Square Difference Edge Cordial Labeling Of Some Special Graphs

Kalamani D¹, Geetha T^{2,3*}

¹Professor, Department of Mathematics, Bharathiar University PG Extension and Research Center, Erode-638052, Tamil Nadu, India.

²Research Scholar, Department of Mathematics, Bharathiar University PG Extension and Research Center, Erode- 638052, Tamil Nadu, India.

³Assistant Professor, PG and Research Department of Mathematics, Bharathidasan College of Arts and Science, Erode- 638116, Tamil Nadu, India.

Email: kalamanikec@gmail.com¹, geetha15520@gmail.com^{2,3}

*Corresponding Author

Received: 15.07.2024	Revised: 16.08.2024	Accepted: 07.09.2024	

ABSTRACT

A graph G with p vertices and q edges is said to admit a square difference edge cordial labeling if there is a bijection $f: V(G) \rightarrow \{1,2,..., p\}$ such that for each edge e = uv, the induced map $f^*: E(G) \rightarrow \{0,1\}$ is defined by $f^*(uv) = 1$ if $|f(u)^2 - f(v)^2|$ is odd, otherwise 0 and $|e_f(0) - e_f(1)| \le 1$ where $e_f(0) = edges$ with label zero and $e_f(1) = edges$ with label one. If a graph admits square difference edge cordial labeling, then it is said to be square difference edge cordial graph. In this paper, it is investigated that the square graph P_n^2 , the shadow graph $D_2(P_n)$, the duplication of apex vertex of bistar $B_{n,n}$, the lotus inside a circle LC_n , the bistar $B_{n,n}$, the one point union of cycle C_3 with the star graph $K_{1,n}(n \text{ is even})$, the graph $[P_n: S_2]$, the comb graph P_n^+ , the jewel graph J_n , the graph $(K_n - e)_n$ and the total graph $T(P_n)$ are square difference edge cordial graph.

Keywords: Square difference edge cordial labeling, Square difference edge cordial graph.

1. INTRODUCTION

All graphs considered in this paper are finite, simple and undirected graphs. The symbolV(G) and E(G) denotes the vertex set and the edge set of a graph G. The cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called (p,q) graph. The concept of graph labeling was introduced by Rosa [13] in 1967. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. Cordial labeling was first introduced in 1987 by Cahit [4]. Ponraj et.al.,[9] found a new labeling called difference cordial labeling in 2013. Ponraj et.al.,[10,11,12] studied the difference cordial labeling in 2013. Ponraj et.al.,[10,11,12] studied the difference labeling in 2012. Alfred Leo et.al.,[2] initiated the divided square difference cordial labeling in 2018. In this paper, a new labeling called the square difference edge cordial labeling is introduced. Further notations and terminologies are followed from Harary [5] and Bondy and Murty [3]. The following definitions are used in the present study.

Definition 1.1 [11] A mapping $f : V(G) \rightarrow \{0,1\}$ is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f. The induced edge labeling $f^*: E(G) \rightarrow \{0,1\}$ is given by $f^*(e = uv) = |f(u) - f(v)|$. Let $v_f(0)$, $v_f(1)$ be the number of vertices of G having 0 and 1 respectively under f and $e_f(0)$, $e_f(1)$ be the number of edges of G having labels 0 and 1 respectively under f^* .

Definition 1.2 [11] A binary vertex labeling f of a graph G is called a cordial labeling if

 $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph G is cordial if it admits cordial labeling.

Definition 1.3 [15] A square difference labeling of a graph G is a bijection $f : V(G) \rightarrow \{0,1,2,3,4,...,p-1\}$ such that the induced function $f^*: E(G) \rightarrow N$ defined by $f^*(uv) = |f(u)^2 - f(v)^2|$ for every $uv \in E(G)$ are all distinct. A graph that admits square difference labeling is called a square difference graph.

Definition 1.4A graph G with p vertices and q edges is said to admit a square difference edgecordial labeling if there is a bijection $f:V(G) \rightarrow \{1,2,..., p\}$ such that for each edge e = uv, the induced map $f^*: E(G) \rightarrow \{0,1\}$ is defined by $f^*(uv) = 1$ if $|f(u)^2 - f(v)^2|$ is odd, otherwise 0 and $|e_f(0) - e_f(1)| \le 1$ where $e_f(0) = edges$ with label zero and $e_f(1) = edges$ with label one. If a graph admits square difference edge cordial labeling, then it is said to be square differenceedge cordial graph.

Definition 1.5 [16]A complete bipartite graph $K_{1,n}$ is called a **star** and it has n+1 vertices and nedges. It is also denoted by S_n.

Definition 1.6 [6]The**bistar**B_{n,n}is the graph obtained by joining the center (apex) vertices of the two copies of $K_{1,n}$ by an edge. The vertex set $B_{n,n}$ is $V(B_{n,n}) = \{u, v, u_i, v_i/1 \le i \le n\}$, where u,v are apex vertices and u_i, v_i are pendant vertices. The edge set of $B_{n,n}$ is $E(B_{n,n}) = \{uv, uu_i, vv_i/1 \le i \le n\}$. So, $|V(B_{n,n})| = 2n+2$ and $|E(B_{n,n})| = 2n+1$.

Definition 1.7 [8] The graph $[\mathbf{P}_n : \mathbf{S}_2]$ is obtained from a path \mathbf{P}_n by joining every vertex of a path to a root of a star S₂ by an edge.

Definition 1.8 [7]The graph obtained by joining n pendant edges at one vertex of the cycle C_3 is called the one point union of cycle C_3 with a star graph $K_{1,n}$.

Definition 1.9 [6]The duplication of a vertex v of a graph G produces a new graph G by adding vertex \mathbf{v}' with N(\mathbf{v}') = N(\mathbf{v}). In other words, a vertex \mathbf{v}' is said to be a duplication of \mathbf{v} if all the vertices which are adjacent to v are then adjacent to \mathbf{v}' .

Definition 1.10 [17] The graph $(\mathbf{K}_n - \mathbf{e})_n$ is the one edge union of $(\mathbf{K}_n - \mathbf{e})$.

Definition 1.11 [15] The total graph of a graph G is the graph whose vertex set $V(G) \cup E(G)$ and two vertices are adjacent whenever they are either adjacent or incident in G. The total graphof G is denoted by T(G).

Definition 1.12 [18]For a simple connected graph G, the square graph G is denoted by G² and defined as the graph with the same vertex set as of G and two vertices are adjacent in G^2 if they are at a distance 1 or 2 apart in G.

Definition 1.13 [1]The jewel graph I_n is obtained from a 4-cycle with vertices x,y,u,v by joining x and y with a prime edge and by appending an edge from u and v which meets at the common vertices v_i , $1 \le i \le n$. The prime edge in a jewel graph is defined to be the edge joining the vertices x and y.

Definition 1.14 [18] The shadow graph $D_2(G)$ of a connected graph G is constructed by taking the two copies of G which may be G'andG" and each vertex u'is joined with G' to the neighbours of the corresponding vertex v[']in G["].

Definition 1.15 [11] The lotus inside a circleLC_n is a graph obtained from the cycle $c_n:u_1u_2...u_nu_1$ and a star $K_{1,n}$ with the central vertex v_0 and the end vertices $v_1, v_2, ..., v_n$ by joiningeach v_i to u_i and u_{i+1} (mod n).

Definition 1.16 [8] The graph obtained by joining a single pendant edge to each vertex of a path is called $combP_n^+$ where n denotes the number of vertices in the path.

2. Main results

In this section, it is shown that the comb graph P_n^+ , the graph $[P_n: S_2]$, the one point union of the cycle C_3 with the star graph $K_{1,n}$ (n is even), the shadow graph $D_2(P_n)$, the duplication of apex vertex of bistar $B_{n,n}$, the square graph P_n^2 , the lotus inside a circleLC_n, the bistarB_{n,n}, the graph (K_n –e)_n, the total graph T(P_n) and the jewel graphJ_nare square difference edge cordial graph.

Theorem 2.1 The comb graph P_n^+ is a square difference edge cordial graph.

Proof.Let G be the comb graph P_n^+ . Let V(G) = { $u_i, v_i/1 \le i \le n$ } and E(G) = { $u_iu_{i+1}/1 \le i \le n-1$ } \cup { $u_iv_i/1 \le i \le n$ }. $So_{V}(G) = 2n and |E(G)| = 2n-1.$ A function $f: V(G) \rightarrow \{1, 2, 3, ..., 2n\}$ is defined as follows: $f(u_i) = 2i - 1; 1 \le i \le n,$ $f(v_i) = 2i; 1 \le i \le n$. The induced edge labels are $f^*(u_i u_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(u_iv_i) = 1; 1 \le i \le n.$ Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the comb graph P_n^+ admits a square difference edge cordial labeling. Therefore

the comb graph P_n^+ is a square difference edge cordial graph.

Example 2.4 Let the comb graph P_6^+ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.1.

Figure 1: Square difference edge cordial graph of the comb graph P_6^+

Clearly, $|e_f(0)| = 5$ and $|e_f(1)| = 6$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the comb graph P_6^+ admits a square difference edge cordial labeling. Therefore the comb graph P_6^+ is a square difference edge cordial graph

Theorem 2.3 The graph [P_n: S₂] is a square difference edge cordial graph. Proof. Let G be the graph $[P_n: S_2]$. LetV(G) = { $u_i, v_i, v'_i, v''_i/1 \le i \le n$ } and $E(G) = \{u_i u_{i+1} / 1 \le i \le n-1\} \cup \{u_i v_i, v_i v'_i, v_i v''_i / 1 \le i \le n\}.$ So, |V(G)| = 4n and |E(G)| = 4n-1. A function $f: V(G) \rightarrow \{1, 2, 3, ..., 4n\}$ is defined as follows: $f(u_i) = 2i - 1; 1 \le i \le n$, $f(v_i) = 2i; 1 \le i \le n$, $f(v'_i) = 2(n+i) - 1; 1 \le i \le n,$ $f(v_i'') = 2(n+i); 1 \le i \le n.$ The induced edge labels are $f^*(u_i u_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(u_iv_i) = 1; 1 \le i \le n$, $f^{*}(v_{i}v_{i}^{'}) = 1; 1 \le i \le n,$ $f^*(v_iv_i'') = 0; 1 \le i \le n.$ Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph $[P_n: S_2]$ is a square difference edge cordial graph.

Example 2.4 Let the graph $[P_5: S_2]$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.2.

Figure 2:Square difference edge cordial graph of [P₅: S₂]

Clearly, $|e_f(0)| = 9$ and $|e_f(1)| = 10$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph [P₅: S₂] admits a square difference edge cordial labeling. Therefore the graph [P₅: S₂] is a square difference edge cordial graph.

Theorem 2.5The shadow graph $D_2(P_n)$ is a square difference edge cordial graph. Proof. Let G be the shadow graph $D_2(P_n)$. Let V(G) = { $u_i, v_i / 1 \le i \le n$ } and E(G) = { $u_i u_{i+1}, u_i v_{i+1}, u_{i+1} v_i, v_i v_{i+1} / 1 \le i \le n-1$ }. So, |V(G)| = 2n and |E(G)| = 4n-4. A function f: V(G) \rightarrow {1,2,3,...,2n} is defined as follows: f(u_i) = 2i-1;1 $\le i \le n$. f(v_i) = 2i;1 $\le i \le n$. The induced edge labels are f*($u_i u_{i+1}$) = 0;1 $\le i \le n-1$, f*($v_i v_{i+1}$) = 0;1 $\le i \le n-1$, $f^*(u_i v_{i+1}) = 1; 1 \le i \le n-1,$ $f^*(u_{i+1} v_i) = 1; 1 \le i \le n-1.$

Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph $D_2(P_n)$ is a square difference edge cordial graph. **Example 2.6** Let the shadow graph $D_2(P_8)$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.3.

Figure 3:Square difference edge cordial graph ofD₂(P₈)

Clearly, $|e_f(0)| = 14$ and $|e_f(1)| = 14$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the shadow graph $D_2(P_8)$ admits a square difference edge cordial labeling. Therefore the shadow graph $D_2(P_8)$ is a square difference edge cordial graph.

Theorem 2.7The square graph P_n^2 is a square difference edge cordial graph.

Proof. Let G be the square graph P_n^2 . Let V(G) ={ $v_i / 1 \le i \le n$ } and E(G) ={ $v_i v_{i+1} / 1 \le i \le n-1$ } \cup { $v_i v_{i+2} / 1 \le i \le n-2$ }. So,|V(G)| = n and|E(G)| = 2n-3. A functionf : V(G) \rightarrow {1,2,3,...,n} is defined as follows: f(v_i) = i;1 $\le i \le n$. The induced edge labels are $f^*(v_i v_{i+1}) = 1;1 \le i \le n-1$, $f^*(v_i v_{i+2}) = 0;1 \le i \le n-2$. Thus,|e_f(0)-e_f(1)| ≤ 1 . Hence the square graph P_n^2 is a square difference edge cordial graph.

Example 2.8 Let the square graph P_9^2 be considered. The square difference edge cordial labeling pattern is shown in Figure 2.4.

Figure 4: Square difference edge cordial graph of square graph P_9^2

Clearly, $|e_f(0)| = 7$ and $|e_f(1)| = 8$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the square graph P_9^2 admits a square difference edge cordial labeling. Therefore the square graph P_9^2 is a square difference edge cordial graph.

Theorem 2.9 The total graph T(P_n) is a square difference edge cordial graph. Proof. Let G be the total graphT(P_n). LetV(G) ={ $u_i / 1 \le i \le n$ } \cup { $v_i / 1 \le i \le n-1$ } and E(G) ={ $u_i u_{i+1}, u_i v_i, u_{i+1} v_i / 1 \le i \le n-1$ } \cup { $v_i v_{i+1} / 1 \le i \le n-2$ }. So,|V(G)|= 2n-1 and|E(G)| = 4n-5. A functionf : V(G) \rightarrow {1,2,3,...,2n-1}is defined as follows: f(u_i) = 2i-1;1 $\le i \le n$, f(v_i) = 2i;1 $\le i \le n-1$. The induced edge labels are $f^*(u_i u_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(v_i v_{i+1}) = 0; 1 \le i \le n-2,$ $f^*(u_i v_i) = 1; 1 \le i \le n-1,$ $f^*(u_{i+1} v_i) = 1; 1 \le i \le n-1.$ Thus, $|e_f(0)-e_f(1)| \le 1$. Hence the total graph $T(P_n)$ is a square difference edge cordial graph.

Example 2.10 Let the total graphT(P₇) be considered. The square difference edge cordial labeling pattern is shown in Figure 2.5.

Figure 5: Square difference edge cordial graph of the total graphT(P₇)

Clearly, $|e_f(0)| = 11$ and $|e_f(1)| = 12$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the total graphT(P₇) admits a square difference edge cordial labeling. Therefore the total graphT(P₇) is a square difference edge cordial graph.

Theorem 2.11 The one point union of the cycle C_3 with the star graph $K_{1,n}$ is a square difference edge cordial graph.

Proof. Let G be the one point union of the cycle C_3 with the star graph $K_{1.n.}$ LetV(G) = { $u, v, w, v_i / 1 \le i \le n$ } and $E(G) = \{uv, vw, wu, wv_i / 1 \le i \le n\}$ $So_{V(G)} = n+3$ and E(G) = n+3. A function $f: V(G) \rightarrow \{1, 2, 3, ..., n+3\}$ is defined as follows: f(u) = 1, f(v) = 2, f(w) = 3, $f(v_i) = 3+i; 1 \le i \le n$. The induced edge labels are $f^{*}(uv) = 1$, $f^{*}(vw) = 1$, $f^*(wu) = 0,$ For $1 \le i \le n$, 1 if i is odd $f^*(wv_i) =$ 0 if i is even

Thus, $|e_f(0)-e_f(1)| \le 1$. Hence the be the one point union of the cycle C_3 with the star graph $K_{1,n}$ is a square difference edge cordial graph.

Example 2.12 Let the one point union of cycle C_3 with the star graph $K_{1,8}$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.6.

Figure 6: Square difference edge cordial graph of one point union of C₃ with K_{1,8}

Clearly, $|e_f(0)| = 5$ and $|e_f(1)| = 6$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the one point union of the cycle C_3 with the star graph $K_{1,8}$ admits a square difference edge cordial labeling. Therefore the one point union of the cycle C_3 with the star graph $K_{1,8}$ a square difference edge cordial graph.

Theorem 2.13 The duplication of any vertex of a bistarB_{n,n} is a square difference edgecordial graph. Proof. Let G be a graph obtained by the duplication of apex vertex v (or u) in a bistarB_{n,n}. LetV(G) ={ $u, v, u_i, v_i, v'/1 \le i \le n$ } and E(G) ={ $uv, uv', uu_i, vv_i, v'v_i/1 \le i \le n$ }. So, |V(G)| = 2n+3 and|E(G)|= 3n+2. A functionf : V(G) \rightarrow {1,2,3,...,2n+3} is defined as follows: f(u) = 1, f(v) = 2n+2, f(v') = 2n+3, f(u_i) = i+1;1 $\le i \le n$, f(u_i) = n+1+i;1 $\le i \le n$, f(v_i) = n+1+i;1 $\le i \le n$, **Case (i)** : n is odd For 1 $\le i \le n$, $f^*(uu_i) = \begin{cases} 1 & if i is odd \\ 0 & i \le i \le n \end{cases}$

 $f^{*}(uu_{i}) = \begin{cases} 1 & if i is odd \\ 0 & if i is even \end{cases}$ $f^{*}(vv_{i}) = \begin{cases} 1 & if i is odd \\ 0 & if i is even \end{cases}$ $f^{*}(v'v_{i}) = \begin{cases} 1 & if i is even \\ 0 & if i is odd \end{cases}$

 $f^{*}(uv') = 0,$ $f^{*}(uv) = 1.$

Case(ii) : n is even For 1 ≤i ≤n,

 $f^{*}(uu_{i}) = \begin{cases} 1 & if \ i \ is \ odd \\ 0 & if \ i \ is \ even \\ f^{*}(vv_{i}) = \begin{cases} 1 & if \ i \ is \ even \\ 0 & if \ i \ is \ odd \\ 0 & if \ i \ is \ odd \\ f^{*}(v'v_{i}) = \begin{cases} 1 & if \ i \ is \ odd \\ 0 & if \ i \ is \ even \end{cases}$

 $f^{*}(uv') = 0,$ $f^{*}(uv) = 1.$

Thus, $|e_f(0)-e_f(1)| \le 1$. Hence the graph obtained by the duplication of any vertex of a bistarBn,n is a square difference edge cordial graph.

Example 2.14 Let the duplication of the apex vertex of the bistar $B_{5,5}$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.7.

Figure 7: Square difference edge cordial graph of the duplication of the apex vertex of B_{5,5}

Clearly, $|e_f(0)| = 8$ and $|e_f(1)| = 9$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the duplication of the apex vertex of bistar $B_{5,5}$ admits a square difference edge cordial labeling. Therefore the duplication of the apex vertex of bistar $B_{5,5}$ is a square difference edge cordial graph.

Theorem 2.15 The lotus inside a circle LC_n is a square difference edge cordial graph. Proof. Let G be the lotus inside a circleLC_n. Let V(G) = { $v_0, u_i, v_i/1 \le i \le n$ } and $E(G) = \{u_n u_1, u_n v_1, u_i u_{i+1}, u_i v_{i+1} / 1 \le i \le n-1\} \cup \{v_0 v_i, u_i v_i / 1 \le i \le n\}.$ $S_{0,V}(G) = 2n+1$ and |E(G)| = 4n. A function $f: V(G) \rightarrow \{1, 2, 3, ..., 2n+1\}$ is defined as follows: $f(v_0) = 1$, $f(v_i) = 2i+1; 1 \le i \le n,$ $f(u_i) = 2i; 1 \le i \le n$. The induced edge labels are $f^*(u_n u_{1.}) = 0$, $f^*(u_nv_1) = 1$, $f^*(u_i u_{i+1}) = 0; 1 \le i \le n-1,$ $f^*(v_0v_i) = 0; 1 \le i \le n,$ $f^*(u_i v_{i+1}) = 1; 1 \le i \le n-1,$ $f^*(u_i v_i) = 1; 1 \le i \le n.$

Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the lotus inside a circleLC_n is a square difference edge cordial graph.

Example 2.16 Let the lotus inside a circle LC₄ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.8.

Figure 8: Square difference edge cordial graph of LC4

Clearly, $|e_f(0)| = 8$ and $|e_f(1)| = 8$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the lotus inside a circle LC₄ admits a square difference edge cordial labeling. Therefore the lotus inside a circle LC₄ is a square difference edge cordial graph.

Theorem 2.17 The bistarB_{n,n}is a square difference edge cordial graph.

Proof. Let G be the bistar graphB_{n,n}. LetV(G) ={ $u, v, u_i, v_i/1 \le i \le n$ }and E(G) ={ $uv, vv_i, uu_i/1 \le i \le n$ }. So,|V(G)|= 2n+2 and|E(G)|= 2n+1. A function f: V(G) \rightarrow {1,2,3,...,2n+2} is defined as follows: f(u) = 1, f(v) = n+2, f(u_i) = i+1;1 $\le i \le n$, f(v_i) = n+2+i;1 $\le i \le n$. The induced edge labels are

 $f^*(uv) = \begin{cases} 0 & if \ n \ is \ odd \\ 1 & if \ n \ is \ even \end{cases}$

For 1 ≤i ≤ n,

$$f^{*}(uu_{i}) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \\ f^{*}(vv_{i}) = \begin{cases} 1 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}$$

Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the bistar graph $B_{n,n}$ is a square difference edge cordial graph.

Example 2.18 Let the bistar $B_{5,5}$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.9.

Figure 9: Square difference edge cordial graph of B_{5.5}

Clearly, $|e_f(0)| = 5$ and $|e_f(1)| = 6$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the bistar $B_{5,5}$ admits a square difference edge cordial labeling. Therefore the bistar $B_{5,5}$ is a square difference edge cordial graph.

Theorem 2.19 The graph $(K_n - e)_n$ is a square difference edge cordial graph.

Proof. Let G be the graph $(K_n-e)_n$. Let $V(G) = \{u_i, v_i / 1 \le i \le n\}$ and $E(G) = \{u_i u_{i+1}, v_i v_{i+1}, u_i v_{i+1} / 1 \le i \le n-1\} \cup \{u_i v_i / 1 \le i \le n\}$. So, |V(G)| = 2n and |E(G)| = 4n-3. A function $f: V(G) \rightarrow \{1, 2, 3, ..., 2n\}$ is defined as follows: $f(u_i) = 2i-1; 1 \le i \le n$, $f(v_i) = 2i; 1 \le i \le n$. The induced edge labels are $f^*(u_i u_{i+1}) = 0; 1 \le i \le n-1$, $f^*(v_i v_{i+1}) = 0; 1 \le i \le n-1$, $f^*(u_i v_i) = 1; 1 \le i \le n$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph $(K_n - e)_n$ is a square difference edge cordial graph.

Example 2.20 Let the graph $(K_4 - e)_7$ be considered. The square difference edge cordial labeling pattern is shown in Figure 2.10.

Figure 10: Square difference edge cordial graph of (K₄-e)₇

Clearly, $|e_f(0)| = 5$ and $|e_f(1)| = 6$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the graph $(K_4 - e)_7$ admits a square difference edge cordial labeling. Therefore the graph $(K_4 - e)_7$ is a square difference edge cordial graph.

Theorem 2.21 The jewel graph J_n is a square difference edge cordial graph. Proof. Let G be the jewel graph J_n . Let V(G) ={ u, v, x, y, v_i / 1 ≤i ≤ n}and E(G) ={ux, uy, xy, xv, yv, uv_i, vv_i / 1 ≤i ≤ n}. So, |V(G)|= n+4 and |E(G)|= 2n+5. A functionf : V(G) →{1,2,3,...,n+4} is defined as follows: f(u) = 1, f(v) = 2, f(x) = 3,
$$\begin{split} f(y) &= 4, \\ f(v_i) &= 4+i; \ 1 \leq i \leq n. \\ \text{Further, the induced edge labels are} \\ f^* & (ux) &= 0, \\ f^* & (uy) &= 1, \\ f^* & (xy) &= 1, \\ f^* & (xv) &= 1, \\ f^* & (xv) &= 1, \\ f^* & (vv) &= 0, \\ \text{For } 1 \leq i \leq n, \\ f^* & (uv_i) &= \begin{cases} 1 & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases} \end{split}$$

Thus, $|ef(0) - ef(1)| \le 1$. Hence the jewel graph J_n is a square difference edge cordial graph.

Example 2.22 Let the jewel graph J_4 be considered. The square difference edge cordial labeling pattern is shown in Figure 2.11.

Figure 11: Square difference edge cordial graph of J₄

Obviously, $|e_f(0)| = 6$ and $|e_f(1)| = 7$. Thus, $|e_f(0) - e_f(1)| \le 1$. Hence the jewel graph J_4 admits a square difference edge cordial labeling. Therefore the jewel graph J_4 is a square difference edge cordial graph.

CONCLUSION

In this chapter, it is found that the square difference edge cordial labeling admits for the squaregraph P_n^2 , the duplication of apex vertex of a bistar, the lotus inside the circleLC_n, the bistarB_{n,n}, the one point union of the cycle C₃ with the star graph K_{1,n}(n is even), the graph [P_n: S₂], the comb graph P_n^+ , the jewel graph J_n, the graph (K_n-e)_nand the total graph T(P_n). In future, some more types of labeling for different types of graphs can be proceeded.

REFERENCES

- [1] Akbari P.Z, Kaneria V.J and Parmar N.A, Absolute mean graceful labeling of jewel graph and jelly fish graph, International Journal of Mathematics Trends and Technology, 68(1),2022,86-93.
- [2] Alfred Leo A and Vikramaprasad R, Divided square difference cordial labeling of some special graphs, International Journal of Mathematics Trends and Technology, 7(2),2018,935-938.
- [3] Bondy J.A and MurtyU.S.R , Graph theory with Applications, Elsevier Science Publication, Fifth edition, 1982.
- [4] Cahit I, Cordial graphs, A Weaker Version of graceful and harmonic graphs, arts and combinatorial, 23,1987,201-207.
- [5] Frank Harary, Graph theory, Narosa Publishing House, New Delhi.
- [6] Joseph A Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 18,2016.
- [7] Modha M.V and Kanani K.K , On k-cordial labeling of some graphs, British journal of mathematics and computer science, 13(3),2016,1-7.

- [8] NellaiMurugan A and MeenakshiSundari A, Path related product cordial graphs, International Journal of Innovation in Science and Mathematics,2(4),
- [9] Ponraj R and Sathish Narayanan S, Difference Cordiality of some derived graphs, International Journal of Mathematical Combinatorics, 4,2013,37-48.
- [10] Ponraj R, Sathish Narayanan S and Kala R, Difference cordial labeling of graphs, Global Journal of Mathematical Sciences, Theory and Practical, 5, 2013,185-196.
- [11] Ponraj R, Sathish Narayanan S and Kala R, A note on difference cordial graphs, Palestine Journal of Mathematics, 4(1),2015,189-197.
- [12] Ponraj R, Sathish Narayanan S and Kala R, Difference cordial labeling of corona graphs, Journal of Mathematical and computational sciences, 3(5),2013,1237-1251.
- [13] Rosa A, On certain valuations of the vertices of graph, Theory of graphs, International Symposium, Rome July 1966, Gordan and Breach, New york and Dunod Paris, 1967,349-355.
- [14] Shiama J, Square difference labeling for some graphs, International Journal of computer Applications, 44(4),2012,30-33.
- [15] Shiama J, Square sum labeling for some middle and total graphs, International Journal of computer Applications, 17(4),2012,6-8.
- [16] Uma R and Divya S, Cube difference labeling of star related graphs, International Journal of Scientific research in Computer science, Engineering and Information Technology, 2(5),2017,298-301.
- [17] UrvishaVaghela and Dharavirsinh Parma, Difference product square cordial labeling of some graphs, Journal of Xidian University, 14(2),2020,87-98.
- [18] Vaidya S.K and Shah N.H, On square divisor cordial graphs, Journal of scientific research, 6(3),2014,445-455.