nv_1) = 1$, $f^*(u_i u_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(v_0v_i) = 0; 1 \le i \le n$, $f^*(u_i v_{i+1}) = 1; 1 \le i \le n-1,$ $f^*(u_i v_i) = 1; 1 \le i \le n$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the lotus inside a circleLC_n is a square difference edge cordial graph.

Example 2.16 Let the lotus inside a circle LC_4 be considered. The square difference edge cordial labeling pattern is shown in Figure 2.8.

Figure 8: Square difference edge cordial graph of LC⁴

Clearly, $|e_f(0)| = 8$ and $|e_f(1)| = 8$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the lotus inside a circle LC₄ admits a square difference edge cordial labeling. Therefore the lotus inside a circle LC⁴ is a square difference edge cordial graph.

Theorem 2.17 The bistar $B_{n,n}$ is a square difference edge cordial graph.

Proof. Let G be the bistar graph B_{nn} . LetV(G) = { $u, v, u_i, v_i/1 \le i \le n$ }and $E(G) = \{ uv, vv_i, uu_i/1 \le i \le n \}.$ So, $|V(G)| = 2n+2$ and $|E(G)| = 2n+1$. A functionf : $V(G) \rightarrow \{1,2,3,...,2n+2\}$ is defined as follows: $f(u) = 1$, $f(v) = n + 2$, $f(u_i) = i+1; 1 \le i \le n,$ $f(v_i) = n+2+i; 1 ≤ i ≤ n.$ The induced edge labels are

> $f^*(uv) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is odd} \end{cases}$ 1 if n is even

For $1 \leq i \leq n$,

$$
f^*(uu_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \\ 1 & \text{if } i \text{ is odd} \end{cases}
$$

$$
f^*(vv_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}
$$

Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the bistar graphB_{n,n} is a square difference edge cordial graph.

Example 2.18 Let the bistar B_{5,5}be considered. The square difference edge cordial labeling pattern is shown in Figure 2.9.

Figure 9: Square difference edge cordial graph of B_{5.5}

Clearly, $|e_f(0)| = 5$ and $|e_f(1)| = 6$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the bistar $B_{5,5}$ admits a square difference edge cordial labeling. Therefore the bistar $B_{5.5}$ is a square difference edge cordial graph.

Theorem 2.19 The graph $(K_n - e)$ _n is a square difference edge cordial graph.

Proof. Let G be the graph (K_n−e)_{n.} LetV(G) = { u_i , v_i / 1 ≤i ≤ n}and $E(G) = \{u_i u_{i+1}, v_i v_{i+1}, u_i v_{i+1} / 1 \le i \le n-1\} \cup \{u_i v_i / 1 \le i \le n\}.$ So, $|V(G)| = 2n$ and $|E(G)| = 4n-3$. A functionf : $V(G) \rightarrow \{1,2,3,...,2n\}$ is defined as follows: f(u_i) = 2i-1;1 ≤i ≤ n, f (v_i) = 2i;1 ≤i ≤ n. The induced edge labels are $f^*(u_iu_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(v_i v_{i+1}) = 0; 1 ≤ i ≤ n-1,$ $f^*(u_iv_i) = 1; 1 \le i \le n,$ $f^*(u_iv_{i+1}) = 1; 1 \le i \le n-1.$ Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph $(K_n-e)_n$ is a square difference edge cordial graph.

Example 2.20 Let the graph $(K_4 - e)$ ⁷ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.10.

Figure 10: Square difference edge cordial graph of $(K_4−e)$ ₇

Clearly, $|e_f(0)|$ = 5 and $|e_f(1)|$ = 6. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph $(K_4 - e)$ ₇ admits a square difference edge cordial labeling. Therefore the graph $(K_4 - e)$ ₇ is a square difference edge cordial graph.

Theorem 2.21 The jewel graph J_n is a square difference edge cordial graph. Proof. Let G be the jewel graph J_n . Let $V(G) = \{ u, v, x, y, v_i / 1 \le i \le n \}$ and $E(G) = \{ ux, uy, xy, xv, yv, uv_i, vv_i / 1 \le i \le n \}$. So, $|V(G)| = n+4$ and $|E(G)| = 2n+5$. A functionf : $V(G) \rightarrow \{1,2,3,...,n+4\}$ is defined as follows: $f(u) = 1$, $f(v) = 2$, $f(x) = 3$,

 $f(y) = 4$, $f(v_i) = 4 + i; 1 ≤ i ≤ n.$ Further, the induced edge labels are $f^*(ux) = 0$, $f^*(uy) = 1$, f^* (xy) = 1, $f^*(xv) = 1$, f^* (yv) = 0, For $1 \leq i \leq n$, $f^*(uv_i) = \begin{cases} 1 & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd} \end{cases}$ 0 if i is odd $f^*(vv_i) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}$ 0 if i is even

Thus, $|ef(0)-ef(1)| \le 1$. Hence the jewel graph J_n is a square difference edge cordial graph.

Example 2.22 Let the jewel graph I_4 be considered. The square difference edge cordial labeling pattern is shown in Figure 2.11.

Figure 11: Square difference edge cordial graph ofJ⁴

Obviously, $|e_f(0)|$ = 6 and $|e_f(1)|$ = 7. Thus, $|e_f(0) - e_f(1)|$ ≤1. Hence the jewel graph J_4 admits a square difference edge cordial labeling. Therefore the jewel graph J_4 is a square difference edge cordial graph.

CONCLUSION

In this chapter, it is found that the square difference edge cordial labeling admits for the squaregraph P_n^2 , the duplication of apex vertex of a bistar, the lotus inside the circleLC_n, the bistarB_{n,n}, the one point union of the cycle C₃ with the star graph $K_{1,n}(n$ is even), the graph $[P_n: S_2]$, the comb graph P_n^+ , the jewel graphJ_n, the graph $(K_n-e)_n$ and the total graph $T(P_n)$. In future,some more types of labeling for different types of graphs can be proceeded.

REFERENCES

- [1] Akbari P.Z, Kaneria V.J and Parmar N.A,Absolute mean graceful labeling of jewel graph and jelly fish graph, International Journal of Mathematics Trends and Technology, 68(1),2022,86-93.
- [2] Alfred Leo A and Vikramaprasad R, Divided square difference cordial labeling of some special graphs, International Journal of Mathematics Trends and Technology , 7(2),2018,935-938.
- [3] Bondy J.A and MurtyU.S.R , Graph theory with Applications, Elsevier Science Publication,Fifth edition, 1982.
- [4] Cahit I, Cordial graphs, A Weaker Version of graceful and harmonic graphs, arts and combinatorial, 23,1987,201-207.
- [5] Frank Harary, Graph theory, Narosa Publishing House, New Delhi.
- [6] Joseph A Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18,2016.
- [7] Modha M.V and Kanani K.K , On k-cordial labeling of some graphs, British journal of mathematics and computer science, 13(3),2016,1-7.
- [8] NellaiMurugan A and MeenakshiSundari A, Path related product cordial graphs, International Journal of Innovation in Science and Mathematics,2(4),
- [9] Ponraj R and Sathish Narayanan S, Difference Cordiality of some derived graphs, International Journal of Mathematical Combinatorics, 4,2013,37-48.
- [10] Ponraj R, Sathish Narayanan S and Kala R, Difference cordial labeling of graphs, Global Journal of Mathematical Sciences, Theory and Practical, 5, 2013,185-196.
- [11] Ponraj R, Sathish Narayanan S and Kala R, A note on difference cordial graphs, Palestine Journal of Mathematics, 4(1),2015,189-197.
- [12] Ponraj R, Sathish Narayanan S and Kala R, Difference cordial labeling of corona graphs, Journal of Mathematical and computational sciences, 3(5),2013,1237-1251.
- [13] Rosa A, On certain valuations of the vertices of graph, Theory of graphs, International Symposium, Rome July 1966, Gordan and Breach, New york and Dunod Paris, 1967,349-355.
- [14] Shiama J, Square difference labeling for some graphs, International Journal of computer Applications, 44(4),2012,30-33.
- [15] Shiama J, Square sum labeling for some middle and total graphs, International Journal of computer Applications, 17(4),2012,6-8.
- [16] Uma R and Divya S, Cube difference labeling of star related graphs, International Journal of Scientific research in Computer science, Engineering and Information Technology, 2(5),2017,298-301.
- [17] UrvishaVaghela and Dharavirsinh Parma, Difference product square cordial labeling of some graphs, Journal of Xidian University, 14(2),2020,87-98.
- [18] Vaidya S.K and Shah N.H, On square divisor cordial graphs, Journal of scientific research, 6(3),2014,445-455.