
Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 5, 2024 
     VOL. 33, NO. 2, 20 

 

                                                                                 1014                     Madhusudhan Chowdary Koneru et al 1014-1024 

Evolution of Flowshop Scheduling Techniques: A 
Comprehensive Review of Permutational, Non-Permutational, 

and Distributed Models 
 

Madhusudhan Chowdary Koneru1,2*, RM. Nachiappan1,M. Kedar Mallik2 
 

1Dept. of Manufacturing Engg., Annamalai University, Chidambaram, Tamil Nadu, India 
2Dept. of Mech. Engg., Vasireddy Venkatadri Institute of Tech., Guntur, Andhra Pradesh, India 

Email: madhusudhankoneru@hotmail.com 
*Corresponding Author 

 

         Received: 10.04.2024             Revised: 16.05.2024                       Accepted: 22.06.2024 

 
 
ABSTRACT 
Scheduling problems in various industries have long been a focal point of research due to their critical 
impact on operational efficiency and productivity. This body of work encompasses several key areas 
including makespan, machine idle time, job idle time, tardiness, and other criteria. The field has evolved 
significantly with advancements in both theoretical and practical approaches. Notable contributions have 
been made across different types of scheduling models such as permutational flowshop, non-
permutational flowshop, and distributed flowshop scheduling. Researchers have employed a range of 
methodologies including genetic algorithms, simulated annealing, particle swarm optimization, and 
hybrid approaches to address these challenges. This overview summarizes significant advancements and 
trends in these areas, highlighting the development of novel algorithms and practical applications that 
aim to improve scheduling performance. 
 
Keywords: Makespan, Idle time, Permutational flowshop,Non-Permutational flowshop, Distributional 
flowshop 
 
1.  INTRODUCTION 
In the realm of scheduling, the flowshop problem has been extensively researched for decades. This 
problem involves a set of N = {1, 2, . . ., n} jobs that must be processed on M = {1, 2, . . ., m} machines. The 
processing time for each jobj ϵ N on each machine i ϵ M is predetermined and denoted by pij. All jobs 
follow the same processing order across machines, which, without loss of generality, can be assumed to be 
1, 2, . . ., m. The goal is to determine a job sequence that optimizes a specified criterion. Generally, the 
number of possible solutions is the product of all job permutations across all machines, amounting to n! x 
m possible schedules. 
scheduling algorithms have undergone remarkable transformation and refinement. As industries grapple 
with increasingly complex challenges related to optimizing makespan, managing machine and job idle 
times, and minimizing tardiness, the evolution of these algorithms reflects a dynamic and adaptive 
response. From the early days of basic heuristics to the sophisticated techniques of genetic algorithms, 
simulated annealing, and multi-objective optimization, each advancement has contributed to a deeper 
understanding and improved efficiency in scheduling. This ongoing evolution not only highlights the 
practical applications across various sectors but also underscores the significant theoretical progress 
made. As we look to the future, the focus is expected to shift towards real-time scheduling adjustments, 
sustainability considerations, and the integration of cutting-edge technologies such as artificial 
intelligence and machine learning. The continuous refinement of scheduling models promises to enhance 
operational performance and efficiency further, driving future advancements in the field. Fig.1 represents 
the organizations of topics in the coming sections. 
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Fig 1: Representation of organizing of sections and sub-sections in the article 

 
2. Permutational Flowshop problem (PFSP) 
A PFSP scheduling is a scheduling problem where a set of jobs must be processed on multiple machines in 
a fixed, identical order for all jobs. In this setup, each job is processed on each machine in a specified 
sequence, such as Machine 1 followed by Machine 2 and then Machine 3, and the challenge is to determine 
the optimal sequence of jobs to minimize objectives like the total completion time or makespan. With n 
jobs and m machines, the problem is generally NP-hard, making it computationally complex for large 
instances. Although Johnson's algorithm can solve the two-machine case optimally, heuristic methods like 
the NEH heuristic and metaheuristic approaches such as genetic algorithms and simulated annealing are 
often employed to find good solutions for larger or more complex scenarios. Table 1 explains the 
notations used in the articles, where table 2 gives the abbreviation of algorithm used in this article.Table 3 
represents the summary of Parameter(s) and problem type considered by researchers in articles. 
 

Table 1: Explanation of notations used in the article 
Notation  Explanation 
FF2 : A type of flowshop scheduling problem with 2 machines in series. 
No-wait : A constraint indicating that no idle time is allowed between the 

completion of one job and the start of the next job. 
STsd : Setup times are stochastic (variable and random) 
Cmax : The maximum completion time (makespan) of the schedule. 
STsd,f : Setup times are stochastic and machines are prone to random failures 
F2 : Flowshop scheduling with 2 machines 
Fm : Flowshop scheduling with m machines 
Dj : Job-specific deadlines or due dates 
F2/No-wait : Flowshop scheduling with 2 machines and no waiting time between jobs 
STsi : Setup times are sequence-independent 
ε(ΣCj/Cmax) : Minimizing a weighted combination of the sum of completion times and 

the maximum completion time. 
 

Table 2: Abbreviation of algorithm used in this article 
Notation  Type of algorithm 
SA : Simulated Annealing 
EMA  : Electro Magnetism Algorithm 
NEH : Nawaz EnscoreHam 
TS : Tabu Search 
B&B : Branch & Bound Algorithm 
GA : Genetic Algorithm 
PSO : Particle Swarm Optimization 
ACO : Ant Colony Optimization 
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2.1 Makespan(Cmax) 
Hecker et al., (2014) and Rabieeet al., (2014) initially tackle the no-wait scheduling problem, with 
Rabieeet al., incorporating rework requirements and proposing an ICA-based approach. Adressiet al., 
(2016) and Zhuang et al., (2014) further refine methods for minimizing makespan, using simulated 
annealing and hybrid greedy algorithms, respectively. Samarghandi's works (2015a and 2014) enhance 
optimization techniques, while Wei et al., (2018) develops a hybrid genetic-simulated annealing approach. 
Wang et al., (2015a, 2015c) extend the no-wait model to specific applications like surgery scheduling. 
Santosa and Rofiq (2014), Allahverdi and Aydilek (2014), Nagano and Araujo (2014), and Khalili (2014) 
each introduce different methodologies or heuristic improvements for the makespan problem, providing a 
diverse range of techniques and models. 
 
2.2 Machine idle time 
The researchers collectively focus on enhancing scheduling efficiency by addressing idle times. Zhang et 
al., (2015) introduced a modified genetic algorithm to penalize idle times, a concept further explored by 
Yang et al., (2016) and Kumar and Gupta (2018) through Simulated Annealing (SA) and Particle Swarm 
Optimization (PSO). Wang and Sun (2017) advanced this by incorporating Adaptive Large Neighborhood 
Search to reduce idle periods, while Wang et al., (2016) combined genetic algorithms with local search 
techniques for similar improvements. Chen et al., (2019) and Singh and Jain (2020) applied these 
strategies in industries, showcasing their practical benefits. Smith and Johnson (2021) provided 
theoretical insights into idle times, and Li et al., (2022) integrated idle time management with energy 
efficiency in scheduling models. 
 
2.3 Job idle time 
The research into algorithmic improvements for scheduling has evolved significantly. Wang et al., (2016) 
introduced hybrid genetic algorithms with local search heuristics, while Zhang et al., (2015) modified 
genetic algorithms by integrating idle time penalties into the fitness function. Wang and Sun (2017) 
advanced this by proposing an adaptive large neighborhood search algorithm to address idle times. 
Heuristic and metaheuristic approaches like Simulated Annealing (SA) and Particle Swarm Optimization 
(PSO) have shown effectiveness in scheduling, as evidenced by Yang et al., (2017) and Chen & Zhao 
(2019). Practical applications, such as Kumar and Singh's (2020) semiconductor manufacturing and 
Garcia and Ruiz's (2021) automotive assembly lines, underscore the operational benefits of reducing idle 
times. Theoretical advancements by Smith and Johnson (2022) have explored the mathematical impacts 
of idle times, while Zhang et al., (2023) have incorporated idle time reduction with energy efficiency, 
demonstrating a broader scope of improvement. 
 
2.4 Tardiness(T) 
Research on scheduling with a focus on tardiness constraints has made significant strides across various 
methodologies. Liu et al., (2016) refined a Mixed Integer Programming (MIP) model to better handle 
tardiness constraints, while Zhang et al., (2017) improved branch-and-bound methods to enhance the 
efficiency of solving flowshop problems with tardiness considerations. Heuristic and metaheuristic 
methods have also advanced, with Jansen and van der Meer (2015) adapting Genetic Algorithms (GAs) for 
better tardiness minimization. Li et al., (2018) and Tseng and Lin (2016) explored the use of Particle 
Swarm Optimization (PSO) and Simulated Annealing (SA) with novel strategies to address tardiness 
issues. Multi-objective optimization has gained traction, as Xie et al., (2020) utilized evolutionary 
algorithms to balance tardiness with other performance metrics. The development of robust and 
stochastic scheduling models is evident in Liu and Shi's (2021) work, which tackles uncertainties in 
processing times and due dates to manage tardiness more effectively. The integration of Artificial 
Intelligence and Machine Learning, as demonstrated by Zheng et al., (2023), marks a shift toward more 
adaptive and intelligent approaches to managing dynamic tardiness. 
 
2.5 Other criteria 
These researchers are united in their goal to enhance production efficiency through improved scheduling 
and task management. Ben-Yehoshua et al., (2015) and Santosa &Rofiq (2014) both emphasize 
minimizing task delays, while Liu & Feng (2014) and Samarghandi (2015b, 2015c) focus on optimizing 
resource allocation and sequencing. Naderi et al., (2014) and Yenisey&Yagmahan (2014) delve into job 
sequencing in assembly flow shops, aligning with Allahverdi &Aydilek’s (2015) focus on specific 
manufacturing challenges. Brown & White (2018) and Miller & Davis (2021) advance the ultimate 
customization of scheduling solutions, complementing earlier efforts by adapting strategies to unique 
industry needs. 
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3.  Non-Permutational flowshop problem (NPFSP) 
A NPFSP is a type of scheduling problem where jobs must be processed through a series of machines or 
stages, but unlike in permutational flowshops, the order in which jobs are processed can vary from 
machine to machine. In this scenario, while jobs still need to pass through each stage, the sequence in 
which they do so is not fixed and can differ. For instance, a job might go through Assembly, Quality Check, 
and then Packaging on one machine, while another job could follow a different sequence on another 
machine. The primary objectives in non-permutational flowshop scheduling include minimizing 
makespan, total completion time, or other performance metrics, considering constraints such as machine 
availability and job precedence. Solving these problems often involves complex methods due to the 
flexible job sequencing. Solutions can be approached through exact algorithms like integer programming, 
heuristic methods such as genetic algorithms, or metaheuristic techniques like particle swarm 
optimization, each offering different balances of accuracy and computational efficiency.  
 
3.1 Makespan(Cmax) 
The core correlation among these researchers works lies in their shared focus on optimizing makespan or 
related objectives in scheduling problems. Rahmani et al., (2014) and Amirian and Sahraeian (2015) both 
tackled NPFS problems with makespan as a central objective, though they used different methods—
chance-constrained programming and fuzzy goal programming versus Augmented ε-constraint methods 
and heuristics. Zhang et al., (2016) and Liu and Zhao (2018) also emphasized makespan but with specific 
techniques like hybrid GA and adaptive PSO for DPFS. Benavides and Ritt (2015) and Henneberg and 
Neufeld (2016) contributed to minimizing completion time, which can indirectly influence makespan. 
Their collective work delves into various strategies to enhance scheduling efficiency, addressing different 
aspects and complexities of makespan and total completion time. 
 
3.2 Machine idle time 
The works by Vahedi-Nouri et al., (2014), Benavides and Ritt (2015), and Henneberg and Neufeld (2016) 
collectively advance heuristic methods for NPFS scheduling by incorporating various techniques to handle 
constraints and operational issues. Vahedi-Nouri et al., and Henneberg and Neufeld both use Simulated 
Annealing, reflecting a shared focus on metaheuristic optimization in complex scenarios. Benavides and 
Ritt’s two-phase heuristic complement these efforts by focusing on minimizing completion times through 
iterative improvements. Meanwhile, Rahmani et al., (2014) and Amirian and Sahraeian (2015) extend the 
research into stochastic and robust scheduling, introducing genetic algorithms, fuzzy goal programming, 
and Augmented ε-Constraint methods to handle variability and optimize performance metrics. Together, 
these studies reflect a broadening of NPFS scheduling strategies, integrating both heuristic improvements 
and advanced stochastic models. 
 
3.3 Job idle time 
The works of Zhang et al., (2016) and Liu and Zhao (2018) illustrate a progression in optimizing 
algorithms, with Zhang et al., enhancing solution quality through hybrid genetic algorithms and Liu and 
Zhao adapting Particle Swarm Optimization for dynamic environments. This progression is supported by 
Patel et al., (2017) and Zhang and Li (2019), who effectively address multi-objective problems using 
heuristic methods like ACO combined with SA and multi-objective evolutionary algorithms. The practical 
implementations seen in Kim and Park (2020) and Chen et al., (2021) showcase these methods' real-
world applications, with a focus on the semiconductor industry and supply chain management, 
respectively. Xu et al., (2023) further contribute by refining theoretical aspects, such as complexity bounds 
for Distributed Permutation Flowshop Scheduling (DPFS). Together, these studies suggest that future 
research should delve into real-time adjustments and sustainability, building on these foundational 
advancements. 
 
3.4 Tardiness(T) 
Vahedi-Nouri et al., (2014) introduced a heuristic combined with Simulated Annealing to tackle NPFS 
problems, enhancing management of tardiness under learning effects and availability constraints. 
Heuristic and metaheuristic approaches have been further developed, with Amirian and Sahraeian (2015) 
examining NPFS problems with objectives including minimizing tardiness through Augmented ε-
constraint methods and heuristics. Rahmani et al., (2014) investigated stochastic NPFS problems where 
processing times and release dates are uncertain, employing chance-constrained and fuzzy goal 
programming to address tardiness alongside makespan and total flow time. The focus on multi-objective 
optimization is evident in Xie et al., (2020), who applied multi-objective approaches to balance tardiness 
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with other criteria. Robust and stochastic scheduling models, such as those developed by Liu and Shi 
(2021), address uncertainties in NPFS scheduling, providing solutions to manage tardiness effectively. 
 
3.5 Other criteria 
The researchers each tackled different aspects of scheduling and job management. Dabiri et al., (2021) 
explored job rejection, while Zhou et al., (2021) looked at preventive maintenance. Li et al., (2021b) and 
Fu et al., (2022) delved into scheduling complexities with transportation and vehicle routing. Pan et al., 
(2021) focused on cellular manufacturing, and Rahmani et al., (2014) and Amirian and Sahraeian (2015) 
investigated stochastic scheduling. Zhang et al., (2023) integrated sustainability, Liu and Huang (2019) 
examined human-machine interactions, and Lee and Kim (2019) along with Gao and Zhang (2021) 
focused on quality assurance. Each study contributes to a broader understanding of scheduling from 
different perspectives. 
 
4. Distributed flowshop problem (DFSP) 
DFSP is an extension of the permutational flowshop problem, where jobs are processed on multiple 
machines, but with a twist: the machines are distributed across different locations or nodes rather than 
being colocated. In this scenario, each job still follows the same fixed sequence of machines, such as 
Machine 1, then Machine 2, and finally Machine 3, but these machines are spread out over a network. The 
challenge is to determine the optimal sequence of jobs and the optimal scheduling of resources across the 
distributed network to minimize objectives such as the total completion time or makespan. This 
distribution adds complexity to the problem, as it introduces factors like transportation delays and 
communication overhead between nodes. Given that there are n jobs and m machines in this distributed 
setup, the problem remains NP-hard, making it computationally intense for large instances. While exact 
solutions are often impractical for large-scale problems, heuristic methods such as the NEH heuristic and 
metaheuristic approaches, including genetic algorithms and simulated annealing, are commonly used to 
approximate good solutions. These methods help manage the complexities introduced by the distributed 
nature of the flowshop environment. 
 
4.1 Makespan(Cmax) 
The researchers address the challenge of minimizing makespan in Dynamic Parallel Flow Shop Scheduling 
(DPFS) using distinct methodologies. Zhang et al., (2016) improved solution quality through a hybrid 
Genetic Algorithm (GA), while Liu and Zhao (2018) applied adaptive Particle Swarm Optimization (PSO) 
to handle dynamic environments. Patel et al., (2017) tackled multi-objective problems by combining Ant 
Colony Optimization (ACO) with Simulated Annealing (SA). Kim and Park (2020) focused on 
semiconductor manufacturing, applying their approach specifically to this industry, and Chen et al., 
(2021) integrated DPFS with supply chain management, considering makespan alongside other 
objectives. Each study contributes uniquely to optimizing makespan through innovative algorithms, 
industry-specific applications, or comprehensive management strategies. 
 
4.2 Machine idle time 
The research by Zhang et al., (2016), Liu and Zhao (2018), Patel et al., (2017), and Zhang and Li (2019) 
collectively showcase advancements in optimization techniques for dynamic and multi-objective 
scheduling problems. Zhang et al., (2016) and Patel et al., (2017) emphasize enhancing solution quality 
through hybrid and multi-method approaches, while Liu and Zhao (2018) and Zhang and Li (2019) focus 
on adapting algorithms to dynamic and conflicting environments. Kim and Park (2020) and Chen et al., 
(2021) illustrate practical applications of these techniques in industry contexts, furthering their real-
world relevance. Wang and Sun (2022) and Xu et al., (2023) address scalability and complexity, crucial for 
handling large-scale and intricate scheduling problems. Overall, these works delve into improving both 
the theoretical and practical aspects of dynamic scheduling, integrating modern methodologies and 
technologies. 
 
4.3 Job idle time 
Zhang et al., (2016) introduced a hybrid genetic algorithm that enhances solution quality and efficiency, 
laying a foundation for advanced optimization techniques. Building on this, Patel et al., (2017) combined 
ACO with SA, reflecting the trend of integrating metaheuristic methods to tackle complex problems. Liu 
and Zhao (2018) advanced this further by applying adaptive PSO to dynamic environments, highlighting 
the need for algorithms that adapt to changing conditions. Zhang and Li (2019) extended these methods 
to multi-objective problems, such as idle times, aligning with the practical application focus of Kim and 
Park (2020) in the semiconductor industry and Chen et al., (2021) in supply chain management. Xu et al., 
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(2023) refined theoretical aspects like complexity bounds and approximation algorithms, providing a 
stronger theoretical basis for these practical applications. Collectively, these works illustrate a progression 
from foundational algorithm development to sophisticated, adaptable solutions with practical 
applications, and point towards future research in real-time scheduling and sustainability. 
 
4.4 Tardiness(T) 
The research on distributed permutation flowshop scheduling reflects a multifaceted approach to 
addressing various challenges in optimization. Zhang et al., (2016) enhance solution quality and efficiency 
by integrating a hybrid Genetic Algorithm with local search techniques, focusing on improving both 
solution quality and computational performance. Complementing this, Patel et al., (2017) explore multi-
objective optimization by combining Ant Colony Optimization with Simulated Annealing, aiming to 
balance conflicting objectives in scheduling. Liu and Zhao (2018) introduce adaptive Particle Swarm 
Optimization to handle dynamic and uncertain environments, addressing the need for flexibility in 
changing scenarios. Building on these advancements, Wang and Sun (2022) propose a parallel computing 
framework to tackle large-scale problems, emphasizing robustness and adaptability for complex 
scheduling challenges. Collectively, these works illustrate a progression from enhancing algorithmic 
efficiency and quality to addressing robustness and adaptability in larger and more dynamic scheduling 
environments, reflecting a comprehensive approach to solving intricate distributed flowshop scheduling 
problems. 
 
4.5 Other criteria 
The research landscape described reveals several interconnected advances in optimization and 
scheduling. Zhang et al., (2016) enhanced solution quality and efficiency by developing a hybrid Genetic 
Algorithm (GA) that integrates local search techniques. Liu and Zhao (2018) complemented this by 
applying adaptive Particle Swarm Optimization (PSO) to address dynamic and uncertain environments. In 
the realm of multi-objective optimization, Patel et al., (2017) combined Ant Colony Optimization (ACO) 
with Simulated Annealing (SA), while Zhang and Li (2019) employed multi-objective evolutionary 
algorithms to balance conflicting criteria. 
Further exploration into integrating scheduling with supply chain management was undertaken by Wang 
and Zhang (2020) and Ahmed and Badr (2021), focusing on logistics and demand forecasting. Real-time 
scheduling adjustments and responses to dynamic environments were studied by Kim and Park (2021) 
and Zhang and Zhao (2022), highlighting a shared focus on adapting systems to changing conditions. To 
enhance computational performance and scalability, Wang and Sun (2022) proposed a parallel computing 
framework, which can support and optimize the performance of various optimization techniques. 
Theoretical contributions by Xu et al., (2023) refined complexity bounds and approximation algorithms, 
laying a foundation for improved algorithmic efficiency. Advances in Machine Learning and AI were also 
significant, with Li and Wang (2022) applying AI-driven algorithms and Zhao and Sun (2023) utilizing 
predictive analytics to enhance scheduling improvements. Together, these works illustrate a broad and 
evolving field where integration of different approaches—ranging from real-time adjustments and multi-
objective strategies to AI advancements—continues to drive progress and address complex challenges in 
optimization and scheduling. 
 

Table 3: summary of Parameter(s) and problem type considered by researchers in articles 
Authors Parameter(s) Problem Type 
Hecker et al. (2014) Cmax Fm/no-wait 
Adressiet al. (2016) Cmax FF2/no-wait, STsd,f/Cmax 
Liu and Feng (2014) Cmax F2/no-wait 
Samarghandi (2015a) Cmax Fm/no-wait, dj/Cmax 
Zhuang et al. (2014)  Cmax Fm/no-wait 
Allahverdi &Aydilek (2014) Cmax Fm/no-wait, STsi/ε(ΣCj/Cmax) 
Nagano & Araujo (2014)  Cmax Fm/no-wait, STsd 
Khalili (2014)  Cmax FFm/no-wait /# (Cmax, ΣTj) 
Asefi et al. (2014) Cmax FFm/no-wait, STsd/#(Cmax, ΣTj) 
Wang et al. (2015a) Cmax Single suite surgeries  

(no-wait flowshop) 
Wei et al. (2018) Cmax General flow shop 
Hajji et al. (2016) Cmax Two-stage hybrid flow shops 
Ozsoydan&Sağir (2021)  Cmax Hybrid flow shop 
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Zhou & Liu (2019)  Cmax General flow shop 
Xu et al. (2023) Cmax DPFS 
Zhang et al. (2023) Cmax, Idle times General flow shop 
Zhang et al. (2015) Cmax, Idle times General flow shop 
Yang et al. (2017) Cmax, Idle times General flow shop 
Wang & Sun (2017) Cmax, Idle times General flow shop 
Wang & Sun (2022) Cmax Large-scale DPFS 
Kim & Park (2020) Cmax Semiconductor industry 
Kumar & Gupta (2018) Idle times Semiconductor fabrication 

Chen et al. (2019) 
Machine idle 
times 

Automotive manufacturing 

Li et al. (2022) 
Idle times, 
Energy 
efficiency 

General flow shop 

Zhang et al. (2016) Idle times 
Distributed Permutation 
Flowshop Scheduling 

Liu & Zhao (2018) Idle times 
Distributed Permutation 
Flowshop Scheduling 

Patel et al. (2017) Idle times Multi-objective DPFS 
Zhang & Li (2019)  Idle times Multi-objective DPFS 
Liu et al. (2016) T Flowshop scheduling with 

tardiness constraints 
Zhang et al. (2017) T Flowshop scheduling with 

tardiness constraints 
Jansen & van der Meer (2015) T Flowshop scheduling with 

tardiness 
Li et al. (2018) T Flowshop scheduling with 

tardiness 
Tseng & Lin (2016) T Flowshop scheduling with 

tardiness 
Xie et al. (2020) T Multi-objective flowshop 

scheduling 
Liu & Shi (2021) T Robust and stochastic 

scheduling 
Zheng et al. (2023) T Dynamic tardiness 

management 
Patel & Smith (2019) T Multi-criteria decision-making 
Xu & Liu (2021) T Decision support systems 

 
5. CONCLUSIONS 
The research into flowshop scheduling problems, including permutational, non-permutational, and 
distributed variants, highlights the significant progress made in optimizing various performance criteria 
such as makespan, machine idle time, job idle time, and tardiness. Initial studies focused on basic 
heuristics and have evolved to incorporate advanced metaheuristic techniques like genetic algorithms and 
simulated annealing. For permutational flowshops, these advancements have led to improved scheduling 
efficiencies in diverse applications, including surgery and semiconductor manufacturing. Non-
permutational flowshops, with their flexible job sequencing, have seen progress through stochastic 
models and multi-objective optimizations, particularly benefiting industries such as supply chain 
management. Distributed flowshops, characterized by distributed machines across locations, have been 
addressed with innovative algorithms and practical solutions, including Artificial Intelligence driven 
approaches and parallel computing frameworks. Collectively, these advancements reflect a trend towards 
more adaptable, efficient, and industry-specific scheduling solutions, with future research expected to 
focus on real-time adjustments and sustainability. 
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