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ABSTRACT 
Achieving high-performance and robust pH control can be challenging due to the nonlinear and time-
varying characteristics of the process. The pH process can exhibit significant static nonlinear behavior 
because the process gain can vary greatly over the modest range of pH values. Additionally, the titration 
curve may change over time due to unmeasured variations in the buffering capacity. These nonlinearities 
make it difficult to control the pH process using conventional techniques. In this study, the titration curve 
of the pH process is obtained through both simulation and experimentation, using weak acid (CH3COOH) 
as the process stream and strong base (NaOH) as the titrating stream. A conventional PI controller is 
designed based on the obtained process parameters for different zones of the pH process. However, the 
designed PI controller may not provide satisfactory responses when the operating point changes from 
one zone to another. To address this issue, an optimized intelligent model-based controller is proposed 
for the non-linear pH process in real time. 
 
Keywords: capacity, difficult, nonlinear, optimized. 
 
1. INTRODUCTION 
Mathematical modeling of the pH process is considered to be a difficult task because one needs to have 
knowledge about the components and their nature in the process stream in order to model its dynamics 
using conventional techniques. In the modeling aspect, rigorous models from first principles involving the 
material balance and equilibrium equations were established by McAvoy [1] and was generalized to 
systems with an arbitrary number of acids and bases by  Gustafsson, and Waller [2]. The model was 
derived from first principles, material balances and chemical equilibria and has become generally 
accepted in the literature.  
In many practical pH processes time delays, time constants, gains and sensitivities change over a wide 
range occurs mainly due to varying flow and their chemical contents. A fixed model (off-line modeling) 
cannot adjust to variations in the process and an adaptive model (on-line modeling) has many practical 
problems. Unbiased and efficient model identification with in a control loop is difficult. The controlled 
signal can also be poor in many frequencies i.e. the system is not persistently exciting. From the control 
point of view, keeping the pH value constant at reference value is in many cases the objective of control 
whereas from the modeling point of view, system identification from practically constant signals is 
impossible or at least inefficient. Shinskey [3] developed an adaptive analogue controller that consisted of 
a conventional PID controller combined with a non-linear gain shaping element. The controller was 
commercially available and it was used in many practical applications.   
In practice a fixed PID controller and its modifications are the most common controllers for pH control 
and that is hardly surprising because most of the practical pH processes are heavily buffered, 
approximately linear and very robust. However, there are a significant number of difficult, practical pH 
processes that can benefit from advanced control strategies. In addition to practical applications, there 
are also many pilot processes that are designed intentionally to be challenging for research purposes.  



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 712                                                            K. Anu Nivetha et al 711-719 

Pajunen [4] and Norquay et al.,[5] both used Wiener model assumption (linear dynamics and static 
nonlinearity) in their research. They used a linear ARX-model structure for the dynamic part and different 
approaches for the static nonlinearity. Pajunen used a piecewise linear approximation for the titration 
curve whereas Norquay modeled the nonlinearity with cubic splines. In both cases the inverse of the 
nonlinearity (corresponds to inverse titration curve) was used for pseudo-linearisation of the control 
loop. Pajunen used a model reference algorithm and Norquay used a model predictive algorithm as the 
actual controller. Arvind Kumar et. al., [6] developed the Wiener model based controller for the lab-scale 
pH setup. The performance of Wiener model based controller was compared with that of linear PI 
controller. An approach to the identification of time-varying, non-linear pH processes based on the 
Wiener model structure was reported by Kalafatis et. al.,[7]. The algorithm produces an on-line estimate 
of the titration curve, where the shape of this static nonlinearity changes as a result of changes in the 
weak-species concentration or composition of the process feed stream.  
The Hammerstein model structure based model predictive control scheme was proposed for a pH process 
by Fruzzetti et.al, [8]. The wavenet based a Hammerstein model structure is shown to have potential for 
modeling strongly non-linear processes like the pH process. The systematic and sequential approach used 
for developing the Hammerstein model simplifies the problem of modeling the non-linear static 
nonlinearity and linear dynamics [9]. 
Jacobs and a group of researchers [10] and Proudfoot et.al., [11] did several industrial implementation of 
pH control. They used general model of first order dynamics with titration curve as the nonlinearity. They 
applied conventional and adaptive control strategies on a process that appeared to be a strong acid-
strong base system with some minor buffering (due to carbon dioxide or the chemicalisation of municipal 
water).  
Internal model control has been extensively applied to the pH process by sivaraman [12,13]. They 
estimated the weak acid concentration in the inflow and used the calculated concentration in the control 
law. In the research work of Subramani and Krishnaswamy [14] a fuzzy tuning was combined to the 
model. Hu et.al., [15] tested the augmented internal model controller with a laboratory scale pH pilot 
process (in this practical application buffering was added). In pilot experiments, the internal model 
controller outperformed the conventional PI-controller.  
Neural network have not had a similar commercial breakthrough as fuzzy logic and practical application 
in pH control. Loh et.al., [16] viewed different approaches to neural network modeling and control in a pH 
process. Palancar et.al [17] developed a neural controller that consisted of two artificial neural networks, 
the first of which described the plant model and the second plant inverse model. By combining these two, 
the neural controller could calculate the required reagent flow for pH control. The controller was first 
tested with simulations and then implemented on a pilot-scale neutralization process. The neural 
networks learned plant on-line, i.e., the controller was adaptive. The buffering was changed during the 
test runs and the controller adapted to small and gradual buffer changes. Unfortunately the learning was 
not efficient enough for sudden and significantly big changes in the buffering [18].          
Implementation of a neural network model-based predictive control scheme to a laboratory-scaled 
multivariable chemical reactor was described and three variables were controlled in the reactor - 
temperature, pH and dissolved oxygen [19]. Neural network to on-line updated PID controllers for pH 
process was reported by Chen and Huang (2004). Neural network approximation of non-linear model 
predictive controllers have been studied and illustrated for a simulated non-linear pH process. Simulation 
and real-time implementation of recurrent neural network for pH process has been addressed by 
Sivakumaran [20]. In this work an attempt is made to develop Grey Wolf Optimization based Deep Neural 
Network Internal Model controller for a real time pH process. 
 
2. Mathematical Modeling of pH Process 
The acid–base neutralization process is considered in this work. The process stream consists of a sodium 
hydroxide (NaOH) solution and the titrating stream consists of an acetic acid (CH3COOH) solution. The 
cubic polynomial in hydrogen ion concentration [ H+ ] with unknown ζ and ξ is expressed as 

0 WKAK-][HWK-ξ)-(ζAK
2
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where FA is the acid flow rate (0-0.5 LPH), FB is the base flow rate (0.4 LPH), CA is the acid concentration 
(0.2 mol/L), CB is the base concentration (0.1 mol/L), [H+] is the hydrogen ion concentration and V is the 
liquid volume (7.4 L3). Finally the pH is calculated as 

)][H(10log-pH


          (4) 

The steady-state titration curve for the acid-base neutralization process is obtained by solving the eqns. 
(1), (2), (3) and (4) in simulation using SIMULINK for change in the acid flow rate (FA) from 0 – 0.5 L/min. 
The SIMULINK model of a pH process is shown in Figure 1. The titration curve is also obtained 
experimentally using ADAMS 5000 MATLAB interfacing card. The system is run experimentally in open-
loop at different acid flow rates and at each acid flow rate, the pH values are measured after the system 
attained its steady state.  
 

 
Fig 1 

 
The acetic acid flow rate is varied from 0 to 0.5 LPH in small suitable steps and the corresponding 
variation in the pH process are recorded and presented in Table 1. The non-linear behavior of pH process 
clearly visible from Table 1. and Figure 2. 

 
Table 1. Simulated input-output datas of pH process. 

S.No Acid Flow 
Rate (FA)          pH 

S.No Acid Flow 
Rate (FA) pH 

1 0 13 52 0.199995 8.86 
2 0.1 12.6 53 0.199997 8.825 
3 0.11 12.55 54 0.199998 8.814 
4 0.12 12.49 55 0.2 8.79 
5 0.13 12.42 56 0.2001 8.043 
6 0.14 12.35 57 0.2002 7.753 
7 0.15 12.26 58 0.2003 7.579 
8 0.16 12.15 59 0.2004 7.454 
9 0.17 12.02 60 0.2005 7.358 
10 0.18 11.84 61 0.2006 7.279 
11 0.185 11.71 62 0.2007 7.212 
12 0.189 11.57 63 0.2008 7.154 
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13 0.19 11.53 64 0.2009 7.103 
14 0.191 11.48 65 0.201 7.057 
15 0.192 11.43 66 0.202 6.756 
16 0.193 11.37 67 0.203 6.58 
17 0.194 11.31 68 0.204 6.455 
18 0.195 11.23 69 0.205 6.358 
19 0.196 11.13 70 0.206 6.279 
20 0.197 11 71 0.207 6.212 
21 0.198 10.83 72 0.208 6.154 
22 0.1981 10.8 73 0.209 6.103 
23 0.1982 10.78 74 0.21 6.057 
24 0.1983 10.75 75 0.22 5.756 
25 0.1984 10.73 76 0.23 5.58 
26 0.1985 10.7 77 0.24 5.455 
27 0.1986 10.67 78 0.25 5.358 
28 0.1987 10.64 79 0.26 5.279 
29 0.1988 10.6 80 0.27 5.212 
30 0.1989 10.57 81 0.28 5.154 
31 0.19891 10.56 82 0.29 5.103 
32 0.19892 10.56 83 0.3 5.057 
33 0.19894 10.55 84 0.31 5.016 
34 0.199 10.52 85 0.32 4.978 
35 0.1991 10.48 86 0.33 4.944 
36 0.1992 10.43 87 0.34 4.911 
37 0.1995 10.22 88 0.35 4.881 
38 0.1996 10.13 89 0.36 4.853 
39 0.1997 10 90 0.37 4.827 
40 0.1998 9.828 91 0.38 4.802 
41 0.1999 9.537 92 0.39 4.779 
42 0.19991 9.494 93 0.4 4.757 
43 0.19994 9.337 94 0.41 4.735 
44 0.19995 9.272 95 0.42 4.715 
45 0.19996 9.197 96 0.43 4.696 
46 0.19997 9.112 97 0.44 4.677 
47 0.19998 9.015 98 0.45 4.66 
48 0.19999 8.906 99 0.46 4.643 
49 0.199991 8.895 100 0.47 4.626 
50 0.199992 8.883 101 0.48 4.61 
51 0.19999 8.872 102 0.49 4.595 
 

  

103 0.5 4.581 
 
3.  Experimental Setup of pH Process 
The experimental setup of pH process is shown in Fig 2. It has two input streams, one containing acetic 
acid (CH3COOH) as titrating stream and the other containing sodium hydroxide (NaOH) as process 
stream. Acid and base are stored in acid and base tank respectively. In this work, the acid flow rate is 
varying from 0-0.5 L/min and base flow rate is kept constant at 0.4 L/min. The dozed valveless metering 
pumps are used to pump the acetic acid and sodium hydroxide streams into the process tank with 
resolution of 0.72 ml/revolution. The flow of acid and base are not continuous but they are fed in dozed 
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manner. The operating range of the pumps is 0-0.8 L/min. Stirrer is used to provide proper mixing to 
maintain uniform concentration throughout the process tank. The output variable is hydrogen ions 
present in the effluent stream, which is measured as pH using glass electrode based pH sensor in 
combination with pH transmitter (ABB make). The output from the pH transmitter is 4-20 mA. After the 
signal conditioning circuit voltage is fed into computer through ADC. Then the control algorithm 
calculates the error and generates the proper manipulated variable, which alters the acid flow rate into 
the process tank and maintains the desired pH value in closed-loop control. The comparison of simulated 
and experimental titration curves are shown in Fig.3. From this figure it can be concluded that the 
nonlinear model equations represent the static behavior of the system reasonably well. 

 

 
Fig.2. Experimental setup of a pH process. 

 

 
Fig.3. Comparison of simulated and experimental titration curves. 

 
4. Interfacing Module 
The ADAM-5000 series is a data acquisition and control system which can control, monitor and acquire 
data through multi-channel I/O modules. Encased in rugged industrial grade plastic bases, the system 
provides intelligent signal conditioning, analog I/O, digital I/O, RS-232 and RS-485 communication. The 
ADAM-5000 can handle up to any 4 combinations of I/O modules, while ADAM-5000E can handle up to 8 
combinations of I/O modules. 
Major features: The ADAM-5000 system consists of two major parts: the system kernel and I/O modules. 
The kernel includes a CPU card, power regulator, 4 slot base,8 slot base, built in RS-232 communication 
port, and a pair of built in RS-485 ports. 
CPU- functions: 
 Data acquisition and control of all I/O modules in the system. 
 Alarm monitoring 
 Data transformation 
 Diagnosis (4 LEDs (PWR,RUN,TX,RX)to provide visual information of ADAM-5000 system, software 

diagnosis is also possible via RS-232) 
 Calibration software and command set. 

Components of ADAM 5000: 
Processor: CPU- 80188, 16 bit microprocessor. 
                  32 KB RAM, 128 KB ROM 
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                  Watchdog timer 
                  Power consumption: 1.0 W (ADAM 5000) 
Communication:  
                  Speed: 1200 bps to 115.2 Kbps 
                  Max distance: 4000 ft 
                  Protocol: ASCII command 
                  Communication error check: checksum 
Asynchronous data format: 1 start bit, 8 data bit, 1 stop bit. 
ADAM-5017, 8 channel analog input modules: The ADAM-5017 is a 16 bit, 8 channel analog differential 
input modules that provides programmable input ranges on all channels. It accepts mV inputs (+150 mV, 
+500 mV), voltage inputs (+1V, +5Vand +10 V) and current input (+20 mA, requires resistor). The module 
provides data to the host computer in engineering units (mV, V or mA). 
ADAM-5024, 4 channel analog output module: The ADAM-5024 is a 4 channel analog output module. It 
receives its digital input through the RS-485/232 interface of the ADAM-5000 system module from the 
host computer. It then uses the D/A converter controlled by the system module to convert the digital data 
into output signals. 
The ADAM- 5000 series with input module (ADAM-5017) and output module (ADAM - 5024) used for 
interfacing the sensors and actuators of the process under study with the computer is shown in Fig.2. The 
module is configured at a baud rate of 9.6 Kbps and is supplied with +24V for its operation. The input and 
output modules operate on current signal.  The ADAMS interfacing module is shown in Figure 4. 

 

 
Fig.4. Real-time interfacing module (ADAMS-5000). 

 
5.  GWO based DNN Internal Model Controller 
The general structure and description of GWO based DNN internal model controller for a experimental pH 
process is shown in Figure 5. It consists of an inverse model and the forward model, which is connected in 
parallel with the experimental pH process. Compared to conventional controllers, the IMC structure has 

only one tuning parameter λ and it is set to a value of 30 by repeated simulation studies. The 
experimental result for GWO based DNNIMC shows the good set point tracking comparable to the PI 
controller. The performance measures of the controllers are given in Table 1.  
 

 
Fig.5. GWO based DNN Internal Model Controller 
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6. RESULTS AND DISCUSSION 
The experimental result of pH process for the operating point of 7 and 8 by implementing PI controller 
and GWO based DNN IMC are shown in Figures 6 ,7,8 and 9 respectively along with controller output. The 
performance indices are given in Table 1. The results reveal that GWO based DNN IMC gives superior 
result in experimentation when compared to conventional PI controller.  
 

 
Fig. 6 Experimental servo response of a pH process with PI Controller (setpoint change from 6 to 7) 

 

 
Fig.7 Experimental servo response of a pH process with GWO based DNN IMC (setpoint change from 6 to 

7). 
 

 
Fig.8 Experimental servo response of a pH process with PI controller (setpoint change from 7 to 8). 
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Fig.9 Experimental servo response of a pH process with GWO based DNN IMC (setpoint change from          

7 to 8). 
 

Table 1. Performance measures of experimental pH process with PI and GWO based DNN IMC 

 
CONCLUSION 
In this work, the real time pH process experimental setup was developed and the obtained experimental 
titration curve was compared with that of simulated titration curve. The GWO based DNN IMC and PI 
controllers are were designed and implemented for a real time pH process. The servo response of pH 
process at various operating points shows that the GWO based DNN IMC produces better result when 
compared with that of PI controllers. The GWO based DNN IMC produces minimum values of ISE, IAE and 
settling time when compared with PI controller. 
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