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ABSTRACT 
In recent decades, the integration of vendors and buyers in managing inventory has become vital. The 
perception of inventory costs cannot always be classified as purely static or dynamic. When encountering 
uncertainty, it is important to consider the fuzzy nature of costs in certain situations. Hence, in this article, 
we treat the cost components as triangular and trapezoidal fuzzy numbers. Defuzzification is performed 
using the signed distance method. Employing an algorithmic procedure, the system cost is minimized by 
determining the optimal values for delivery lot size and total number of deliveries. The illustration of the 
model includes both a numerical example and a sensitivity analysis. 
 
Keywords: Inventory costs, Deterioration, Fuzzy numbers, Signed distance method. 
 
INTRODUCTION 
The inventory model for perishable items in fuzzy environments has not received much attention from 
researchers. Our study examines these phenomena in the context of the economic order quantity model, 
with a particular emphasis on the fuzzy cost component. The deterioration of inventory items is an 
essential consideration for researchers in this field that cannot be ignored. It can be categorized as decay, 
obsolescence, manufacturing defects, and more. Deteriorating items include vegetables, medicines, milk, 
oils, and so on.  Several researchers have delved into the study of inventory models for deteriorating 
items in the past few decades.Ghare and Schrader [10] developed a inventory model that incorporates 
direct spoilage and exponential deterioration. The work of Covert and Philip [7] further developed Ghare 
and Schrader’s [10] findings by employing the Weibull and Gamma distributions. The deterioration rate 
was modeled by Philip [18] using a three-parameter Weibull distribution. Mishra [17] devised an 
inventory model that incorporates both variable deterioration rates and a finite production rate. Shah 
[24] proposed a model for determining lot sizes that considers order levels, exponential and Weibull 
deterioration distributions, and backordering. Raafat [21] provided a comprehensive survey of the 
literature on inventory models addressing deteriorating items. In this field, researchers such as Goyal and 
Giri[12], Skouri and Papachristos [25], Skouri et al. [26], Sarkar [23], Taleizadeh [2], and Geethaand 
Udayakumar [8] have developed inventory models for deteriorating products by incorporating different 
deterioration rates. 
Managing supply chain management requires the coordination of manufacturing and logistics among 
various decision-making entities. Numerous coordination mechanisms have been proposed in the supply 
chain literature. Goyal [11] introduced a joint optimization approach to minimize the total cost functions 
for both the buyer and the vendor. Banerjee [4] developed a combined economic lot size model suited to 
scenarios where a vendor supplies exact quantities to meet a purchaser's orders. Viswanathan and 
Piplani [29] investigated the use of common replenishment epochs for coordinating inventory across the 
supply chain.  The production distribution inventory model developed by Yan et al. [30] considers 
constant deterioration. Several researchers, including Yang and Wee [31], Ben-Daya and Hariga [5], 
Abdul-Jalbar et al. [1], Cardenas-Barron et al. [6], Uthayakumar and Priyan [27], and Taleizadeh et al. [3], 
explored integrated inventory models under different assumptions. 
The early literature on inventory models typically used crisp values to represent costs, despite the 
imprecise nature of real-world inventory costs. Probability-based approaches may not fully account for 
all uncertainties that can occur in an inventory system. The modeling of inventory systems incorporates 
fuzzy set theory to handle uncertainties that cannot be adequately accounted for using probability theory. 
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The origins of fuzzy set theory can be traced back to Zadeh [34]. The application of fuzzy set theory in 
inventory models has been explored by researchers such as Ishii and Konno [14], Yao and Lee [32], and 
Vijayan and Kumaran [28]. Sadjadi et al. [22] introduced a model for pricing and marketing that 
incorporates fuzzy parameters. Liu [15] utilized the extension principle method to propose a solution for 
the integrated production and marketing planning problem in fuzzy environments. Mahata and Goswami 
[16] employed trapezoidal and triangular fuzzy numbers in their inventory models, which address 
imperfect quality and shortage backordering in fuzzy environments. Priyan and Uthayakumar [20] 
devised an integrated production distribution inventory system for deteriorating products involving 
fuzzy deterioration with variable set up cost. Hemalatha and Annadurai [13] developed an integrated 
production-distribution model that incorporates logarithmic investments and fuzzy costs. Priyan et al. 
[19] developed a two-echelon supply chain model considering fuzzy deterioration and carbon 
emissions.Geetha and Prabha [9] developed an inventory model for postponement strategy with fuzzy 
costs.  
The primary contribution of this article is to extend the work of Yan et al. [30] by incorporating the fuzzy 
nature of inventory costs and demonstrating that total inventory costs in a fuzzy environment fluctuates 
from that of the crisp cost. This article seeks to present a more comprehensive integrated production-
distribution inventory model by incorporating fuzzy cost components. The article is organized as follows: 
Section 1 includes the introduction. The article’s preliminary concepts are outlined in Section 2. Section 3 
provides notations and assumptions. In Section 4, the model formulation is discussed, while Section 5 
explains the fuzzification and defuzzification of the cost components. Numerical and sensitivity analysis is 
presented in Section 6 to illustrate the model. Section 7 provides the inferences derived from our 
research work. At last, Section 8 summarizes the conclusions of the study. 
 
2. Preliminaries 
Below are all the relevant definitions of fuzzy sets for treating fuzzy total cost in inventory. 
Definition 1. A fuzzy set  Kn

  defined on the set ℝ, is said to be a fuzzy number if it satisfies the 
following conditions: 

(i) Kn
 is convex. 

(ii) There exist n0 ∈  ℝ  such that μKn 
 n0 = 1, (i.e., Kn

  is normal). 

(iii) μKn 
is piecewise continuous. 

(iv) μKn 
 α must be bounded closed interval for α ∈ [0,1]. 

Definition 2. The α- cut of the fuzzy number K  is represented represented by the crisp set 
K (α) = {x: μK 

 x ≥ α}, with αbeing a value between 0 and 1.K (α)is a closed interval in the set of real 

numbers, represented by [KL
  α , KR

 (α)], and its left and right limits are referred to as the α −cuts of   K.  
 
Definition 3. A fuzzy number K  is classified as a trapezoidal fuzzy number if it is completely 
characterized by four crisp values (k1, k2, k3, k4) such that k1 < k2 < k3 < k4. Its membership function, 
which represents a trapezoidal shape, is defined as follows: 

 μK 
 x =

 
 
 

 
 

x−k1

k2−k1
,   k1 ≤ x < k2

1,          k2 ≤ x ≤ k_3  
k4−x

k4−k3
, k3 < 𝑥 ≤ k4

0,           otherwise

  

Here, the fuzzy number K  is characterized by its lower limit k1, lower mode k2, upper mode k3, and higher 
limit k4 . The support of the fuzzy number is the interval[k1, k4], which represents the range of all values 
that are at least fairly possible. The core of the fuzzy number, where the most likely values lie, is 
represented by the interval  [k2, k3]. The fuzzy number K  is said to have a penumbra consisting of the 
intervals [k1, k4]and [k1 , k4]. 
Furthermore, a trapezoidal fuzzy number can be shown as  K =   K − δ1 , K − δ2, K + δ3, K + δ4 where  
δi , (i = 1,2,3,4) are positive values, subject to the conditionsK > δ1 > δ2 and δ3 < δ4.  
Definition 4.A fuzzy number K  is classified as a triangular fuzzy number if it is completely 
characterized by four crisp values (k1, k2, k3) such that k1 < k2 < k3. Its membership function is given by: 

μK 
 x =

 
 
 

 
 

x − k1

k2 − k1

,   k1 ≤ x ≤ k2

k3 − x

k3 − k2

, k2 < 𝑥 ≤ k3

0,           otherwise
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Here, k1 , k2 and k3 correspond to the lower limit, mode, and upper limit of the fuzzy number, respectively. 
The support of the fuzzy number, denoted by the interval[k1, k3], signifies the plausible range of values 
for K . 
With the conditions K > δ1 >  0and δ2 > 0, a triangular fuzzy number may alternatively be expressed as 
K =   K − δ1 , K , K + δ2 ,   where  δi , (i = 1,2) are positive values. 
 
Definition 5. The Signed Distance Method 
For anya1 ∈   ℝ  , the signed distance from a1 to 0 is defined as d(a1, 0)  =  |a1|. If a1 >  0, then the distance 
from a1 to 0 is simply d(a1, 0)  =  a1. Conversely, if a1 <  0, the distance is given by −d(a1, 0)  =  −a1. Let 
U represent the collection of fuzzy numbers over ℝ. 
If K ∈  U is a fuzzy number, then the signed distances of the left endpoint KL (α) and the right endpoint 
KR (α) from 0 are given by d(KL(α), 0)  =  KL (α) and d(KR (α), 0) = KR (α), respectively. Therefore, the 
distance from the interval [KL (α), KR (α)] to the origin 0 can be computed as:d  KL α , KR α  , 0 =
1

2
[d(KL(α), 0)  +  d(KR (α), 0)]  =

1

2
 [KL (α)  +  KR (α)]. 

For each α ∈  [0, 1], there exists a one-to-one correspondence between the crisp interval [KL (α), KR (α)] 
and the level α  fuzzy interval [KL (α), KR (α); α] . Consequently, the signed distance from 
[KL (α), KR (α); α] to 0  is given by: 

d([KL (α), KR (α); α], 0)  =
1

2
[KL (α)  +  KR (α)]. 

Since K ∈  U,  the values KL(α)  and KR (α)  exist and are integrable for α ∈  [0, 1] . By applying the 
decomposition theorem [33], the fuzzy number K  can be expressed as: 

K =  [KL(α), KR (α); α]

0≤α ≤  1

 . 

For any fuzzy numberK ∈  U, the signed distance from K  to 0  is defined as: 

d K , 0  =
1

2
 [KL(α)  +  KR (α)] dα

1

0
  .    (1) 

Furthermore, the linearity property of the distance operator d holds (as shown in Vijayan and 

Kumaran[28]): for n  fuzzy numbers A i  (where (i =  1, 2, … , n) ) and real constants bi  (where (i =
 1, 2, … , n), it follows that: 

d  biK i , 0 n
i=1    =  bid(K i , 0 )n

i=1    (2) 

 
3. Notations and Assumptions 
A mathematical model has been developed by employing notations and assumptions that resemble those 
of  Yan et al. [30]. 
3.1. Notations 
n1  Number of shipments in each production batch, 
q1  Lot size for deliveries (units), 
θdr  Deterioration rate, 
Cs  Setup cost for manufacturing a production batch, 
P Production rate (unit/unit time), 
𝐴𝑜𝑐  Ordering costs incurred by the buyer, 
𝐷𝑐  Constant demand (units/unit time), 
𝐹𝑐  Constant transportation cost per delivery (\$/delivery), 
𝑉 The unit variable cost for order handling and receiving (\$/unit), 
𝐶𝑑  Cost of deterioration per unit (\$/unit), 
ℎ𝑠𝑐  Cost of holding inventory for the supplier (\$/unit/unit time), 
ℎ𝑏𝑐  Cost of holding inventory for the buyer(\$/unit/unit time), 
𝑆𝑏𝑢𝑦  Area below the inventory level curve for the buyer, 

𝑆𝑠𝑢𝑝  Area below the inventory level curve for the supplier, 

𝑇 Length of inventory cycle, 
𝑇1  Production time for the supplier, 
𝑇2  Non-production time for the supplier, 
𝑇3  Interval of time between successive deliveries made to the buyer, 
𝑇𝐶1  The average total cost incurred by the buyer and supplier in a crisp system, 

𝑇𝐶1
  The average total cost incurred by the buyer and supplier in a fuzzy system, 

3.2. Assumptions 
i. The supplier’s production rate and the buyer’s demand rate are constant. 
ii. The cost associated with deteriorating items remains constant. 
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iii. The rate of production exceeds the rate of demand. 
iv. Shortages are not permitted. 
v. Transportation and order handling costs are to be paid by the buyer.  
vi. The deterioration of the item is always proportional to the existing inventory. 
 
4. Model Formulation 
In the proposed scenario, the buyer’s warehouse receives a fixed quantity of products from the supplier at 
regular intervals. Each delivery arrives precisely when the previous stock has been depleted, ensuring no 
delay. Figure 1 and Figure 2 illustrate the inventory levels over time for both the buyer and the supplier. 
There are two components that make up the total cycle time T: 𝑇1 , which is the time for production by the 
supplier, and 𝑇2 , which is the time for non-production. Let 𝑇3  denote the time elapsed between two 
consecutive deliveries. The decision variables in this model consist of the delivery lot-size 𝑞1  and the 
number of deliveries 𝑛. The average total cost includes fixed setup cost, holding cost for supplier and 
buyer, deterioration cost for supplier and buyer, ordering cost, and transportation and handling cost. It is 
expressed as  

𝑇𝐶1 𝑞1 , 𝑛1 =   
𝐷𝑐

𝑛1𝑞1

+
𝜃𝑑𝑟
2𝑛1

  𝐴𝑜𝑐 + 𝐶𝑠 + 𝑛1𝐹𝑐 + 𝑉𝑛1𝑞1  

                                                            + 
𝑞1

2
  ℎ𝑏𝑐 + 𝐶𝑑𝜃𝑑𝑟  + (ℎ𝑏𝑐 + 𝐶𝑑𝜃𝑑𝑟 )  

 2−𝑛1 𝐷𝑐

𝑃
+ 𝑛1 − 1    (3) 

 

 
 
5. Fuzzification and Defuzzification of the cost components 
The cost components outlined below are fuzzified with the use of triangular and trapezoidal fuzzy 
numbers:  Ordering cost 𝐴𝑜𝑐 , deterioration cost 𝐶𝑑 , buyer's holding cost ℎ𝑏𝑐 , supplier's holding cost ℎ𝑠𝑐 , 
set up cost 𝐶𝑠 . These costs are defuzzified using signed distance method. 
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5.1.Obtaining Fuzzified cost components using Trapezoidal fuzzy number 
The cost components such as ordering cost 𝐴𝑜𝑐 , deterioration cost 𝐶𝑑 , buyer's holding cost ℎ𝑏𝑐 , supplier's 
holding cost ℎ𝑠𝑐 , set up cost 𝐶𝑠  are fuzzified using trapezoidal fuzzy number.  

𝐴𝑜𝑐
 =  𝐴𝑜𝑐 − 𝛾1 , 𝐴𝑜𝑐 − 𝛾2, 𝐴𝑜𝑐 + 𝛾3 , 𝐴𝑜𝑐 + 𝛾4  

𝐶𝑠 = (𝐶s − 𝛾5 , 𝐶𝑠 − 𝛾6, 𝐶𝑠 + 𝛾7, 𝐶𝑠 + 𝛾8) 
𝐶𝑑 = (𝐶𝑑 − 𝛾9, 𝐶𝑑 − 𝛾10 , 𝐶𝑑 + 𝛾11 , 𝐶𝑑 + 𝛾12)                                      (4) 

ℎ𝑏𝑐 = (ℎ𝑏𝑐 − 𝛾13 , ℎ𝑏𝑐 − 𝛾14 , ℎ𝑏𝑐 + 𝛾15 , ℎ𝑏𝑐 + 𝛾16) 

ℎ𝑠𝑐 = (ℎ𝑠𝑐 − 𝛾17 , ℎ𝑠𝑐 − 𝛾18 , ℎ𝑠𝑐 + 𝛾19 , ℎ𝑠𝑐 + 𝛾20) 
The arbitrary positive numbers 𝛾𝑙 , where 𝑙 =  1,2,3, … ,20, must adhere to the following conditions:𝐴𝑜𝑐 >
𝛾1 > 𝛾2, 𝛾3 < 𝛾4 ;         𝐶𝑠 > 𝛾5 > 𝛾6, 𝛾7 < 𝛾8;         𝐶𝑑 > 𝛾9 > 𝛾10 , 𝛾11 < 𝛾12 ; 
ℎ𝑏𝑐 > 𝛾13 > 𝛾14 , 𝛾15 < 𝛾14 ;       ℎ𝑠𝑐 > 𝛾17 > 𝛾18 , 𝛾19 < 𝛾20 . 

In equation (5), the costs 𝐴𝑜𝑐 , 𝐶𝑠 , 𝐶𝑑 , ℎ𝑠𝑐  and ℎ𝑏𝑐  from equation (3) are fuzzified as 𝐴𝑜𝑐
 ,𝐶𝑠 , 𝐶𝑑 ,ℎ𝑏𝑐 and ℎ𝑠𝑐 . 

The average total cost for both the buyer and supplier is expressed in a fuzzy sense as  

𝑇𝐶1
  𝑞1, 𝑛1 =   

𝐷𝑐

𝑛1𝑞1

+
𝜃𝑑𝑟
2𝑛1

  𝐴 𝑜𝑐 + 𝐶 𝑠 + 𝑛1𝐹𝑐 + 𝑉𝑛1𝑞1  

                                                         + 
𝑞1

2
  ℎ 𝑏𝑐 + 𝐶 𝑑𝑟𝜃𝑑𝑟  + (ℎ 𝑠𝑐 + 𝐶 𝑑𝜃𝑑𝑟 )  

 2−𝑛1 𝐷𝑐

𝑃
+ 𝑛1 − 1      (5) 

 
5.2. Defuzzification 

Below are the left and right limits of 𝛼 cuts for𝐴 𝑜𝑐 , 𝐶 𝑠 , 𝐶 𝑑𝑟 , ℎ 𝑏𝑐and ℎ 𝑠𝑐 . 
𝐴 𝑜𝑐𝐿  𝛼 =  𝐴𝑜𝑐 − 𝛾1 +  𝛾1 − 𝛾2 𝛼 > 0, 𝐴 𝑜𝑐𝑅  𝛼 =  𝐴𝑜𝑐 − 𝛾4 +  𝛾4 − 𝛾3 𝛼 > 0 

 𝐶𝑠𝐿  𝛼 = 𝐶𝑠 − 𝛾5 +  𝛾5 − 𝛾6 𝛼 > 0,                         𝐶𝑠𝑅 (𝛼) = 𝐶𝑠 − γ8 +  𝛾8 − 𝛾7 𝛼 > 0   

𝐶𝑑𝐿  𝛼 = 𝐶𝑑 − 𝛾9 +  𝛾9 − 𝛾10 𝛼 > 0,                      𝐶𝑑𝑅 (𝛼) = 𝐶𝑑 − 𝛾12 +  𝛾12 − 𝛾11 𝛼 > 0 

ℎ 𝑏𝑐𝐿  𝛼 = ℎ𝑏𝑐 − 𝛾13 +  𝛾13 − 𝛾14 𝛼 > 0,              ℎ 𝑏𝑐𝑅 (𝛼) = ℎ𝑏𝑐 − 𝛾16 +  𝛾16 − 𝛾15 𝛼 > 0 

ℎ 𝑠𝑐𝐿 𝛼 = ℎ𝑠𝑐 − 𝛾17 +  𝛾17 − 𝛾18 𝛼 > 0,                ℎ 𝑠𝑐𝑅 (𝛼) = ℎ𝑠𝑐 − 𝛾20 +  𝛾20 − 𝛾19 𝛼 > 0   (6) 
The left and right limits of 𝛼- cuts ,(0 ≤ 𝛼 ≤ 1), for the fuzzified cost function are determined by the 
following equations 

𝑇𝐶1
  𝑞1, 𝑛1 𝐿(𝛼) =   

𝐷𝑐

𝑛1𝑞1

+
𝜃𝑑𝑟
2𝑛1

  𝐴 𝑜𝑐𝐿 (𝛼) + 𝐶 𝑠𝐿(𝛼) + 𝑛1𝐹𝑐 + 𝑉𝑛1𝑞1  

                                                  + 
𝑞1

2
  ℎ 𝑏𝑐𝐿 + 𝐶 𝑑𝐿𝑟𝜃𝑑𝑟  + (ℎ 𝑠𝑐𝐿 + 𝐶 𝑑𝐿𝜃𝑑𝑟 )  

 2−𝑛1 𝐷𝑐

𝑃
+ 𝑛1 − 1      (7) 

and 

𝑇𝐶1
  𝑞1, 𝑛1 𝑅(𝛼) =   

𝐷𝑐

𝑛1𝑞1

+
𝜃𝑑𝑟
2𝑛1

  𝐴 𝑜𝑐𝑅 (𝛼) + 𝐶 𝑠𝑅(𝛼) + 𝑛1𝐹𝑐 + 𝑉𝑛1𝑞1  

                                                  + 
𝑞1

2
  ℎ 𝑏𝑐𝑅 + 𝐶 𝑑𝑅𝑟𝜃𝑑𝑟  + (ℎ 𝑠𝑐𝑅 + 𝐶 𝑑𝑅𝜃𝑑𝑟 )  

 2−𝑛1 𝐷𝑐

𝑃
+ 𝑛1 − 1    (8) 

Using eqns. (1), (2), (7) and (8), the defuzzified value of 𝑇𝐶 1(𝑞1 , 𝑛1) is represented as 𝑑 𝑇𝐶 1 𝑞1 , 𝑛1 , 0  , 

denoted as 𝐽1(𝑞1, 𝑛1), and is given by 

𝐽1 𝑞1 , 𝑛1 =   
𝐷𝑐

𝑛1𝑞1

+
𝜃𝑑𝑟
2𝑛1

  𝐻1 + 𝐻2 + 𝑛1𝐹𝑐 + 𝑉𝑛1𝑞1  

                                                         + 
𝑞1

2
  𝐻4 + 𝐻3𝜃𝑑𝑟  + (𝐻5 + 𝐻3𝜃𝑑𝑟 )  

 2−𝑛1 𝐷𝑐

𝑃
+ 𝑛1 − 1       (9) 

where  𝐻1 = 𝐴𝑜𝑐 +
1

4
 𝛾4 + 𝛾3 − 𝛾2 − 𝛾1 > 0  

   𝐻2 = 𝐶𝑆 +
1

4
 𝛾8 + 𝛾7 − 𝛾6 − 𝛾5 > 0 

   𝐻3 = 𝐶𝑑 +
1

4
 𝛾12 + 𝛾11 − 𝛾10 − 𝛾9 > 0 

  𝐻4 = ℎ𝑏𝑐 +
1

4
 𝛾16 + 𝛾15 − 𝛾14 − 𝛾13 > 0 

𝐻5 = ℎ𝑠𝑐 +
1

4
 𝛾20 + 𝛾19 − 𝛾18 − 𝛾17 > 0. 

5.3. Solution Procedure 
This subsection illustrates that 𝐽1(𝑞1, 𝑛1) is convex with respect to both 𝑞1  and 𝑛1 along with an algorithm 
to ascertain the optimal values. 
 
Property 1. For fixed 𝑞1 ,𝐽1(𝑞1, 𝑛1) is convex in 𝑛1. 
Proof :Calculating the first and second-order partial derivatives of 𝐽1(𝑞1 , 𝑛1)with respect to 𝑛1 yields the 
following expressions 

𝜕𝐽1 𝑞1 , 𝑛1 

𝜕𝑛1

=  −
𝐷𝑐

𝑛1
2𝑞1

−
𝜃𝑑𝑟

2𝑛1
2  𝐻1 + 𝐻2 +

𝑞1

2
 1 −

𝐷𝑐

𝑃
 (𝐻5 + 𝐻3𝜃𝑑𝑟 ) 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 767                                                                     M.Prabha et al 762-775 

and 
𝜕2𝐽1 𝑞1 ,𝑛1 

𝜕𝑛1
2 =  

2𝐷𝑐

𝑛1
3𝑞1

+
𝜃𝑑𝑟

𝑛1
3   𝐻1 + 𝐻2 > 0 

Therefore, for a fixed 𝑞1 , it follows that 𝐽1(𝑞1 , 𝑛1) is convex with respect to 𝑛1. 
 
Property 2. For fixed 𝑛1 ,𝐽1(𝑞1 , 𝑛1) is convex in 𝑞1 . 
Proof :Calculating the first and second-order partial derivatives of 𝐽1(𝑞1 , 𝑛1)with respect to 𝑞1  yields the 
following expressions 

𝜕𝐽1 𝑞1 , 𝑛1 

𝜕𝑞1

= −
𝐷𝑐

𝑛1𝑞1
2
 𝐻1 + 𝐻2 + 𝑛1𝐹𝑐 +

𝑉𝜃𝑑𝑟
2

+
1

2
  𝐻4 + 𝐻3𝜃𝑑𝑟  +  𝐻5 + 𝐻3𝜃𝑑𝑟   

 2 − 𝑛1 𝐷𝑐

𝑃
+ 𝑛1 − 1   .  

and 
𝜕2𝐽1 𝑞1 ,𝑛1 

𝜕𝑞1
2 =

2𝐷𝑐

𝑛1𝑞1
3  𝐻1 + 𝐻2 + 𝑛1𝐹𝑐 > 0. 

Therefore, for a fixed 𝑛1, it follows that 𝐽1 𝑞1, 𝑛1  is convex with respect to 𝑞1. 
From properties 1 and 2, it follows that the expression in equation (9) is a convex function of 𝑞1and 𝑛1. As 
a result, the first order partial derivative of 𝐽1 𝑞1, 𝑛1  with respect to 𝑞1  is set to zero to find the unique 
minimum value. This results in the following  
𝜕𝐽1 𝑞1 ,𝑛1 

𝜕𝑞1
= 0                                                                    (10) 

Solving equation (10), we obtain 

𝑞11
∗ =  

2𝐷𝑐  𝐻1+𝐻2+𝑛1𝐹𝑐 

𝑛1 𝑉θ𝑑𝑟 +  𝐻4+𝐻3𝜃𝑑𝑟  + 𝐻5+𝐻3𝜃𝑑𝑟   
 2−𝑛1 𝐷𝑐

𝑃
+𝑛1−1   

 

1

2

              (11) 

To determine the optimal values of 𝑞11
∗ and 𝑛1

∗, we apply the following algorithm 
 
Algorithm 1. 
Step 1:  Initialize 𝑛1 = 1. 
Step 2:  Using  this  value of  𝑛1compute 𝑞11  from equation (11). 
Step 3:  Calculate𝐽1 𝑞1 , 𝑛1 from equation (9). 
Step 4:  Increase 𝑛1 by 1 and repeat steps 2 and 3. 
Step 5:  If 𝐽2 𝑞1, 𝑛1 ≤ 𝐽2 𝑞1 , 𝑛1 − 1  ,go back to Step 4 to continue iterating; otherwise, skip to  
 step 6. 
Step 6: If  𝑞11

∗ , 𝑛1
∗ =  𝑞11

∗ 𝑛1 − 1∗ , then 𝐽2(𝑞11
∗  , 𝑛1

∗)  represents the minimum estimate of the fuzzy cost 
function. 

5.4.Obtaining Fuzzifiedcost components using Triangular fuzzy number 
The  cost components 𝐴𝑜𝑐 , 𝐶𝑠 , 𝐶𝑑 , ℎ𝑠𝑐  and ℎ𝑏𝑐  are assumed to be triangular fuzzy numbers as 

defined below 
𝐴𝑜𝑐
 =  𝐴𝑜𝑐 − 𝛽1 ,  𝐴𝑜𝑐  , 𝐴𝑜𝑐 + 𝛽2 ,    0 < 𝛽1 < 𝐴𝑜𝑐 , 0 < 𝛽2 

𝐶𝑠 = (𝐶𝑠 − 𝛽3, 𝐶𝑠 , 𝐶𝑠 + 𝛽4   0 < 𝛽3 < 𝐶𝑠 , 0 < 𝛽4 
𝐶𝑑 = (𝐶𝑑 − 𝛽5 , 𝐶𝑑 , 𝐶𝑑 + 𝛽6) 0 < 𝛽5 < 𝐶𝑑 , 0 < 𝛽6       (12) 

ℎ𝑏𝑐 = (ℎ𝑏𝑐 − 𝛽7 , ℎ𝑏𝑐  , ℎ𝑏𝑐 + 𝛽8)  0 < 𝛽7 < ℎ𝑏𝑐 , 0 < 𝛽8 

ℎ𝑠𝑐 = (ℎ𝑠𝑐 − 𝛽9, ℎ𝑠𝑐  , ℎ𝑠𝑐 + 𝛽20)  0 < 𝛽9 < ℎ𝑠𝑐 , 0 < 𝛽10  
5.5 Defuzzification 

 Below are the left and right limits of 𝛼 cuts for 𝐴𝑜𝑐
 ,𝐶𝑠 , 𝐶𝑑 ,ℎ𝑏𝑐  and ℎ𝑠𝑐  

𝐴 𝑜𝑐𝐿  𝛼 =  𝐴𝑜𝑐 − 𝛽1 + 𝛼𝛽1 > 0, 𝐴 𝑜𝑐𝑅  𝛼 =  𝐴𝑜𝑐 + 𝛽2 − 𝛼𝛽2 > 0 
 𝐶𝑠𝐿  𝛼 = 𝐶𝑠 − 𝛽3 + 𝛼𝛽3 > 0,                       𝐶𝑠𝑅  𝛼 = 𝐶𝑠 + 𝛽4 − 𝛼𝛽4 > 0 

𝐶𝑑𝐿  𝛼 = 𝐶𝑑 − 𝛽5 + 𝛼𝛽5 > 0,                      𝐶𝑑𝑅  𝛼 = 𝐶𝑑 + 𝛽6 − 𝛼𝛽6 > 0  (13) 

ℎ 𝑏𝑐𝐿  𝛼 = ℎ𝑏𝑐 − 𝛽7 + 𝛼𝛽7 > 0,                  ℎ 𝑏𝑐𝑅  𝛼 = ℎ𝑏𝑐 + 𝛽8 − 𝛼𝛽8 > 0 

ℎ 𝑠𝑐𝐿 𝛼 = ℎ𝑠𝑐 − 𝛽9 + 𝛼𝛽9 > 0,                    ℎ 𝑠𝑐𝑅 𝛼 = ℎ𝑠𝑐 + 𝛽10 − 𝛼𝛽10 > 0 
 
The left and right limits of the 𝛼 – cuts of the fuzzified cost function are given by equations (7) and (8). By 

using eqns. (1), (2), (7) and (8), the defuzzified value of 𝑇𝐶 1(𝑞1 , 𝑛1) is represented as 𝑑 𝑇𝐶 1 𝑞1, 𝑛1 , 0  , 

denoted as 𝐽2(𝑞1, 𝑛1), and is expressed as follows  

𝐽2 𝑞1 , 𝑛1 =   
𝐷𝑐

𝑛1𝑞1

+
𝜃𝑑𝑟
2𝑛1

  𝐺1 + 𝐺2 + 𝑛1𝐹𝑐 + 𝑉𝑛1𝑞1  

                                                         + 
𝑞1

2
  𝐺4 + 𝐺3𝜃𝑑𝑟  + (𝐺5 + 𝐺3𝜃𝑑𝑟 )  

 2−𝑛1 𝐷𝑐

𝑃
+ 𝑛1 − 1       (14) 

where  𝐺1 = 𝐴𝑜𝑐 +
1

4
 𝛽2 − 𝛽1 > 0  
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   𝐺2 = 𝐶𝑆 +
1

4
 𝛽4 − 𝛽3 > 0 

   𝐺3 = 𝐶𝑑 +
1

4
 𝛽6 − 𝛽5 > 0 

  𝐺4 = ℎ𝑏𝑐 +
1

4
 𝛽8 − 𝛽7 > 0 

𝐺5 = ℎ𝑠𝑐 +
1

4
 𝛽10 − 𝛽9 > 0. 

5.6. Solution Procedure  
This subsection illustrates that 𝐽2(𝑞1, 𝑛1) is convex with respect to both 𝑞1  and 𝑛1 along with an algorithm 
to ascertain the optimal values. 
 
Property 3. For fixed 𝑞1 ,𝐽2(𝑞1, 𝑛1) is convex in 𝑛1. 
Proof :Calculating the first and second-order partial derivatives of 𝐽2(𝑞1 , 𝑛1)with respect to 𝑛1 yields the 
following expressions 

𝜕𝐽2 𝑞1, 𝑛1 

𝜕𝑛1

=  −
𝐷𝑐

𝑛1
2𝑞1

−
𝜃𝑑𝑟

2𝑛1
2  𝐺1 + 𝐺2 +

𝑞1

2
 1 −

𝐷𝑐

𝑃
 (𝐺5 + 𝐺3𝜃𝑑𝑟 ) 

and 
𝜕2𝐽2 𝑞1 ,𝑛1 

𝜕𝑛1
2 =  

2𝐷𝑐

𝑛1
3𝑞1

+
𝜃𝑑𝑟

𝑛1
3   𝐺1 + 𝐺2 > 0 

Therefore, for a fixed 𝑞1 , it follows that 𝐽2(𝑞1 , 𝑛1) is convex with respect to 𝑛1. 
 
Property 4. For fixed 𝑛1 ,𝐽2(𝑞1 , 𝑛1) is convex in 𝑞1 . 
Proof :Calculating the first and second-order partial derivatives of 𝐽2(𝑞1 , 𝑛1)with respect to 𝑞1  yields the 
following expressions 
𝜕𝐽2 𝑞1, 𝑛1 

𝜕𝑞1

= −
𝐷𝑐

𝑛1𝑞1
2
 𝐺1 + 𝐺2 + 𝑛1𝐹𝑐 +

𝑉𝜃𝑑𝑟
2

+
1

2
  𝐺4 + 𝐺3𝜃𝑑𝑟  +  𝐺5 + 𝐺3𝜃𝑑𝑟   

 2 − 𝑛1 𝐷𝑐

𝑃
+ 𝑛1 − 1   .  

and 
𝜕2𝐽2 𝑞1 ,𝑛1 

𝜕𝑞1
2 =

2𝐷𝑐

𝑛1𝑞1
3  𝐺1 + 𝐺2 + 𝑛1𝐹𝑐 > 0. 

Therefore, for a fixed 𝑛1, it follows that 𝐽2 𝑞1 , 𝑛1  is convex with respect to 𝑞1 . 
From properties 3 and 4, it follows that the expression in equation (14) is a convex function of 𝑞1and 𝑛1. 
As a result, the first order partial derivative of 𝐽2 𝑞1, 𝑛1  with respect to 𝑞1  is set to zero to find the unique 
minimum value. This results in the following  
𝜕𝐽2 𝑞1 ,𝑛1 

𝜕𝑞1
= 0                                        (15) 

Solving equation (10), we obtain 

𝑞12
∗ =  

2𝐷𝑐  𝐺1+𝐺2+𝑛1𝐹𝑐 

𝑛1 𝑉𝜃𝑑𝑟 +  𝐺4+𝐺3𝜃𝑑𝑟  + 𝐺5+𝐺3𝜃𝑑𝑟   
 2−𝑛1 𝐷𝑐

𝑃
+𝑛1−1   

 

1

2

              (16) 

To determine the optimal values of 𝑞12
∗ and 𝑛1

∗, we apply the following algorithm 
 
Algorithm 2. 
Step 1:  Initialize 𝑛1 = 1. 
Step 2:  Using  this  value of  𝑛1compute 𝑞12  from equation (16). 
Step 3:  Calculate𝐽2(𝑞1 , 𝑛1) from equation (14). 
Step 4:  Increase 𝑛1 by 1 and repeat steps 2 and 3. 
Step 5:  If 𝐽2 𝑞1, 𝑛1 ≤ 𝐽2 𝑞1 , 𝑛1 − 1  ,go back to Step 4 to continue iterating; otherwise, skip to  step 6. 
Step 6: If  𝑞12

∗ , 𝑛1
∗ =  𝑞12

∗ 𝑛1 − 1∗ , then 𝐽2(𝑞12
∗  , 𝑛∗)  represents the minimum estimate of the fuzzy cost 

function. 
6. Numerical example and Sensitivity Analysis 
The impact of the level of fuzziness in the cost components on the decision variables is assessed through 
extensive numerical analysis. The solution to the given example is obtained using MATLAB software. Let 
us examine the two-echelon supply chain inventory system with the following parameters: 
𝐷𝑐=4800units/year, P =19200 units/year, 𝐹𝑐  = $50/delivery and V=$1/unit, In addition, the crisp costs 
𝐴𝑜𝑐  =$25 per order, 𝐶𝑠=$600 per batch, 𝐶𝑑  =$50/unit,  
ℎ𝑠𝑐=$8/unit/year and ℎ𝑏𝑐  =$10/unit/year. 
To fuzzify the cost parameters 𝐴𝑜𝑐 , 𝐶𝑠 , 𝐶𝑑 , ℎ𝑠𝑐 , ℎ𝑏𝑐  trapezoidal and triangular fuzzy numbers are utilized. 
The signed distance method is then applied to determine the defuzzified values. In 

Tables(1)and(2),𝐴𝑜𝑐
 ,𝐶𝑠 , 𝐶 𝑑 , ℎ 𝑠𝑐  𝑎𝑛𝑑  ℎ 𝑏𝑐along with 𝑑 𝐴 𝑜𝑐 , 0  , 𝑑 𝐶 𝑠 , 0  , 𝑑(𝐶 𝑑 , 0 ), 𝑑(ℎ 𝑠𝑐  , 0 ) 

and𝑑(ℎ 𝑏𝑐 , 0 ) represent the corresponding percentage differences between the defuzzified value and crisp 
values and the corresponding defuzzified value respectively. When the degree of fuzziness in all the cost 
parameter is '0' it corresponds to the crisp case. The third row in Tables (3) – (4) pertains to the crisp 
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case and displays the percentage changes in the defuzzified values of the costs. Section 5 presents the 
proposed algorithm that computes the optimal order quantity 𝑞1

∗, total number of shipments 𝑛1
∗ , and fuzzy 

costs for each set of fuzzy numbers. Tables (3) and (4) provide a summary of these results. By using 
trapezoidal and triangular fuzzy numbers to represent cost components with varying levels of fuzziness, 
Figures 3 and 4 illustrate the impact of the deterioration rate on total cost. 
 
7. Managerial implications  
As shown in Tables (3) and (4), an increase in the deterioration rate results in a decrease in both the 
optimal order quantity and cycle time, while the total cost increases. Figures 3 and 4further illustrate that 
as the deterioration rate rises, the total cost consistently increases, while the number of deliveries 
remains stable. This indicates that suppliers should implement strategies to reduce deterioration rates, as 
doing so could substantially reduce total costs. Additionally, this finding suggests that buyers may benefit 
from ordering smaller quantities as deterioration rates increase to minimize losses due to spoilage. 
In practical situations, various inventory costs are subject to change. Therefore, it is reasonable to account 
for these costs in a fuzzy environment when designing an inventory model. The analysis indicates that the 
optimal solutions in the fuzzy environment show slight variations compared to those in the crisp 
environment (refer to Tables (3) and (4)). The optimal order quantity 𝑞1 , total expected cost 𝑇𝐶1, and 
cycle time 𝑇 are notably affected by the degree of fuzziness in cost components. Thus, both vendors and 
buyers may benefit from incorporating flexibility when managing ordering costs, setup costs, 
deterioration costs, and holding costs from a managerial perspective. 
 
8. CONCLUSION 
An important aspect of a supply chain is the integration between vendor and buyer. Inventory models are 
extensively used in logistics and supply chain to minimize costs. Controlling inventory and associated 
costs in a supply chain is a hot topic of research. To be more realistic we have considered the inventory 
costs in fuzzy environment that is ordering cost, deterioration cost, holding cost for the buyer, holding 
cost for the supplier, setup cost are treated as fuzzy values. The fuzziness in the cost components is 
represented by fuzzy numbers, namely trapezoidal and triangular fuzzy numbers. The signed distance 
method is used to perform defuzzification. Our research results shows that the total cost of  the inventory 
system under fuzzy environment is less than that of the crisp environment. This shows that when there is 
auncertainity in the parameters of the integrated model it is necessary to consider fuzzy inventory costs. 
The comparison between the total costs(fuzzy and crisp values) is made and the percentage change in 
cost components is also given with the aid of numerical analysis. Additionally, potential areas for future 
research in this field involve investigating extensions of this work, such as multi-echelon supply chains. 
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Table 1. Fuzzification of the cost components (Trapezoidal Fuzzy Number) 

 
 
 
 
 
 
 
 
 
 
Table 2. Fuzzification of the cost components (Triangular Fuzzy Number) 

𝐴𝑜𝑐
  𝑑 𝐴 𝑜𝑐 , 0   𝐴𝑜𝑐

  𝐶𝑠  𝑑 𝐶 𝑠 , 0   𝐶𝑠  𝐶𝑑  𝑑(𝐶 𝑑 , 0 ) 𝐶 𝑑  

(3,25,27) 20 -20 (70,400,410) 320 -20 (2,25,28) 20 -20 

(7,25,31) 22 -12 (140,400,420) 340 -15 (6,25,32) 22 -12 

(19,25,43) 28 +12 (390,400,650) 460 +15 (18,25,44) 28 +12 

(22,25,48) 30 +20 (380,400,740) 480 +20 (22,25,48) 30 +20 

(20,25,70) 35 +40 (380,400,900) 520 +30 (18,25,77) 35 +40 

 
 
 
 
 
 
 
 
 

 
Table 3: Impact of the deterioration rate on the integrated system with fuzzy costs using trapezoidal 

fuzzy numbers 
𝜃𝑑𝑟   𝐴 𝑜𝑐  𝐶𝑠  𝐶 𝑑  ℎ 𝑠𝑐  ℎ 𝑏𝑐  𝑞1

∗ 𝑛1
∗  𝑇∗ 𝐽1(𝑞1 , 𝑛1) 𝐽1 (𝑞1 , 𝑛1) 

0.1 -36 -30 -40 -35 -45 318.1 2 0.1318 10336 15.5 

-16 -20 -20 -10 -30 224.0 2 0.1457 11329 07.4 

0 0 0 0 0 316.6 2 0.1372 12242 00.0 

+16 +20 +20 +25 +30 206.3 3 0.1342 14406 17.6 

+36 +30 +40 +40 +60 198.9 3 0.1294 15467 26.3 

+80 +50 +60 +60 +80 203.3 3 0.1323 16608 35.6 

0.2 -36 -30 -40 -35 -45 247.6 2 0.1071 11975 09.0 

-16 -20 -20 -10 -30 191.3 2 0.0828 12487 05.1 

0 0 0 0 0 282.7 2 0.1222 13166 00.0 

+16 +20 +20 +25 +30 177.5 3 0.1153 16007 21.5 

+36 +30 +40 +40 +60 172.4 3 0.1120 17145 30.2 

+80 +50 +60 +60 +80 176.3 3 0.1145 18455 40.1 

𝐴𝑜𝑐
  𝑑 𝐴 𝑜𝑐 , 0   𝐴𝑜𝑐

  𝐶𝑠  𝑑 𝐶 𝑠 , 0   𝐶𝑠  𝐶𝑑  𝑑(𝐶 𝑑 , 0 ) 𝐶 𝑑  

(2,4,28,30) 16 -36 (100,150,415,455) 280 -30 (5,20,55,60) 35 -40 

(5,7,32,40) 21 -16 (120,200,455,505) 320 -20 (5,30,55,70) 40 -20 

(11,20,30,55) 29 +16 (220,290,630,780) 480 +20 (25,45,70,100) 60 +20
06 (10,17,30,75) 34 +36 (280,320,680,800) 520 +30 (20,40,80,120) 65 +40 

(15,20,42,103) 45 +80 (320,360,790,930) 600 +50 (25,50,90,130) 70 +60 

ℎ𝑏𝑐  𝑑 ℎ 𝑏𝑐 , 0   ℎ𝑏𝑐  ℎ𝑠𝑐  d ℎ 𝑠𝑐 , 0   ℎ𝑠𝑐  

(1,2,11,12) 6.5 -35 (.3,1,8.1,8.2) 4.4 -45 

(3,6,12,15) 9 -10 (.8,5,8.1,8.5) 5.6 -30 

(2,8,15,25) 12.5 +25 (6.6,7,10,18) 10.4 +30 

(5,8,13,30) 14 +40 (5,7.2,15,24) 12.8 +60 

(5,7,22,30) 16 +60 (6,7.5,16,25) 13.4 +80 

ℎ𝑏𝑐  𝑑 ℎ 𝑏𝑐 , 0   ℎ𝑏𝑐  ℎ𝑠𝑐  𝑑 ℎ 𝑠𝑐 , 0   ℎ𝑠𝑐  

(1,10,12) 8.3 -17 (1,8,10) 6.8 -15 

(2,10,12) 8.5 -15 (3,8,13) 7.5 -6 

(4,10,13) 9.3 -7 (5,8,15) 8.5 +6 

(6,10,16) 10.5 +5 (6,8,18) 9.8 +23 

(7,10,18) 11.3 +13 (6,8,19) 10.5 +32 
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0.3 -36 -30 -40 -35 -45 247.6 2 0.1026 12288 12.2 

-16 -20 -20 -10 -30 191.3 2 0.1101 13497 3.6 

0 0 0 0 0 282.7 2 0.1112 14002 00.0 

+16 +20 +20 +25 +30 177.5 3 0.1026 17411 24.3 

+36 +30 +40 +40 +60 172.4 3 0.1001 18626 33.0 

+80 +50 +60 +60 +80 176.3 3 0.1024 20086 43.4 

0.4 
 
 
 
 

-36 -30 -40 -35 -45 215.2 2 0.0927 13101 11.3 

-16 -20 -20 -10 -30 154.0 2 0.0998 14405 02.4 

0 0 0 0 0 238.6 2 0.1027 14772 00.0 

+16 +20 +20 +25 +30 144.0 3 0.0933 18678 24.4 

+36 +30 +40 +40 +60 140.9 3 0.0913 19966 35.1 

+80 +50 +60 +60 +80 144.2 3 0.0935 21563 45.9 

0.5 -36 -30 -40 -35 -45 198.1 2 0.0852 13843 10.6 

-16 -20 -20 -10 -30 142.1 2 0.0920 15237 01.6 

0 0 0 0 0 223.1 2 0.0958 15488 00.0 

+16 +20 +20 +25 +30 133.0 3 0.0861 19841 28.1 

+36 +30 +40 +40 +60 150.5 3 0.0974 21201 36.8 

+80 +50 +60 +60 +80 133.5 3 0.0864 22922 47.9 

0.6 -36 -30 -40 -35 -45 184.5 2 0.0792 14531 10.0 

-16 -20 -20 -10 -30 179.1 2 0.0770 15989 01.0 

0 0 0 0 0 210.3 2 0.0902 16162 00.0 

+16 +20 +20 +25 +30 124.3 3 0.0804 20923 29.4 

+36 +30 +40 +40 +60 122.1 3 0.0790 22351 38.2 

+80 +50 +60 +60 +80 124.9 3 0.0808 24189 49.6 

0.7 -36 -30 -40 -35 -45 173.3 2 0.0744 15173 09.6 

-16 -20 -20 -10 -30 168.6 2 0.0724 16704 00.5 

0 0 0 0 0 199.4 2 0.0854 16799 00.0 

+16 +20 +20 +25 +30 117.0 3 0.0756 21939 30.5 

+36 +30 +40 +40 +60 115.1 3 0.0744 23432 39.4 

+80 +50 +60 +60 +80 117.8 3 0.0761 25381 51.0 

Cntd. 
 
θdr   A oc  Cs

  C d  h sc  h bc  q1
∗  n1

∗  T∗ J1(q1 , n1) J1
 (q1 , n1) 

0.8 -36 -30 -40 -35 -45 164.0 2 0.0703 15784 09.3 

-16 -20 -20 -10 -30 159.8 2 0.0685 17380 00.1 

0 0 0 0 0 190.1 2 0.0813 17406 00.0 

+16 +20 +20 +25 +30 110.9 3 0.0716 22899 31.5 

+36 +30 +40 +40 +60 109.2 3 0.0705 24455 40.5 

+80 +50 +60 +60 +80 111.8 3 0.0722 26508 52.2 

0.9 -36 -30 -40 -35 -45 156.0 2 0.0668 16362 09.0 

-16 -20 -20 -10 -30 152.2 2 0.0652 18022 00.2 

0 0 0 0 0 182.0 2 0.0777 17987 00.0 

+16 +20 +20 +25 +30 105.7 3 0.0682 23812 32.4 

+36 +30 +40 +40 +60 104.1 3 0.0672 25429 41.4 

+80 +50 +60 +60 +80 106.6 3 0.0688 27582 53.3 
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Table 4: Impact of the deterioration rate on the integrated system with fuzzy costs using  triangular fuzzy 
numbers 

θdr   A oc  Cs
  C d  h sc  h bc  q1

∗  n1
∗  T∗ J2(q1 , n1) J2

 (q1 , n1) 

0.1 -20 -20 -20 -15 -17 324.6 2 0.1406 10845 11.4 

-12 -15 -12 -6 -15 321.9 2 0.1395 11212 08.4 

0 0 0 0 0 316.6 2 0.1372 12242 00.0 

+12 +15 +12 +6 +7 339.2 2 0.1469 12587 02.8 

+20 +20 +20 +23 +5 326.0 2 0.1412 13222 08.0 

+40 +30 +40 +32 +13 232.0 3 0.1509 13929 13.7 

0.2 -20 -20 -20 -15 -17 294.7 2 0.1273 11489 12.7 

-12 -15 -12 -6 -15 291.5 2 0.1259 11912 09.5 

0 0 0 0 0 282.7 2 0.1222 13166 00.0 

+12 +15 +12 +6 +7 304.3 2 0.1314 13516 02.6 

+20 +20 +20 +23 +5 211.9 3 0.1376 14171 07.6 

+40 +30 +40 +32 +13 208.1 3 0.1351 15012 14.0 

0.3 -20 -20 -20 -15 -17 271.7 2 0.1171 12080 13.7 

-12 -15 -12 -6 -15 268.4 2 0.1157 12553 10.3 

0 0 0 0 0 257.9 2 0.1112 14002 00.0 

+12 +15 +12 +6 +7 201.1 3 0.1303 14359 02.5 

+20 +20 +20 +23 +5 194.6 3 0.1261 15032 07.3 

+40 +30 +40 +32 +13 190.3 3 0.1233 15994 14.2 

0.4 -20 -20 -20 -15 -17 253.4 2 0.1090 12629 14.0 

-12 -15 -12 -6 -15 250.0 2 0.1075 13147 11.0 

0 0 0 0 0 238.6 2 0.1027 14772 00.0 

+12 +15 +12 +6 +7 186.6 3 0.1207 15128 02.4 

+20 +20 +20 +23 +5 180.9 3 0.1171 15829 07.1 

+40 +30 +40 +32 +13 176.4 3 0.1142 16900 14.4 

Cntd.
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θdr  

 A oc  Cs
  C d  h sc  h bc  q1

∗  n1
∗  T∗ J2(q1 , n1) J2

 (q1 , n1) 

0.5 -20 -20 -20 -15 -17 238.4 2 0.1023 13143 15.2 

-12 -15 -12 -6 -15 234.9 2 0.1008 13703 11.5 

0 0 0 0 0 223.1 2 0.0958 15488 00.0 

+12 +15 +12 +6 +7 174.8 3 0.1129 15845 02.3 

+20 +20 +20 +23 +5 169.8 3 0.1097 16574 07.0 

+40 +30 +40 +32 +13 165.2 3 0.1068 17744 14.5 

0.6 -20 -20 -20 -15 -17 225.7 2 0.0967 13630 15.6 

-12 -15 -12 -6 -15 222.3 2 0.0953 14229 11.9 

0 0 0 0 0 210.3 2 0.0902 16162 00.0 

+12 +15 +12 +6 +7 165.0 3 0.1065 16520 02.2 

+20 +20 +20 +23 +5 160.4 3 0.1035 17277 06.8 

+40 +30 +40 +32 +13 155.8 3 0.1006 18539 14.7 

0.7 -20 -20 -20 -15 -17 214.9 2 0.9019 14092 16.1 

-12 -15 -12 -6 -15 211.5 2 0.0905 14728 12.3 

0 0 0 0 0 199.4 2 0.0854 16799 00.0 

+12 +15 +12 +6 +7 156.7 3 0.1016 17160 02.1 

+20 +20 +20 +23 +5 152.5 3 0.0983 17943 06.8 

+40 +30 +40 +32 +13 147.9 3 0.0954 19292 14.8 

0.8 -20 -20 -20 -15 -17 205.5 2 0.0878 14534 16.5 

-12 -15 -12 -6 -15 202.1 2 0.0864 15205 12.6 

0 0 0 0 0 190.1 2 0.0813 17406 00.0 

+12 +15 +12 +6 +7 149.5 3 0.0962 17770 02.0 

+20 +20 +20 +23 +5 145.7 3 0.0938 18579 06.7 

+40 +30 +40 +32 +13 141.1 3 0.0909 20009 14.9 

0.9 -20 -20 -20 -15 -17 197.2 2 0.0841 14958 16.8 

-12 -15 -12 -6 -15 193.9 2 0.0827 15662 12.9 

0 0 0 0 0 182.0 2 0.0777 17987 00.0 

+12 +15 +12 +6 +7 143.2 3 0.0921 18353 02.0 

+20 +20 +20 +23 +5 139.6 3 0.0898 19188 06.6 

+40 +30 +40 +32 +13 135.2 3 0.0870 20695 15.0 
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