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Abstract:- A fundamental concept in probability theory and statistical inference, the Central Limit 
Theorem (CLT) offers an effective structure for comprehending the behavior of sums of independent 
random variables. This paper provides an in-depth analysis of the CLT, exploring its mathematical proofs, 
theoretical underpinnings, and central hypotheses. Many different statistical techniques and 
methodologies are based on the theorem’s ability to estimate the distribution of sample means to a 
normal distribution, regardless of the actual distribution of the data. Confidence interval estimates, 
hypothesis testing, and trustworthy statistical inference are made possible by the crucial role that the CLT 
plays in permitting both large and small sample scenarios. The study emphasizes the practical 
applications of the CLT in domains including finance, engineering, data science, and the natural sciences, 
in addition to its theoretical significance.  The theorem’s adaptability and wide-ranging influence are 
demonstrated by specific case studies that highlight its application in large-scale data analysis, quality 
control procedures, and stock price modelling. The flexibility of the CLT in increasingly complicated 
situations, such as dependent data and non-identically distributed variables is proven by looking at 
extensions and modifications of the CLT, such as the Lindeberg and Lyapunov conditions. This work 
emphasizes the mathematical rigor and practical value of the CLT across several domains, offering a 
comprehensive knowledge of its far-reaching repercussions for statistical modeling. 
Keywords: - Central Limit Theorem, Statistical Inference, Normal Distribution, Data Modeling. 

1.   Introduction  

The Central Limit Theorem (CLT) is one of the most significant results in probability theory and forms a 
cornerstone of statistical modeling and inference. Originally formulated by Pierre-Simon Laplace in 
1810 [1], the theorem has evolved through numerous extensions and refinements over time [2].  The 
classical CLT states that the sum (or average) of a large number of independent and identically 
distributed (i.i.d.) random variables tends to follow a normal distribution, irrespective of the original 
distribution of the variables [3]. This result provides the    foundation for many statistical techniques and is 
widely employed in fields such as economics, engineering, and data science [4]. The importance of the CLT 
lies in its ability to simplify complex problems involving random variables. In statistical modeling, the 
theorem is pivotal in enabling parametric inference, which assumes that data is normally distributed, 
allowing for powerful techniques such as confidence interval estimation and hypothesis testing [5].  Even 
in cases where the population distribution is not normal, the CLT justifies the use of normal 
approximations when working with sufficiently large sample sizes, a principle that underpins the majority 
of applied statistics [6]. Numerous extensions and generalizations of the classical CLT have been 
developed to address more complex scenarios. The Lindeberg-Feller CLT [7] and Lyapunov’s CLT [8] 
are among the most significant extensions, relaxing the strict independence and identical distribution 
assumptions. These generalizations have broadened the theorem’s applicability to situations 
involving dependent variables, non-i.i.d. distributions, and more general forms of stochastic 
processes [9]. This has led to the CLT’s utilization in fields such as finance [10], 
telecommunications[11], and machine learning [12]. Moreover, the CLT serves as a foundation for the 
Law of Large Numbers (LLN), which is central to understanding the convergence properties of 
estimators in statistical models [13]. The combination of the CLT and LLN allows for the 
approximation of random processes in a variety of fields, from risk analysis in insurance [14] to 
reliability engineering [15]. In areas where large datasets are common, such as in big data and machine 
learning, the CLT is fundamental to the design of scalable algorithms that rely on probabilistic 
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approximations [16]. The applications of the CLT extend beyond theoretical statistics. In finance, the 
modeling of asset returns often relies on normal approximations enabled by the CLT [17]. In engineering, 
signal processing techniques frequently depend on Gaussian noise models that are justified by the CLT 
[18]. Similarly, the CLT is central to various methods of quality control in manufacturing, where the 
normal distribution is used to assess process variability and performance [21].  This paper aims to 
provide a comprehensive exploration of the Central Limit Theorem, focusing on its theoretical 
underpinnings, extensions, and wide-ranging applications. By examining both classical and modern 
perspectives, the study highlights the versatility and importance of the CLT in statistical modeling across 
numerous disciplines. 

2. Theoretical Foundations of the Central Limit Theorem 
The Central Limit Theorem (CLT) is a fundamental result in probability theory, providing insight into the 
behavior of sums of random variables. In its most basic form, the CLT states that the sum of a large 
number of independent and identically distributed (i.i.d.) random variables with finite mean and 
variance converges to a normal distribution as the sample size increases. This section reviews the key 
theoretical aspects of the CLT, including its formal statement, assumptions, and several important 
generalizations. 
2.1  Formal Statement of CLT 
Let X1, X2. . . Xn be a sequence of i.i.d. random variables with mean µ= E[Xi] and variance σ2 = Var(Xi), 

where 0 < σ2 < ∞.  

Define the sample mean Xn as:                              

1

1 n

n i

i

X X
n 

 
 

The Central Limit Theorem asserts that as n → ∞, the distribution of the standardized sum: Converges 
in distribution to the standard normal distribution, i.e., 

   0,1nZ N  

This result is profound because it holds irrespective of the original distribution of Xi, provided the first 
two moments are finite. The theorem is particularly useful because it allows for normal 
approximations even when the underlying distribution is not normal, facilitating the use of parametric 
statistical methods in practice [3, 13].  
2.2 Assumptions and Conditions 
The classical CLT operates under certain key assumptions: 

 Independence: The random variables X1, X2, . . . , Xn must be independent. This ensures that 
there is no correlation between the variables, making the summation process straightforward [2].  

 Identical Distribution: The random variables must be identically distributed, meaning they 
share the same probability distribution, mean, and variance. This condition can be relaxed in some 
generalizations of the CLT [9]. 

 Finite Variance: The random variables must have a finite variance, ensuring that no single variable 
dominates the summation [6].  

Although these assumptions are strict, several generalized versions of the CLT have been developed to 
relax some of these conditions. 
2.3 A Sketch of the Proof of the CLT 
The proof of the Central Limit Theorem typically involves the use of characteristic functions or  
moment generating functions. The key idea is to show that the characteristic function of the 

standardized sum Zn converges to the characteristic function of the normal distribution 
2 /2(t) te  . 

This is achieved through the properties of sums of independent random variables and the application of 
Taylor expansions around zero [13, 2]. The proof proceeds by analyzing the behavior of the 

characteristic function of the standardized sum is (t) [ ]
i t Zn

nz E e  By showing that as n → ∞, 

2 /2(t) te   it follows that Zn converges in distribution  to N (0, 1) by Levy’s continuity theorem[3, 9]. 

3. Applications of the Central Limit Theorem 
This section explores the wide-ranging applications of the CLT in various fields, including finance, 
engineering, and big data, emphasizing its role in enabling statistical inference across numerous 



J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.1, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC 
 
 

                                                                                                         205                                                  Pradeep Kumar Jha et al 203-213 

 

disciplines. The Central Limit Theorem (CLT) has wide-reaching applications across various fields, 
enabling the use of parametric statistical methods in cases where the underlying distribution is unknown 
or complex. By providing a normal approximation to sums (or averages) of random variables, the CLT 
facilitates statistical modeling, inference, and decision-making in areas such as finance, engineering, big 
data, and machine learning. This section explores some of the most prominent applications of the CLT. 
3.1  Finance 
One of the most notable applications of the Central Limit Theorem (CLT) is in financial modeling, 
particularly in the modeling of asset returns. Financial data often exhibits heavy-tailed distributions, 
indicating that the exact distribution of returns may not conform to a normal distribution.  However, 
under the assumption that returns are generated by the sum of many small, independent random factors, 
the CLT justifies the use of normal distributions to approximate the behavior of asset prices [10, 17].  
For example, consider the Black-Scholes model, which is widely used for pricing options. This model 
assumes that asset prices follow a geometric Brownian motion, defined by the stochastic differential 
equation: 
                                                                               dSt = µStdt + σStdWt                                                    3.1 

Where St is the price of the asset at time t, µ is the expected return, σ is the volatility of the asset, and 
Wt is a Wiener process (standard Brownian motion) [19]. 

Under this framework, the logarithm of asset prices, log(St), can be expressed as: 

        
2

0

1
log( ) log( ) -

2
t tS S t W  

 
   

                                                    3.2 

Where, S0 is an initial asset price. According to the CLT, as the number of independent shocks increases, 
the average returns of a well-diversified portfolio of assets will converge to a normal distribution, even if 
the individual assets do not follow a normal distribution [17].  
To illustrate, suppose an investor holds a portfolio of n different stocks, each with their unique return 

distributions Ri (where i =1, 2. . . n). The average return R̄ of the portfolio can be expressed as: 

                                                                                                          1

1 n

i

i

R R
n 

 
                                                                             

3.3 

While some stocks may experience extreme fluctuations (outliers), the aggregation of the returns across 

these n stocks allows the investor to assume that R̄ will approximate a normal distribution due to the 
CLT. This approximation is essential for calculating key risk metrics, such as Value at Risk 
(VaR), which estimates the potential loss in value of the portfolio over a defined period for a given 
confidence level α. VaR can be computed as:

 

          

1
1( ). .a R

V R t    
                                                                     3.4

 

Where Φ−1 is the inverse cumulative distribution function of the standard normal distribution 
R

  is the 

standard deviation of the average return, and t is the time horizon [20]. By using the CLT, financial 
analysts can confidently apply statistical methods based on normality to assess risk and make informed 
decisions about future price movements. The CLT’s ability to model large portfolios of assets as 
normally distributed—despite the non-normality of individual assets proves particularly valuable in 
risk management. This application allows financial institutions to develop effective strategies for 
hedging risks and optimizing their investment portfolios. 
 
3.2   Engineering 

In engineering, the Central Limit Theorem (CLT) is applied across various subfields, including signal 

processing, telecommunications, and quality control. 

3.2.1 Signal Processing 

In signal processing, noise is often modeled as Gaussian, which stems from the assumption that noise 

arises from the aggregation of many small, independent sources. According to the CLT, if X1, X2, . . . , Xn 
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are independent and identically distributed (i.i.d.) random variables representing these noise sources, 

the sum Sn=

1

n

i

i

X



, Xi will approximate a normal distribution as n increases. The mean µ and 

variance σ2 of the sum can be expressed as: 

Mean: E [Sn] = nµ,         3.5 

                                          Variance: Var(Sn) = nσ2                                                 3.6 
This theoretical foundation leads to effective noise reduction techniques, such as filtering and averaging, 
and informs the design of communication protocols that can effectively manage noise in data 
transmission [18, 11]. For example, the Kalman filter, widely used in control systems and navigation, 
relies on the assumption of Gaussian noise to optimally estimate the state of a dynamic system [39].  
3.2.2 Quality Control 
Moreover, the CLT plays a crucial role in statistical process control (SPC) and quality management in 
manufacturing. The variability in production processes is often analyzed using control charts, which are 
graphical tools for monitoring process stability and performance. Control charts assume that 
deviations from the target (i.e., the process mean) are normally distributed. For a process with mean µ 
and standard deviation σ, the control limits are typically set at:              

                                                                               

 

 

σ
Upper ControlLimit UCL =µ+3 3.7

n

σ
Upper ControlLimit UCL =µ-3 3.8

n

 
 
 

 
 
 

 

Where n is the sample size used for monitoring [21]. Even if the underlying process distribution is 
not normal, the CLT allows for normal approximations when monitoring large batches of products.  This 
approximation ensures that SPC tools remain effective, enabling manufacturers to detect variations and 
implement corrective actions promptly. The application of the Central Limit Theorem in engineering 
enhances the understanding and management of uncertainty in various processes, ultimately leading to 
improved performance and reliability in systems and products. 
3.3 Big Data and Machine Learning 
The advent of big data and machine learning has further expanded the relevance of the CLT. In machine 
learning algorithms, especially those relying on stochastic gradient descent (SGD) and ensemble 
methods, the CLT is foundational for understanding the convergence properties of estimators. For 
instance, in deep learning, SGD iteratively updates model parameters based on the average of a batch of 
data samples. Under certain regularity conditions, the CLT guarantees that the gradient estimates 
converge to the true gradient in the limit of large batches, thus enabling the training of complex models 
[12]. In addition, big data environments frequently involve working with large datasets where the CLT is 
employed to make approximations of summary statistics. Given the size and complexity of modern 
datasets, the use of normal approximations to the distribution of estimators simplifies statistical inference 
and allows for the design of efficient algorithms that scale to large data sizes [16, 22].  
3.4 Sampling and Surveys 
The Central Limit Theorem (CLT) is fundamental in survey sampling, providing the theoretical 
underpinning for many statistical methods used to infer population characteristics from sample data. 

When sampling from a population: the sampling distribution of the sample mean X̄ (or proportion p ) 

approaches normality as the sample size n increases, regardless of the underlying population 
distribution. Specifically, if X1, X2, . . . , Xn are i.i.d. random variables with population mean µ and 
population standard deviation σ, the sampling distribution of the sample mean can be expressed as:  

                                                       

2

,X N
n



 
  
 

:
                                                                         3.9 

as n approaches infinity. This principle is extensively applied in polling, market research, and social 
science surveys to estimate population parameters such as mean income, approval ratings, or 
unemployment rates [23]. In survey methodology, the CLT justifies the use of confidence intervals and 
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i=1 

hypothesis testing. For instance, a 95% confidence interval for the population mean can be constructed 

using the formula:
                                                                  /2.CI X Z

n



                                                                   3.10 

Where, Zα/2 is the critical value from the standard normal distribution corresponding to the desired 
confidence level. This reliance on the CLT allows researchers to make probabilistic statements about 
population parameters, enhancing the robustness of inferential statistics in survey analysis.  
Furthermore, the CLT facilitates the development of robust estimators and statistical inference tools that 
remain applicable even in complex survey designs, including stratified sampling and cluster sampling.  In 
these scenarios, adjustments are made to account for the design effects, which can be expressed as:  

                                   
Such adjustments ensure that the statistical inference remains valid, maintaining the integrity of 
conclusions drawn from survey data [24]. The Central Limit Theorem plays a critical role in survey 
sampling by enabling the application of normal approximation techniques, thereby enhancing the validity 
and reliability of statistical estimates and inferences in various fields. 

3.5   Insurance and Actuarial Science 
In actuarial science, the Central Limit Theorem (CLT) is instrumental in modeling aggregate losses 
in insurance portfolios. Insurance companies often manage large portfolios where individual claims may follow 
diverse distributions. However, when aggregating a large number of independent claims, the CLT 
ensures that the total loss distribution tends toward normality. Specifically, if X1, X2, . . . , Xn represent 
independent claim amounts with expected value µ and variance σ2,  the sum of claims  

Sn=

1

n

i

i

X


 ,  Xi will approach a normal distribution as n increases:         

 2,nS N n n :                                                              3.12 

This normal approximation is crucial for calculating premiums, reserve estimates, and other actuarial 
quantities related to risk management [14, 25]. For example, reserve requirements are of ten estimated 
using the formula. 

                                                                                           R=E[Sn]+k·σSn                                                                3.13 

Where k is a factor to represents the required safety margin. In reinsurance, the CLT also underpins 
models for catastrophic risk, where the sum of individual claims from a large numbe r of insured’s is 
analyzed to determine overall exposure to loss. The ability to approximate the distribution of these 
aggregate claims as normal simplifies the analysis of extreme risks. This approximation supports the 
calculation of capital reserves and risk mitigation strategies, allowing actuaries to better understand 
potential large-scale losses and their implications for the insurance portfolio. 
3.6   Biostatistics and Epidemiology 
The Central Limit Theorem is equally important in biostatistics and epidemiology, where large-scale 

studies and experiments are common. In clinical trials, for instance, the sample mean X̄ 1  of a 

treatment group’s response is often compared to that of a control group with mean X̄2 . The CLT 

ensures that, for sufficiently large sample sizes n1 and n2, the distribution of the difference in sample 

means X̄ 1  − X̄ 2  is approximately normal. 

                                                                               
2 2
1 2

1 2 1 2
1 2

,X X N
n n

 
 
 
   
 
 

:                                                   3.14 

 

This property allows for the application of parametric tests, such as the t-test and ANOVA, to determine 
statistical significance [4]. For instance, the t-statistic used to compare means is calculated as. 
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                                                                                     1 2

2 2
1 2

1 2

X X
t

s s

n n






                                                                3.15 

Where 
2
1s  and 

2
2s are the sample variances. Additionally, in epidemiology, the CLT enables the 

approximation of the sampling distribution of estimators such as incidence rates and relative risks. 
These approximations are crucial for making statistical inferences in large population health studies.  

For example, the estimated incidence rate $p can be modeled as: 

        
) (1 )

, ,
p p

p N p
n

 
 
 

:                                                    3.16 

Where p is the true incidence rate and n is the sample size [26]. The Central Limit Theorem is a vital 
tool in both insurance and biostatistics, enabling more accurate modeling and inference through the 
normal approximation of distributions arising from aggregated data.  

4. Challenges and Limitations of the Central Limit Theorem 
While the Central Limit Theorem (CLT) is a powerful tool in statistical analysis, its applicability is 
subject to certain conditions and limitations. Understanding these challenges is crucial for the proper 
application of the CLT in statistical modeling and inference.  
4.1 Independence of Random Variables 
One of the primary assumptions of the CLT is that the random variables involved must be 
independent. If the random variables are dependent, the convergence to a normal distribution may 
not occur, and the CLT may fail to provide an accurate approximation. In practical applications, 
dependencies can arise in various contexts, such as in time series data, where observations are often 
correlated [27]. In such cases, alternative approaches such as the use of autoregressive models or the 
application of the multivariate CLT may be necessary [28]. 
4.2 Identically Distributed Variables 
The CLT also assumes that the random variables are identically distributed. If the random variables have 
different distributions, the conditions under which the CLT holds become more complex. The Lindeberg-
Feller theorem is an extension of the CLT that allows for the analysis of sums of independent, but not 
identically distributed, random variables [2]. However, the application of these generalized theorems 
may complicate the analysis and interpretation of results.  
4.3   Finite Sample Sizes 
Another critical limitation of the CLT is related to finite sample sizes. While the CLT states that the 
distribution of sample means approaches normality as sample size increases,  in practice, this 
convergence can be slow, especially for small sample sizes. This slow convergence may lead to 
inaccuracies when applying normal approximation techniques, resulting in unreliable confidence 
intervals and hypothesis tests [29].  Therefore, caution must be exercised when interpreting 
results from small samples, and non-parametric methods may be more appropriate in such cases [30].  
4.4 Heavy-Tailed Distributions 
The CLT may also be limited in its effectiveness when dealing with heavy-tailed distributions. Many real-
world phenomena exhibit heavy tails, meaning that extreme values have a higher probability of 
occurrence than predicted by the normal distribution. In such cases, relying on the CLT for normal 
approximations can lead to underestimation of the probability of extreme events [31].  Alternative models, 
such as those based on stable distributions or the generalized Pareto distribution may be more suitable 
for accurately capturing the behavior of heavy-tailed phenomena [32]. 
4.5  Outliers and Influential Observations 
Outliers and influential observations can also pose challeng es for the CLT. Since the CLT relies on the 
aggregation of random variables, the presence of outliers can disproportionately affect the sample mean 
and lead to deviations from normality [33]. This is particularly problematic in fields such as finance and 
biostatistics, where extreme values can significantly impact the results of analyses.  Robust statistical 
techniques that are less sensitive to outliers may be required to obtain reliable estimates and inferences 
[34].  
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4.6 Practical Implications 

The Central Limit Theorem is a foundational concept in statistics, it is essential to recognize its limitations. 

Practitioners must consider the assumptions of independence and identical distribution, the effects of 

finite sample sizes, and the challenges posed by heavy-tailed distributions and outliers. Addressing these 

challenges may involve the use of alternative statistical methods and careful interpretation of results.  

5. Future Directions and Research Opportunities 
Despite the extensive applications and theoretical advancements related to the Central Limit Theorem 

(CLT), there remains significant scope for further research and exploration. This section outlines 

several key areas where future investigations can enhance the understanding and utility of the CLT.  

5.1 Generalizations of the Central Limit Theorem 

One promising area for future research is the generalization of the CLT to accommodate a broader 

range of random variables. Current extensions, such as the Lindeberg-Feller theorem, allow for non-

identically distributed variables. However, more research is needed to develop robust methodologies that 

can effectively handle dependent structures, such as those found in time series or spatial data [35].  

Investigating how the CLT can be adapted to these contexts could significantly enhance its 

applicability. 

5.2 Nonparametric Approaches 

With the increasing complexity of data in the era of big data and machine learning, non -parametric 

methods are gaining traction. Research into nonparametric alternatives to the CLT could provide 

valuable insights into scenarios where traditional assumptions do not hold.  For example, kernel density 

estimation and other smoothing techniques may be explored as potential methods for estimating the 

distribution of sample means without the assumption of normality [36]. 

5.3 Robust Statistical Methods 
Given the limitations of the CLT in the presence of outliers and heavy-tailed distributions, future research 

should focus on developing robust statistical methods that maintain reliability under vario us conditions. 

Techniques such as robust regression, trimmed means, and M-estimators offer potential pathways for 

ensuring that statistical inference remains valid even when the assumptions of the CLT are violated 

[34, 37]. 

5.4 Applications in Emerging Fields 

The rapid advancement of fields such as machine learning, artificial intelligence, and data science presents 
opportunities for applying and testing the CLT in novel contexts. Research exploring the implications of 
the CLT in these domains, particularly in the context of deep learning algorithms and ensemble methods, 
could lead to significant advancements in the understanding of convergence properties and statistical 
inference [12]. 
5.5 Cross-Disciplinary Approaches 

Finally, interdisciplinary approaches that incorporate insights from fields such as physics, biology, and 

economics may offer fresh perspectives on the CLT and its applications. Collaborations among 

statisticians and domain experts can foster the development of innovative methodologies that 

address complex real-world problems, leveraging the strengths of the CLT in diverse contexts [38].  

6.   Application of the Central Limit Theorem Using a Dataset 

In this section, we present a detailed analysis of a dataset to demonstrate the application of th e Central 

Limit Theorem (CLT) and estimation using Maximum Likelihood Estimation (MLE). 

6.1 Dataset Description 

We consider a dataset comprising the weights (in kilograms) of 50 individuals randomly selected from a 

population. The weights are assumed to be independent and identically distributed random variables. 

6.2 Maximum Likelihood Estimation 

Assuming that the weights follow a normal distribution N(µ,σ2), we use Maximum Likelihood 

Estimation to estimate the parameters µ (mean) and σ2 (variance). 
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6.2.1 Likelihood Function 
The likelihood function for the normal distribution is: 

Table 1: Weights of 50 Individuals 

ID Weight (kg) ID Weight (kg) ID Weight (kg) 

1 68.2 18 72.5 35 65.8 

2 74.1 19 69.3 36 70.7 

3 65.4 20 75.0 37 71.2 

4 70.0 21 67.8 38 66.5 

5 72.3 22 73.4 39 68.9 

6 69.8 23 68.0 40 74.2 

7 71.5 24 70.6 41 72.8 

8 67.2 25 69.1 42 65.6 

9 73.0 26 71.0 43 69.5 

10 68.5 27 66.7 44 73.7 

11 70.8 28 68.4 45 67.3 

12 66.9 29 72.1 46 71.9 

13 69.6 30 70.3 47 68.7 

14 71.2 31 67.5 48 72.4 

15 68.0 32 73.8 49 69.0 

16 74.5 33 69.2 50 70.5 

17 67.7 34 71.6   

 
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22
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1
( , ) exp
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
 
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 
 


 

Taking the natural logarithm, we obtain the log-likelihood function: 

 
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2
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1
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n
l xn   
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6.2.2 Estimating  and
2   

To find the MLEs of µ and σ2, we take partial derivatives of ℓ (µ, σ2) with respect to µ and σ2, set them 
to zero, and solve for the parameters.  
First, the derivative with respect to µ:  

 
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i
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  
  

         

Similarly, the derivative with respect to σ2: 
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6.2.3 Calculation of Estimates 

Using the data, we calculate: µ
50

1

1 3478.4
69.568kg

50 50
i

i

x


    

                        µ
502 2 2

1

1 68.0744
( 69.568) 1.3615kg

50 50
i

i

x


     

Therefore the estimated parameters are: µ µ 269.568kg and  1.3615 1.167 kg      

6.3 Application of the Central Limit Theorem 

According to the Central Limit Theorem, the sampling distribution of the sample mean X̄ is 

approximately normally distributed with mean µ and standard deviation n  provided that n is 

sufficiently large. 
6.3.1 Sampling Distribution of the Sample Mean 

Given our estimated parameters, the sampling distribution of X̄ is:  

µ

1.167
69.568, 0.165 kg

50X
X N  

 
   

 
:  

6.3.2 Confidence Interval for the Mean Weight 
We can construct a 95% confidence interval for the population mean weight using the sampling 

distribution of X̄ as, 

                           2X . 69.568 1.96 0.165 (69.244,69.892) kg
X

Z       

6.3.3 Verification of Normality 
To verify the normality assumption, we can perform a normal probability plot (Q-Q plot) of the 
sample data or conduct a Shapiro-Wilk test. However, given the sample size of n = 50, the CLT 

suggests that the sampling distribution of X̄ is approximately normal. 
6.4 Simulation Study 
To further illustrate the CLT, we perform a simulation study. We repeatedly (e.g., 10,000 times) draw 
samples of size n = 50 from the estimated normal distribution N(69.568, 1.3615) and compute the 
sample means. 
6.4.1 Simulation Procedure 

1. Generate N = 10,000 samples, each of size n = 50, from N(69.568, 1.3615). 

2. Compute the sample mean jX  for each sample j = 1, 2, . . . , N . 

3. Plot the histogram of the jX values and overlay the normal distribution with mean µ and 

standard deviation
X

 . 

6.4.2 Results 

The histogram of the simulated sample means jX approximates a normal distribution centered at µ = 

69.568 with standard deviation 
X

 = 0.165. 
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6.5 Discussion  

The MLEs of the mean and variance provide estimates consistent with the sample data. The sampling 

distribution of the sample mean is approximately normal due to the CLT. Even if the original data were 

not perfectly normally distributed, the distribution of the sample means  would still approximate 

normality for large n. This illustrates the power of the Central Limit Theorem in statistical inference, 

allowing us to make probabilistic statements about the population mean based on the sample mean.  

 
Figure 1: Histogram of Simulated Sample Means with Normal Curve 

 
7. Conclusion 

The Central Limit Theorem stands as a cornerstone of statistical theory, providing essential insights into 

the behavior of sums of random variables. Its implications span various fields, including finance, 

engineering, and social sciences, and enabling practitioners to apply normal approximations and 

parametric methods even when the underlying distributions are unknown.  However, challenges 

associated with the assumptions of independence and identical distribution as well as the limitations 

posed by finite sample sizes and heavy-tailed distributions; underscore the need for caution when 

applying the CLT. Future research directions offer exciting opportunities to extend the CLT’s 

applicability and explore robust alternatives in the context of complex data. A comprehensive 

understanding of the Central Limit Theorem and its challenges is vital for statisticians  and practitioners 

alike. As data complexity increases, ongoing research and exploration of new methodologies will ensure 

that the CLT remains a relevant and powerful tool in statistical analysis and inference. 
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