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ABSTRACT 
A two-dimensional displacement fluid in a porous material that is incompressible and immiscible is 
studied via the lens of a nonlinear system of two pair partial differential equations models. A petrov 
Galerkin mixed finite element approach is used to estimate the mixture's pressure and Darcy velocity, 
while a petrov Galerkin Finite Element Method (PGFEM) is stability prove for the pressure, velocity and 
Saturation.  
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1. INTRODUCTION  
The capillary pressure fields' discontinuities at interfaces complicates Simulating two-phase immiscible 
incompressible flows numerically over heterogeneous porous media. separating subdomains with 
different rock characteristics. In the event that one phase is missing, the pressure within capillaries may 
also be discontinuous because of the varying pressures of entry of the various rocks. However, when the 
interface's two sides exhibit both phases, to ensure capillary pressure continuity, the saturation must be 
discontinuous at the interface. The global pressure and saturation in these applications may show 
prominent discontinuities because of large (up to several orders) permeability changes and fast 
variations in capillary forces [1]. The creation of numerical techniques that are compatible with non-
linearity for two-phase movements in heterogeneous porous medium. 
Over the past few decades, a great deal of research has been done on numerical simulations and analyses 
for the systems (3.1, 3.2, and 3.3). The Darcy velocity and pressure mixed finite element technique, as well 
as the saturation equation for immiscible displacement of a single incompressible fluid in porous media 
using the upwind Galerkin finite element method, have been applied [2]. developed discontinuous 
Galerkin techniques to compute incompressible two-phase flow numerically in porous media [3]. 
Modeled the three-dimensional Two-phase incompressible and irreversible flow in porous medium using 
The updated explicit saturation method with implicit pressure in conjunction with the finite volume 
method [4]. In order to Generally Dual-phase incompressible and immiscible flows in porous 
heterogeneous media with varying capillary pressures, the sequential discontinuous Galerkin finite 
element method was designed and investigated [5]. introduced a method for simulating finite element 
level sets [6]. Boltzmann technique for immiscible fluid displacement numerical modeling in a two-
dimensional porous medium [7]. The linearized discontinuous error analysis for incompressible, 
immiscible displacement in porous media using the Galerkin Finite Element Method [8]. The linearized 
discontinuous error analysis of the GFEM for incompressible, immiscible displacement in porous media 
[9]. Impermeable Immiscible Migration in Permeable Materials: HP-Discontinuous GFEM [10]. Petrov -
Galerkin in (1978) D.F. Griffith and J. Lorenz introduced the one-dimensional PGFE method, they also 
characterized the trial and test (weight) spaces, stated that the trial and test functions belong to different 
spaces, provided the trial and test functions' shapes, explained the asymmetric matrices' shapes, and 
examined the error [11]. Tezduyer T.E. and Akin J. ED, stabilizing parameter δ utilized in the PG 
formulations was computed in three distinct ways: using linear, triangular, and quadrilateral elements. 
They also compared how the obtained δ values varied depending on the definitions used in the 
computational domains [12]. Volker and Julia proved that standard energy arguments yield estimates for 
stabilization parameters that are dependent on the time step length and those that are independent of the 
time step length when paired with the backward Euler scheme. They also researched other methods for 
obtaining inaccuracy for the  SUPGFE method to utilized to CDR equations, explored conditions on the 
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stabilization parameters [13]. D. Broersen and R. Stevenson investigated a PG discretization of the CDR 
equation's ultra-weak version in a mixed form [14]. N. Ahmed and G. Mattie they offered an 
approximation for solving time-dependent linear CDR issues. Time discretization’s using CPGFE and 
discontinuous GFE techniques. To assess the correctness of the temporal and spatial discretization 
schemes, they ran a number of numerical tests. Depending on the stabilizing parameters for the spatial 
estimations, the results are explained [15]. Regarding fractional boundary value problems in one 
dimension, variational formulations of the PG type were devised by Zhou, B. Jin, and R. Lazarov, Either the 
The diffusion term is Riemann-Liouville, or the caputo fractional derivative of order (3/2,2). a novel FE 
technique that uses partial powers for the trial space and continuous piecewise linear FEs for the test 
space [16]. L. Wang, S. Hou, L. Shi, and P. Zhang: For elliptic problems, a bilinear PGFE method is proposed 
to solve the variable matrix coefficient. In contrast to previous research focused solely on triangular parts, 
this new work addresses the intricate techniques used to cut interfaces as rectangular elements. i.e., half 
as many elements as triangular elements with the same mesh size [17]. D. A. Keshaish and H.A. Kashkool 
explain and evaluate the Petrov Galekin Finite Element (PGFE) approach for resolving linear problems 
including diffusion, reaction, and convection [18].  
The structure of the paper is as follows: 
In Sect. 2, We present some key definitions and lemmas. In Sect. 3, It explains the Petrov Galerkin finite 
element methodology. It also introduces some of the fundamental concepts of the method, including 
element matrices. For Darcy velocity and pressure, the Petrov Galerkin mixed finite element approach is 
utilized. while the Petrov GFEM is used for the saturation. In Sect. 4, we have demonstrated to us that 
there is stability for pressure, saturation, and velocity, respectively. Lastly, the conclusions in Sect 5. 
 
2. Definitions in advance and Lemmas 
A general framework for the numerical solution of partial differential equations is the FEM. The 
fundamental resources for understanding functional analysis theory and finite element methods are 
covered in this part. The following list includes certain symbols and definitions that will be used 
frequently. 
 
Definition 2.1[ 19]: (Lebesgue space)  

Given ; , let  be an open set of The set of real-valued Lebesgue measurable functions ℵ 

defined on  such that is integrable on ℶ with regard to the Lebesgue measure in ; is denoted 

by  

 

The Lebesgue space    is defined by: 

 

 
 
  equipped with the norm,   

 
 

For    , the space   of  " functions that are square integrable " will be seen as of particular 

importance. 

 
 prepared with the norm,    

 
for real-valued functions , we defined the –inner product by                   
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For  , shows the space of all functions, all of which have a bound for nearly all   

                    

 
  
equipped with the norm, 

 

(2.3)  

 

Definition 2.2 [20]: Hilbert Space  

     Let  be an open set ,contained in ;   .We denote the boundary of  by  .A Hilbert space is 

complete inner product space. Hilbert space of order  such that  denoted by  of function 

 on  is defined as  

 
      

is endowed for  with the inner product  

 
equipped with the norm,  

 

 
or 

 
 
and the semi-norm: 

 
 

Remark  

.In the space , is defined by  

 
With the norm 

    

  

.In the space , is defined by  

 
 With semi-norm is  

 
.In the , is defined by  

 
With the norm  
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and the semi-norm  

 
 
Lemma 2.1 [22] [21]: (Young's inequality)  

Let    real numbers and , the Young's-inequality is 

 
or 

 
 
Lemma 2.2 [22]: (Cauchy-Schwartz inequality)  

  If  is  inner product space then, Cauchy-Schwartz inequality is  

  

 

 
 and the equality holds  and  are  linearly dependent. 

Definition 2.3 [23]:  

The space is defined as the collection of vector-valued functions on ℶ that are square 

integrable along with their divergence; ie,  
 

 
The norm in is defined by  

 
 
3.The petrov Galerkin Finite Element Methods 
An immiscible displacement system can be used to characterize incompressible immiscible flow in porous 

media in various engineering applications. Let  be a bounded domain (oil field) in the plan with a 

smooth boundary Γ and 𝑇>0. The following are the classical systems in two dimensions [29]. 

                     

                       

  

Where  

 

            

where 𝜙 is the porosity of the rock's medium (𝜙∈(0,1) in the domain ),𝑠,𝑣 and 𝑝 are the saturation, 

Darcy’s velocity and pressure, respectively, 𝑓(𝑠) is the fractional flow function, 𝑔(𝑥,𝑡,𝑠) is the gravitational 

acceleration,  (𝑠)=𝑘𝜇 is a smooth function, 𝑘=𝑘(𝑥) is the porous rock's permeability, 𝜇=𝜇(𝑠) is the fluid's 

viscosity, and 𝑞 is the source and sink terms.  

If 𝑠=𝑠𝑜𝑖𝑙, then 𝑠 =0 and we may denote 𝑔(𝑥,𝑡,𝑠)=  where . As a result, 

the previous equation becomes  

 
The starting condition is  

                                      ,                                  (3.5) 

and the boundary conditions are 
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                                                                   (3.6)    

The aforementioned system's variational formulation. For the unknown, the finite element approximation 

space is formed by the pair  . Find 

 such that  

                                                             (3.7) 

                                                (3.8) 

   

We now define the Galerkin spaces of Petrov. Let be three  trail space and  be three a test 

space which are define  

                              

                            (3.11) 

                        

and,  

                                         (3.13) 

                                   (3.14) 

                                              (3.15) 

here   shows a constant stability parameter. It will be chosen as [24]; 

 
and  . 

The petrov Galerkin mixed finite element mothed for Darcy velocity and pressure. Find    and 

 such that  

    

         (3.17) 

 

ie 

     (3.18) 

           (3.19)            

The petrov GFEM for the saturation. Find   such that  

 
                                  (3.20) 

rewrite equation  

 
              

(3.21)  
 
4. Petrov Galerkin Finite Element Methods' Stability  
We demonstrated the stability of the PGFE technique, as stated in equation (3.18) and (3.19), which 
means that the problem data can be used to determine an appropriate norm for a solution. 
 
Lemma 4.1: (the stability for the pressure) 

Let  a  solution  and   is a constant and independent  then  

                                                                                  (4.1) 

Proof : From equation (3.18) , (3.19) and put  we get  

                           (4.2) 

by using Cauchy – Schwartz and   Young's-inequality, we obtain; 

                                              (4.3) 
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                                                                             (4.4) 

and, term  

 

                                              (4.5) 

Then  

(4.6) 

Where  ,  

and, the term by using Cauchy – Schwartz and   Young's-inequality, we get; 

            (4.7) 

                                                         (4.8)     

Where    ,  

From (4.6)   the stability for pressure, saturation, and velocity, in that order 
 and (4.8), we have ; 

      (4.9) 

Then  

                                                           (4.10) 

                                                                                            (4.11) 

Where      

     
Lemma 4.2: (the stability for the velocity) 

Let  a  solution and   is a constant and independent  then  

                                                                                        (4.12) 

Proof: put  in equation (3.19) we get; 

                (4.13)   

Then  

                                                                        (4.15) 

through the use of Cauchy – Schwartz and   Young's-inequality, we obtain; 

                                                        (4.16) 

                                                              (4.17) 

Let , we have ; 

                         (4.18)           

                                                            (4.19) 

Where , and . 

and, 

                                       (4.20) 

through the use of Cauchy – Schwartz and   Young's-inequality, we obtain; 

                                              (4.21) 

                                                (4.22) 

                                                  (4.23) 

Then 

 ,      (4.24) 

                    (4.25) 

We obtain;  
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                                                                                    (4.27) 

Where  

 
 
Theorem 4.1: (the stability for the velocity and the pressure) 

Let  the dual  solution  and    and  a constant and independent  ,then  

                                        (4.28) 

Proof : From equation (3.18)  and (3.19) , replacement test function with   and  , we have ; 

 
put  in above equation, we have; 

 
Then 

                        

                                                                                                           (4.32) 

                    (4.33) 

                                                               (4.34)   

 

                                 ,           (4.35) 

Where     , , 

         

                                                                         (4.36) 

and, 

                                               (4.37) 

Then,  
 

    

 

  , 

(4.39)           
 

Where , we get, 

 

                                               (4.40) 

where  

 
 
Theorem 4.2: (the stability for Saturation) 

Let  a  solution and    is a constant and independent  then 

 
Proof:  Rewrite (3.21) and put  we have,  

 
      

 (4.41)     

   we get,  

                                                             (4.42) 
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through the use of Cauchy – Schwartz and   Young's-inequality, we obtain; 

                                      ,    (4.43) 

                                           (4.45) 

Let   and we have, 

                                              (4.46) 

               (4.47) 

                         (4.48) 

Where , 

   (4.49) 

                                        (4.50) 

Where and, 

 ,   (4.51) 

                                                        (4.52) 

                 (4.53) 

 (4.54) 

and,  

           (4.55) 

                                              (4.56) 

                    ,               (4.57) 

                                                                         (4.58) 

                                                       (4.59) 

became equation (4.42), 

 

 
                          (4.60) 

 

where , )   and   , 

The integral component is multiplied by both sides of the inequality above factor   and then 

integrate from  to , we have  

                 

(4.61) 

Where  

 
CONCLUSIONS 
Conclusions and Upcoming Projects 
We have created a sequential solution technique for fluid fluxes that are miscible in porous medium using 
the Petrov Galerkin method to solve the saturation transport equation and the pressure and Darcy 
velocity equations can be solved using the Petrov Galerkin mixed FEM. the stability for pressure, 
saturation, and velocity, in that order. 
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