Automorphism Graph of the Cartesian product of Cyclic Graph of Order³

Ameer Qassim Majdi¹, Hayder Hussan .Jaddoa², Falah Mahdi Atshan³

^{1,3}The General Directorate of Education in Al- Najaf Al-Ashraf, Al- Najaf Al-Ashraf, Iraq, Email: ameermath@gmail.com , falahm.alameri@student.uokufa.du.iq
² The General Directorate of Education in Babylon, Iraq, Email: haider9111973@gmail.com

Received: 22.07.2024 Revised: 15.08.2024 Accepted: 09.09.202	4
--	---

ABSTRACT

In this paper we introduce the computing the automorphism graph of Cartesian product of cyclic graph of order three its isomorphic to $\operatorname{Aut}(\Gamma \boxdot \Gamma) \cong (D_6 \times D_6) \rtimes C_2$.

Keywords: automorphism, Cartesian, cyclic

1. INTRODUCTION AND PRELIMINARY

Suppose that A graph $\Gamma = (V, E)$ is a set of vertices, V, so as set of edges, E. The set of all vertices is denoted by V(Γ) and the set of all edges is denoted by E(Γ)[1]. It is well known for any two vertices is connected in graph is edge and denoted by {a, b}. For the following example we can computing the set of all vertices and edges,

 $V(\Gamma) = \{0, 1, 2, 3, 4, 5, 6\},\$

 $\mathsf{E}(\Gamma) = \{\{0,1\},\{0,5\},\{0,6\},\{1,7\},\{1,2\},\{2,8\},\{2,3\},\{3,9\},\{3,4\},\{4,10\},\{4,5\},\{5,11\},$

$$\{6,10\}, \{6,8\}, \{7,6\}, \{7,9\}, \{8,10\}, \{9,11\}, \{1,7\}, \{1,2\}\}$$

Let Γ be a finite graph [2], [3], the automorphism graph is define the isomorphism from a graph G to itself and denoted by Aut(Γ), the automorphism graph of a graph Γ , is a set whose elements are automorphism $\sigma: \Gamma \to \Gamma$, and where the group [4]multiplication is composition of automorphism. [5]In other words, its group structure is obtained as a subgroup of Sym(G). the group of all permutations on G. Thus, an automorphism ρ of graph Γ is a structure-preserving permutation ρ_V on V(Γ) along with a (consistent) permutation ρ_F on E(Γ)We may write $\rho = (\rho_V, \rho_E)$.[5], [6]

It is well known, for any permutation we can write it by the following:

$$\rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$$

which maps 1 to 3, 2 to 4, and so on, has the disjoint cycle form

$$\mathbf{p} = \begin{pmatrix} 1 & 3 & 3 \\ 3 & 5 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 0 \\ 4 & 6 & 2 \end{pmatrix}$$

From above example $\Gamma = C_7$ we can computing the automorphim graph and we will present the $Aut(C_7) \cong D_{14}$ is a dihedral group of order 14, the Dihedral group denoted by D_{2n} is a finite group of order 2n and generate by two elements a and b. [3], [7]

Where the element a of order n and the element b have order 2, the representation of the group is define by :

 $D_{2n}=\langle a,b|a^n=b^2=e|bab=a^{-1}\rangle$ The automorphism Aut($\Gamma(C_3)$), the homomorphism graph is define by:

$$\rho: V(\Gamma(C_3)) \to V(\Gamma(C_3))$$

$$\rho_1(V(\Gamma(C_7))): \begin{cases} 1 \to 1 \\ 2 \to 2 = (1)(2)(3) = \lambda_1, \\ 3 \to 3 \end{cases}$$

$$\rho_2(V(\Gamma(C_7))): \begin{cases} 1 \to 2 \\ 2 \to 3 = (123) = \lambda_2, \\ 3 \to 1 \\ 2 \to 1 = (132) = \lambda_3, \\ 3 \to 2 \end{cases}$$

The above elements of rotation of degree $\frac{2\pi}{3}$, now, by reflexive elements we obtain on the following:

$$\begin{split} \rho_4(V(\Gamma(C_7))) &: \begin{cases} 1 \to 1 \\ 2 \to 3 = (1)(23) = \mu_1, \\ 3 \to 2 \\ 1 \to 3 \\ 2 \to 2 = (2)(13) = \mu_2, \\ 3 \to 1 \\ \rho_4(V(\Gamma(C_7))) &: \begin{cases} 1 \to 2 \\ 2 \to 1 = (12)(3) = \mu_3, \\ 3 \to 3 \end{cases} \end{split}$$

For structural representation of any a finite groups, we can from using the Cayley tables. A Cayley table lists all the elements of a finite group and results of group operation between all possible pair of elements of the group.

	λ_1	λ_2	λ_3	μ_1	μ_2	μ_3
λ_1	λ_1	λ_2	λ_3	μ_1	μ_2	μ_3
λ_2	λ_2	λ_3	λ_1	μ_2	μ_3	μ_1
λ_3	λ_3	λ_1	λ_2	μ_3	μ_1	μ_2
μ_1	μ_1	μ_3	μ_2	λ_1	λ_2	λ_3
μ_2	μ_2	μ_1	μ_3	λ_3	λ_1	λ_2
μ_3	μ_3	μ_2	μ_1	λ_2	λ_3	λ ₁

The cartesian product graph is define by, Let Γ_1 and Γ_2 be a finite graph, the Cartesian product $\Gamma_1 \boxdot \Gamma_2$ of graphs such that:[1], [6]

- the vertex set of $\Gamma_1 \boxdot \Gamma_2$ is the Cartesian product $V(\Gamma_1) \times V(\Gamma_2)$; and
- for any two vertices (u, v) and (u', v') is adjacent in $\Gamma_1 \boxdot \Gamma_2$ if and only if either
- \circ u = u' and v is adjacent to v' in Γ_2 , or
- \circ v = v' and u is adjacent to u' in Γ_1 .
- sage: G = graphs.CycleGraph(3)

sage: G.show()

sage: G = graphs.CycleGraph(3)
sage: C = G.cartesian_product(G)
sage: C.show()

The set of all vertices are $\{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)\}$ and the set of edges are: $(0,0) \sim \{(0,1), (0,2), (1,0), (2,0)\}$

$$\begin{array}{l} (0,1) \sim \{(0,0), (0,2), (1,1), (2,1)\} \\ (0,2) \sim \{(0,1), (0,0), (1,2), (2,2)\} \\ (1,0) \sim \{(0,0), (2,0), (1,2), (1,1)\} \\ (1,1) \sim \{(0,1), (2,1), (1,0), (1,2)\} \\ (1,2) \sim \{(1,0), (1,1), (0,2), (2,2)\} \\ (2,0) \sim \{(2,1), (2,2), (1,0), (0,0)\} \\ (2,1) \sim \{(2,2), (2,0), (1,1), (0,1)\} \\ (2,2) \sim \{(2,0), (2,1), (1,2), (0,2)\} \end{array}$$

2. MAIN RESULTS

In this section, we will prove that, the following theorem.

2.1 Definition

Suppose that \mathcal{H} and \mathcal{K} are groups and an action $\phi: \mathcal{K} \to \operatorname{Aut}(\mathcal{H})$ of \mathcal{K} on \mathcal{H} by automorphisms, the corresponding semi-direct product $\mathcal{H} \rtimes_{\phi} \mathcal{K}$.

2.2 Theorem

The automorphism group of cycle graph be isomorphic to Dihedral group.

2.1 Theorem

Let Γ be finite graph and isomorphic to cycle graph of order 3, the automorphism group of graph Γ is given by the following:

$$\operatorname{Aut}(\Gamma \boxdot \Gamma) \cong (D_6 \times D_6) \rtimes C_2$$

Proof:

Clear that, the quotient group $\left[\frac{(D_6 \times D_6) \rtimes C_2}{D_6 \times D_6} \right] = 2$, this means the subgroup $\mathcal{H} = D_6 \times D_6$ is normal subgroup of group $(D_6 \times D_6) \rtimes C_2$, this is sufficient to prove that group $(D_6 \times D_6) \rtimes C_2$ is the result of a semi-product product. Suppose that $\mathcal{K} = C_2$ and an action $\phi: C_2 \rightarrow Aut(D_6 \times D_6)$ of C_2 on $(D_6 \times D_6)$ by automorphisms, the corresponding semi-direct product $(D_6 \times D_6) \rtimes_{\Phi} C_2$. By GAP program we compute the Aut($D_6 \times D_6$) has 72 elements and generators of {(1,4)(2,5)(3,6), (5,6), (2,3)(5,6), (4,6,5), (1,3,2)gap> d:=Dihedral Group (IsPermGroup,6); x:=Direct Product (d,d); aut:=Automorphism Group (x); Group ([(1,2,3), (2,3)]) gap> c:=Cyclic Group (IsPermGroup,2); Group ([(1,2)]) gap> x:=Direct Product (d,d); ss:=Structure Description(s); Group ([(1,2,3), (2,3), (4,5,6), (5,6)]) gap> aut:=Automorphism Group (x); <group of size 72 with 5 generators> gap> h:=All Homomorphisms (c,aut); [[(1,2)] -> [Identity Mapping (Group([(1,2,3), (2,3), (4,5,6), (5,6)]))],[(1,2)] -> [^(2,3)], $[(1,2)] \rightarrow [(5,6)], [(1,2)] \rightarrow [(1,2)], [(1,2)] \rightarrow [(4,5)], [(1,2)] \rightarrow [(1,3)],$ $[(1,2)] \rightarrow [(4,6)], [(1,2)] \rightarrow [(2,3)(5,6)], [(1,2)] \rightarrow [(2,3)(4,5)],$ $[(1,2)] \rightarrow [(1,2)(5,6)], [(1,2)] \rightarrow [((2,3)(4,6))], [(1,2)] \rightarrow [((1,2)(4,5))],$ $[(1,2)] \rightarrow [((1,3)(5,6))], [(1,2)] \rightarrow [((1,2)(4,6))], [(1,2)] \rightarrow [((1,3)(4,6))],$ $[(1,2)] \rightarrow [(1,3)(4,5)], [(1,2)] \rightarrow [((1,4)(2,5)(3,6))], [(1,2)] \rightarrow [((1,4)(2,6)(3,5))],$ $[(1,2)] \rightarrow [(1,6)(2,4)(3,5)], [(1,2)] \rightarrow [(1,5)(2,6)(3,4)], [(1,2)] \rightarrow [(1,6)(2,5)(3,4)]$, [(1,2)] -> [^(1,5)(2,4)(3,6)]] gap>s:=SemidirectProduct(c,h[22],x);Group([(7,8), (6,7,8), (4,5), (3,4,5), (1,2)(3,7)(4,6)(5,8)]) gap> ss:=StructureDescription(s); "(S3 x S3) : C2"

REFERENCES

- [1] A. SHUKUR and H. SHELASH, "Pseudospectrum Energy of Graphs," Iran. J. Math. Chem., vol. 11, no. 2, 2020, doi: 10.22052/ijmc.2020.221182.1488.
- [2] H. B. Shelash and A.-R. Ashrafi, "Table of marks and markaracter table of certain nite groups,"

Quasigroups Relat. Syst., vol. 28, no. 1, pp. 159–170, 2020.

- [3] H. B. Shelash and A. R. Ashrafi, "The number of subgroups of a given type in certain finite groups," Iran. J. Math. Sci. Informatics, vol. 16, no. 2, pp. 73–87, 2021.
- [4] H. R. Hashim, F. Luca, H. B. Shelash, and A. A. Shukur, "Generalized Lucas graphs," Afrika Mat., vol. 34, no. 1, p. 10, 2023.
- [5] S. J. Abd and H. B. Shelash, "On subgroups product graph of finite groups," in BIO Web of Conferences, 2024, vol. 97, p. 155.
- [6] A. G. Algam and H. B. Shelash, "Dynamics of monad graph of finite group," J. Discret. Math. Sci. Cryptogr., vol. 24, no. 6, pp. 1589–1593, 2021.
- [7] Angsuman Das, M. Saha, and S. Al-Kaseasbeh, "Subgroup Product Graph of a Group," 2021, [Online]. Available: