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Abstract. We investigate second-order generalized Beverton–Holt difference equations of the form

xn+1 =
af(xn, xn−1)

1 + f(xn, xn−1)
, n = 0, 1, . . . ,

where f is a function nondecreasing in both arguments, the parameter a is a positive constant, and the initial conditions x−1

and x0 are arbitrary nonnegative numbers in the domain of f . We will discuss several interesting examples of such equations

and present some general theory. In particular, we will investigate the local and global dynamics in the event f is a certain

type of linear or quadratic polynomial, and we explore the existence problem of period-two solutions.
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1 Introduction and Preliminaries

Consider the following second-order difference equation:

xn+1 =
af(xn, xn−1)

1 + f(xn, xn−1)
, n = 0, 1, . . . . (1)

Here f is a continuous function nondecreasing in both arguments, the parameter a is a positive real number,
and the initial conditions x−1 and x0 are arbitrary nonnegative numbers in the domain of f . Equation (1)
is a generalization of the first-order Beverton–Holt equation

xn+1 =
axn

1 + xn
, n = 0, 1, . . . , (2)

where a > 0 and x0 ≥ 0. The global dynamics of Equation (2) may be summarized as follows, see [9, 15]:

lim
n→∞

xn =

{
0 if a ≤ 1

a− 1 if a > 1 and x0 > 0.
(3)

Many variations of Equation (2) have been studied. German biochemist Leonor Michaelis and Canadian
physician Maud Menten used the model in their study of enzyme kinetics in 1913; see [20]. Additionally,
Jacques Monod, a French biochemist, happened upon the model empirically in his study of microorganism
growth around 1942; see [20]. It was not until 1957 that fisheries scientists Ray Beverton and Sidney Holt
used the model in their study of population dynamics, see [1, 9]. The so-called Monod differential equation
[20] is given by

1

N
· dN
dt

=
rS

a+ S
, (4)

where N(t) is the concentration of bacteria at time t, dN
dt is the growth rate of the bacteria, S(t) is the

concentration of the nutrient, r is the maximum growth rate of the bacteria, and a is a half-saturation
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constant (when S = a, the right-hand side of Equation (4) equals r/2). Based on experimental data, the
following system of two differential equations for the nutrient S and bacteria N , as presented in [20], is
given by

dS

dt
= −1

γ
N

rS

a+ S
,

dN

dt
= N

rS

a+ S
, (5)

where the constant γ is called the growth yield. Both Equation (4) and System (5) contain the function
f(x) = rx/(a + x) known as the Monod function, Michaelis-Menten function, Beverton–Holt function, or
Holling function of the first kind; see [1, 5, 9, 11].

One possible two-generation population model based on Equation (2),

xn+1 =
a1xn

1 + xn
+

a2xn−1
1 + xn−1

, n = 0, 1, . . . , (6)

where ai > 0 for i = 1, 2 and x−1, x0 ≥ 0, was considered in [18]. The global dynamics of Equation (6)
may be summarized as follows:

lim
n→∞

xn =

{
0 if a1 + a2 ≤ 1

a1 + a2 − 1 if a1 + a2 > 1 and x0 + x−1 > 0.

This result was extended in [5] to the case of a k-generation population model based on Equation (2) of
the form

xn+1 =
k−1∑
i=0

aixn−i
1 + xn−i

, n = 0, 1, . . . , (7)

where ai ≥ 0 for i = 0, 1, . . . , k− 1,
k−1∑
i=0

ai > 0, and x1−k, . . . , x0 ≥ 0. It was shown that the global dynam-

ics of Equation (7) may be given precisely by (3), where a =
k−1∑
i=0

ai and we consider all initial conditions

positive.

The simplest model of Beverton–Holt type which exhibits two coexisting attractors and the Allee effect
is the sigmoid Beverton–Holt (or second-type Holling) difference equation

xn+1 =
ax2n

1 + x2n
, n = 0, 1, . . . , (8)

where a > 0 and x0 ≥ 0. The dynamics of Equation (8) may be concisely summarized as follows:

lim
n→∞

xn =


0 if a < 2 or (a ≥ 2 and x0 < x−)
x− if a ≥ 2 and x0 = x−
x+ if a ≥ 2 and x0 > x−,

(9)

where x− and x+ are the two positive equilibria when a ≥ 2; see [1, 5]. One possible two-generation
population model based on Equation (8),

xn+1 =
a1x

2
n

1 + x2n
+

a2x
2
n−1

1 + x2n−1
, n = 0, 1, . . . , (10)

where ai > 0 for i = 1, 2 and x−1, x0 ≥ 0, was considered in [4]. However, the summary of the global
dynamics of Equation (10) is not an immediate extension of the global dynamics of Equation (8) as given in
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(9); see [4]. Equation (10) can have up to three equilibrium solutions and up to three period-two solutions.
In the case when Equation (10) has three equilibrium solutions and three period-two solutions, the zero
equilibrium, the larger positive equilibrium, and one period-two solution are attractors with substantial
basins of attraction, which together with the remaining equilibrium and the global stable manifolds of the
saddle-point period-two solutions exhaust the first quadrant of initial conditions. This behavior happens
when the coefficient a2 is in some sense dominant to a1; see [4]. Such behavior is typical for other models
in population dynamics such as

xn+1 =
a1xn

1 + xn
+

a2x
2
n−1

1 + x2n−1
, n = 0, 1, . . .

and

xn+1 = a1xn +
a2x

2
n−1

1 + x2n−1
, n = 0, 1, . . . ,

which were also investigated in [4]. In the case of a k-generation population model based on the sigmoid
Beverton–Holt difference equation with k > 2, one can expect to have attractive period-k solutions as well
as chaos.

The first model of the form given in Equation (1), where f is a linear function in both variables (that
is, f(u, v) = cu + dv for c, d, u, v ≥ 0) was considered in [19] to describe the global dynamics in part of
the parametric space. Here we will extend the results from [19] to the whole parametric space. In this
paper we will then restrict ourselves to the case when f(u, v) is a quadratic polynomial, which will give
similar global dynamics to that presented for Equation (10). The corresponding dynamic scenarios will be
essentially the same for any polynomial function of the type f(u, v) = cuk+dum where c, d ≥ 0 and m, k are
positive integers. Higher values of m and k may only create additional equilibria and period-two solutions
but should replicate the global dynamics seen in the quadratic case presented in this paper. The global
dynamics of some higher-order transcendental-type generalized Beverton-Holt equation was considered in
[3].

Let the function F : [0,∞)2 → [0, a) be defined as follows:

F (u, v) =
af(u, v)

1 + f(u, v)
. (11)

Then Equation (1) becomes xn+1 = F (xn, xn−1) for all n = 0, 1, . . . , where F (u, v) is nondecreasing in
both of its arguments.

The following theorem from [2] immediately applies to Equation (1).

Theorem 1 Let I be a set of real numbers and F : I × I → I be a function which is nondecreasing in the
first variable and nondecreasing in the second variable. Then, for every solution {xn}∞n=−1 of the equation

xn+1 = F (xn, xn−1) , x−1, x0 ∈ I, n = 0, 1, . . . , (12)

the subsequences {x2n}∞n=0 and {x2n−1}∞n=0 of even and odd terms of the solution are eventually monotonic.

The consequence of Theorem 1 is that every bounded solution of Equation (12) converges to either an
equilibrium, a period-two solution, or to a singular point on the boundary. It should be noticed that
Theorem 1 is specific for second-order difference equations and does not extend to difference equations
of order higher than two. Furthermore, the powerful theory of monotone maps in the plane [16, 17] can
be applied to Equation (1) to determine the boundaries of the basins of attraction of the equilibrium
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solutions and period-two solutions. Finally, when f(u, v) is a polynomial function, all computation needed
to determine the local stability of all equilibrium solutions and period-two solutions is reduced to the theory
of counting the number of zeros of polynomials in a given interval, as given in [12]. This theory will give
more precise results than the global attractivity and global asymptotic stability results in [7, 8]. However,
in the case of difference equations of the form

xn+1 =
ag(xn, xn−1, . . . , xn+1−k)

1 + g(xn, xn−1, . . . , xn+1−k)
, n = 0, 1, . . . , k ≥ 1,

where a > 0 and g is nondecreasing in all its arguments, Theorem 1 does not apply for k > 2, but the
results from [7, 8, 13] can give global dynamics in some regions of the parametric space.

The following theorem from [10] is often useful in determining the global attractivity of a unique positive
equilibrium.

Theorem 2 Let I ⊆ [0,∞) be some open interval and assume that F ∈ C[I × I, (0,∞)] satisfies the
following conditions:

(i) F (x, y) is nondecreasing in each of its arguments;
(ii) Equation (12) has a unique positive equilibrium point x ∈ I and the function F (x, x) satisfies the

negative feedback condition:

(x− x)(F (x, x)− x) < 0 for every x ∈ I\{x}.

Then every positive solution of Equation (12) with initial conditions in I converges to x.

The following result from [4] will be used to describe the global dynamics of Equation (1).

Theorem 3 Assume that difference equation (12) has three equilibrium points U1 ≤ x̄0 < x̄SW < x̄NE
where the equilibrium points x̄0 and x̄NE are locally asymptotically stable. Further, assume that there
exists a minimal period-two solution {Φ1,Ψ1} which is a saddle point such that (Φ1,Ψ1) ∈ int(Q2(ESW )).
In this case there exist four continuous curves Ws(Φ1,Ψ1), Ws(Ψ1,Φ1),Wu(Φ1,Ψ1),Wu(Ψ1,Φ1), where
Ws(Φ1,Ψ1),Ws(Ψ1,Φ1) are passing through the point ESW , and are graphs of decreasing functions. The
curves Wu(Φ1,Ψ1),Wu(Ψ1,Φ1) are the graphs of increasing functions and are starting at E0. Every
solution which starts below Ws(Φ1,Ψ1)∪Ws(Ψ1,Φ1) in the North-east ordering converges to E0 and every
solution which starts above Ws(Φ1,Ψ1) ∪ Ws(Ψ1,Φ1) in the North-east ordering converges to ENE, i.e.
Ws(Φ1,Ψ1) = C+1 = C+2 and Ws(Ψ1,Φ1) = C−1 = C−2 .

This paper is organized as follows. The next section deals with the local stability of equilibrium
solutions and period-two solutions of the general second-order difference equation (12), where F (u, v) is
nondecreasing in both of its arguments. In view of the results for monotone maps in [16, 17] and their
applications to second-order difference equations in [4, 5], the local dynamics of the equilibrium solutions
and period-two solutions will determine the global dynamics in hyperbolic cases and some nonhyperbolic
cases as well. The third section will provide some examples of global dynamic scenarios of Equation (1)
when the function f(u, v) is either linear in both variables or linear in one variable and quadratic in the
other variable. The obtained results will be interesting from a modeling point of view as they show that the
appearance of period-two solutions with substantial basins of attraction (sets which contain open subsets)
is controlled by the coefficient of the xn−1 term that is affected by the size of the grandparents’ population.
The same phenomenon was observed in the case of Equation (10).
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2 Local Stability

In this section we provide general conditions to determine the local stability of equilibrium solutions and
period-two solutions.

It is clear that xn ≤ a for all n ≥ 1. In light of Theorem 1, since all solutions are bounded, if there
are no singular points on the boundary of the domain of F , it immediately follows that all solutions to
Equation (1) converge to an equilibrium or a period-two solution.

An equilibrium x of Equation (1) satisfies

x(1 + f(x, x)) = af(x, x). (13)

Clearly x0 = 0 is an equilibrium point if and only if (0, 0) is in the domain of f and f(0, 0) = 0.

The linearized equation of Equation (1) about an equilibrium x is

zn+1 = Fu(x, x)zn + Fv(x, x)zn−1, n = 0, 1, . . . .

Since f is a nondecreasing function, it follows that Fu(x, x) ≥ 0, Fv(x, x) ≥ 0. Therefore, if

λ(x) = Fu(x, x) + Fv(x, x) =
a(fu(x, x) + fv(x, x))

(1 + f(x, x))2
, (14)

then in view of Corollary 2 of [13] we may conclude that

x is


locally asymptotically stable if λ(x) < 1
nonhyperbolic if λ(x) = 1
unstable if λ(x) > 1.

Further, Theorem 2.13 of [15] implies that if x is unstable, then

x is


a repeller if δ(x) > 1
nonhyperbolic if δ(x) = 1
a saddle point if δ(x) < 1,

where

δ(x) = Fv(x, x)− Fu(x, x) =
a(fv(x, x)− fu(x, x))

(1 + f(x, x))2
. (15)

Let (φ, ψ) be a period-two solution of Equation (1). The Jacobian matrix of the corresponding map
T = G2, where G(u, v) = (v, F (v, u)) and F is given by Equation (11), is given in Theorem 12 of [6]. The
linearized equation evaluated at (φ, ψ) is

λ2 − TrJT (φ, ψ)λ+DetJT (φ, ψ) = 0,

where
TrJT (φ, ψ) = D2F (ψ, φ) +D1F (F (ψ, φ), ψ) ·D1F (ψ, φ) +D2F (F (ψ, φ), ψ)

and
DetJT (φ, ψ) = D2F (F (ψ, φ), ψ) ·D2F (ψ, φ).
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3 Examples

In this section we present four examples of different forms of Equation (1) where the transition function
f(u, v) is linear or quadratic polynomial in its variables which effects the global dynamics.

3.1 Linear-Linear: f(u, v) = cu+ dv

We consider the difference equation

xn+1 =
a(cxn + dxn−1)

1 + cxn + dxn−1
, n = 0, 1, . . . , (16)

where c ≥ 0 and d > 0. If d = 0, then Equation (16) becomes Equation (2) after a reduction of parameters.

By Equation (13) we know that x0 = 0 is always a fixed point and x+ = a(c+d)−1
c+d is a unique positive fixed

point for a(c+ d) > 1.

Since λ(x0) = a(c+ d), we have that

x0 is


locally asymptotically stable if a(c+ d) < 1
nonhyperbolic if a(c+ d) = 1
unstable if a(c+ d) > 1.

Further, notice that

λ(x+) =
a(c+ d)(

1 +
(
a(c+d)−1
c+d

)
· (c+ d)

)2 =
1

a(c+ d)
< 1

for all values of parameters for which x+ exists. Therefore

x+ =
a(c+ d)− 1

c+ d
is always locally asymptotically stable.

Note that there is an exchange in stability from x0 to x+ as the parametric value a(c+ d) passes through
1.

We next search for period-two solutions. Suppose there exists such a solution {ψ, φ, ψ, φ, . . .} with
φ 6= ψ. Then {ψ, φ} satisfies the following system:

ψ =
af(φ, ψ)

1 + f(φ, ψ)
=

a(cφ+ dψ)

1 + cφ+ dψ

φ =
af(ψ, φ)

1 + f(ψ, φ)
=

a(cψ + dφ)

1 + cψ + dφ

. (17)

Notice that

ψ − φ =
a(d− c)(ψ − φ)

(1 + cφ+ dψ)(1 + cψ + dφ)
,

whence we deduce that d > c and (1 + cφ+ dψ)(1 + dψ + dφ) = a(d− c). Now

ψ + φ =
a ((c+ d)(ψ + φ) + 2(cφ+ dψ)(cψ + dφ))

a(d− c)
,

or equivalently,
2c(ψ + φ) + 2(cφ+ dψ)(cψ + dφ) = 0.
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Since ψ + φ > 0, it must be the case that c = 0, and then 2d2ψφ = 0 so that one of either φ or ψ equals
zero. Without loss of generality assume φ = 0. But then ψ = adψ

1+dψ , and hence ψ = ad−1
d = x+. Thus the

only non-equilibrium solution of System (17) is the period-two solution {x+, 0, x+, 0, . . .}, which exists for
ad > 1 and c = 0. Now we formulate our main result about the global dynamics of Equation (16).

Theorem 4 Consider Equation (16).

(a) If a(c+ d) ≤ 1, then x0 = 0 is a global attractor of all solutions.

(b) If c = 0 and ad > 1, then there exists a period-two solution
{
ad−1
d , 0, ad−1d , 0, . . .

}
. x+ is a global at-

tractor of all solutions with positive initial conditions. Any solution with exactly one initial condition
equal to zero will converge to the period-two solution.

(c) If c > 0 and a(c+ d) > 1, x+ is a global attractor of all nonzero solutions.

Proof.

(a) If a(c+ d) ≤ 1, then x0 = 0 is the only equilibrium, and no period-two solutions exist. By Theorem
1 all solutions must converge to zero.

(b) Suppose c = 0 and ad > 1, and consider I = (0,∞). Notice that

F (x, x) =
adx

1 + dx
≷ x ⇐⇒ x+ ≷ x,

and therefore by Theorem 2 we have that all solutions with initial conditions in I converge to x+.
Now suppose one initial condition is zero, so without loss of generality assume x−1 = 0 and x0 > 0.
Then x1 = 0 and

x2 =
adx0

1 + dx0
≷ x0 ⇐⇒

ad− 1

d
= x+ ≷ x0.

Further, one can show x2 ≶ x+ ⇐⇒ x0 ≶ x+. By induction, lim
k→∞

x2k = x+ and x2k−1 = 0 for all

k = 0, 1, . . .. Thus all solutions with exactly one initial condition equal to zero will converge to the
period-two solution {x+, 0, x+, 0, . . .}.

(c) When c > 0 and a(c + d) > 1, x+ is locally asymptotically stable while x0 is unstable. As in the
proof of (b) we can employ Theorem 2 to show that all solutions with positive initial conditions must
converge to x+. Since c > 0 and d > 0, if x0 + x−1 > 0, then x1 = F (x0, x−1) > 0 (and also x2 > 0),
so the solution eventually has consecutive positive terms and must converge to x+.

2

3.2 Translated Linear-Linear: f(u, v) = cu+ dv + k

We briefly consider the difference equation

xn+1 =
a(cxn + dxn−1 + k)

1 + cxn + dxn−1 + k
, n = 0, 1, . . . , (18)
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where c ≥ 0, d ≥ 0, c+ d > 0, and k > 0. We notice in this example f(0, 0) = k > 0, so the origin cannot
be an equilibrium. More specifically, an equilibrium of Equation (18) must satisfy

(c+ d)x2 + (k + 1− a(c+ d))x− ak = 0

Since c + d > 0 and ak > 0 by Descartes’ Rule of Signs it must be the case that there exists a unique
positive equilibrium x+.

Theorem 5 Consider Equation (18) such that c + d > 0 and k > 0. The unique positive equilibrium x+
is a global attractor.

Proof. The result follows from a straightforward application of Theorem 1.4.8 of [14]. 2

3.3 Quadratic-Linear: f(u, v) = cu2 + dv

We consider the difference equation

xn+1 =
a(cx2n + dxn−1)

1 + cx2n + dxn−1
, n = 0, 1, . . . . (19)

Remark 1 For the analysis that follows, we will consider Equation (19) with c > 0 and d > 0. Notice
that when c = 0 Equation (19) is a special case of Equation (16), and the global dynamics for this case
is discussed in Theorem 4. When d = 0 Equation (19) is essentially Equation (8), the dynamics of which
may be seen in (9).

An equilibrium solution of Equation (19) satisfies

cx3 + dx2 + x = acx2 + adx

so that all nonzero equilibria satisfy

cx2 + (d− ac)x+ (1− ad) = 0, (20)

whence we easily deduce the possible solutions

x± =
ac− d±

√
(d− ac)2 + 4c(ad− 1)

2c
,

which are real if and only if R = (d− ac)2 + 4c(ad− 1) ≥ 0.
Notice that

R ≥ 0 ⇐⇒ d2 − 2acd+ a2c2 + 4acd− 4c ≥ 0 ⇐⇒ (ac+ d)2 ≥ 4c. (21)

Here we have that

λ(x) =
a(2cx+ d)

(1 + cx2 + dx)2
.

Theorem 6 Equation (19) always has the zero equilibrium x0 = 0, and

x0 is


locally asymptotically stable if ad < 1
nonhyperbolic if ad = 1
a repeller if ad > 1.

Proof. The proof follows from the fact that λ(x0) = δ(x0) = ad. 2

The next result gives the local stability of positive equilibrium solutions.
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Theorem 7 Assume c > 0 and d > 0.

(1) Suppose either
(a) d ≥ ac and 1 ≥ ad, or
(b) d < ac, 1 > ad, and R < 0.
Then Equation (19) has no positive equilibria.

(2) Suppose either
(a) 1 < ad, or
(b) d < ac and 1 = ad.
Then Equation (19) has the positive equilibrium solution x+, and it is locally asymptotically stable.

(3) Suppose d < ac, 1 > ad, and R = 0. Then Equation (19) has the positive equilibrium solution
x±, and it is nonhyperbolic of stable type (that is one characteristic value is λ1 = ±1 and the other
|λ1| < 1).

(4) Suppose d < ac, 1 > ad, and R > 0. Then Equation (19) has two positive equilibria, x+ and x−; x+
is locally asymptotically stable, and x− is a saddle point.

Proof. The existence of positive equilibria follows from Descartes’ Rule of Signs. Using Equation (14),
notice that

λ(x) =
a(2cx+ d)

(1 + cx2 + dx)2
=

a(2cx+ d)

(a(cx+ d))2
=

2cx+ d

a(cx+ d)2
=

1

a(cx+ d)
+

cx

a(cx+ d)2
.

Further, for the parametric values for which x+ exists,

λ(x+) ≤ 1 ⇐⇒ cx+
a(cx+ + d)2

≤ a(cx+ + d)− 1

a(cx+ + d)

⇐⇒ cx+ ≤ (cx+ + d) (a(cx+ + d)− 1) = (cx+ + d)(cx2+ + dx+)

⇐⇒ c ≤ (cx+ + d)2

⇐⇒ 4c ≤ (2cx+ + 2d)2 = (ac+ d+
√
R)2,

which is true by (21). Thus if R > 0, x+ is locally asymptotically stable, and if R = 0, x± is nonhy-
perbolic. In the latter case the characteristic equation of the linearization of Equation (19) about x±,
y2 = Fu(x±, x±)y+Fv(x±, x±), reduces to acy2− (ac− d)y− d = 0, which has characteristic values y1 = 1
and y2 = − d

ac , where −1 < y2 < 0 since ac > d. Thus in this case x± is nonhyperbolic of stable type.
When x− exists, then

λ(x−) > 1 ⇐⇒ 4c > (ac+ d−
√
R)2

⇐⇒ 4c+ (ac+ d)
√
R > (ac+ d)2

⇐⇒ (ac+ d)
√
R > (ac+ d)2 − 4c = R

⇐⇒ (ac+ d)2 > R = (ac+ d)2 − 4c,

which is true since c > 0. To show more specifically that x− is a saddle point when R > 0, we must show
that δ(x−) < 1, where δ is defined by Equation (15). Notice

δ(x−) =
a(d− 2cx−)

(1 + cx2− + dx−)2
=

a(d− 2cx−)

(a(cx− + d))2
=

4(d− 2cx−)

a(2cx− + 2d)2
=

4
(

2d− ac+
√
R
)

a(ac+ d−
√
R)2

,
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and so we have that

δ(x−) < 1 ⇐⇒ 4
(

2d− ac+
√
R
)
< a

(
ac+ d−

√
R
)2

⇐⇒ (2 + a(ac+ d))
√
R < a(ac+ d)2 − 4d.

The right-hand side of the latter inequality is positive since a(ac+ d)2 − 4d > 4ac− 4d = 4(ac− d) > 0 by
assumption. But then

δ(x−) < 1 ⇐⇒ (2 + a(ac+ d))2
(
(ac+ d)2 − 4c

)
<
(
a(ac+ d)2 − 4d

)2
⇐⇒ 3a3c2d+ 6a2cd2 + 3ad3 − 3a2c2 − 2acd− 3d2 − 4c < 0

⇐⇒ (ad− 1)
(
3d2 + 3a2c2 + 2c(3ad+ 2)

)
< 0,

which is automatically true since the latter factor is strictly positive and ad < 1. Thus indeed x− is a
saddle point when it exists for R > 0. 2

Theorem 8 There exist no minimal period-two solutions to Equation (19) if c, d > 0.

Proof. Suppose there exist φ, ψ > 0 with φ 6= ψ such that
ψ =

af(φ, ψ)

1 + f(φ, ψ)
=

a(cφ2 + dψ)

1 + cφ2 + dψ

φ =
af(ψ, φ)

1 + f(ψ, φ)
=

a(cψ2 + dφ)

1 + cψ2 + dφ

. (22)

From System (22) we notice that

ψ − φ =
a(ψ − φ)(d− c(ψ + φ))

(1 + cφ2 + dψ)(1 + cψ2 + dφ)
,

whence it immediately follows that (1 + cφ2 + dψ)(1 + cψ2 + dφ) = a(d− c(ψ + φ)). But then

ψ + φ =
2(cφ2 + dψ)(cψ2 + dφ) + c(ψ2 + φ2) + d(ψ + φ)

d− c(ψ + φ)
.

Thus we have that necessarily

2φψ =
2a2(cφ2 + dψ)(cψ2 + dφ)

a(d− c(ψ + φ))
= a

(
(ψ + φ)− c(ψ2 + φ2) + d(ψ + φ)

d− c(ψ + φ)

)
> 0

since both ψ, φ > 0. But this implies that

(ψ + φ)(d− c(ψ + φ)) > c(ψ2 + φ2) + d(ψ + φ)

⇐⇒ d(ψ + φ)− c(ψ + φ)2 > c(ψ2 + φ2) + d(ψ + φ)

⇐⇒ 0 > c(ψ2 + φ2) + c(ψ + φ)2,

a clear contradiction since c > 0.
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Now suppose there exists a period-two solution {φ, ψ, φ, ψ, . . .} with φ 6= ψ but φψ = 0. Suppose
without loss of generality that φ = 0. Now

ψ =
af(0, ψ)

1 + f(0, ψ)
=

adψ

1 + dψ

0 =
af(ψ, 0)

1 + f(ψ, 0)
=

acψ2

1 + cψ2

,

which immediately leads to the contradiction ψ = φ = 0 for c > 0. Thus Equation (19) has no minimal
period-two solutions. 2

The next result describes the global dynamics of Equation (19).

Theorem 9 Consider Equation (19) under the condition c > 0 and d > 0.

(1) Suppose either
(a) d ≥ ac and 1 ≥ ad, or
(b) d < ac, 1 > ad, and R < 0.
Then x0 is a global attractor of all solutions.

(2) Suppose either
(a) 1 < ad, or
(b) d < ac and 1 = ad.
Then x+ is a global attractor of all nonzero solutions.

(3) Suppose d < ac, 1 > ad, and R = 0. Then Equation (19) has the equilibria x0 = 0, which is locally
asymptotically stable, and x±, which is nonhyperbolic of stable type. There exists a continuous curve
C passing through E = (x±, x±) such that C is the graph of a decreasing function. The set of initial
conditions Q1 = {(x−1, x0) : x−1 ≥ 0, x0 ≥ 0} is the union of two disjoint basins of attraction,
namely Q1 = B(E0) ∪ B(E), where E0 = (x0, x0),

B(E0) = {(x−1, x0) : (x−1, x0) ≺ne (x, y) for some (x, y) ∈ C}, and

B(E) = {(x−1, x0) : (x, y) ≺ne (x−1, x0) for some (x, y) ∈ C} ∪ C.

(4) Suppose d < ac, 1 > ad, and R > 0. Then Equation (19) has the equilibria x0 = 0, which is locally
asymptotically stable, x−, which is a saddle point, and x+, which is locally asymptotically stable.
There exist two continuous curves Ws(E−) and Wu(E−), both passing through E− = (x−, x−), such
thatWs(E−) is the graph of a decreasing function andWu(E−) is the graph of an increasing function.
The set of initial conditions Q1 = {(x−1, x0) : x−1 ≥ 0, x0 ≥ 0} is the union of three disjoint
basins of attraction, namely Q1 = B(E0) ∪ B(E−) ∪ B(E+), where E0 = (x0, x0), E+ = (x+, x+),
B(E−) =Ws(E−),

B(E0) = {(x−1, x0) : (x−1, x0) ≺ne (x, y) for some (x, y) ∈ Ws(E−)}, and

B(E+) = {(x−1, x0) : (x, y) ≺ne (x−1, x0) for some (x, y) ∈ Ws(E−)}

Proof. (1) The proof in this case follows from Theorems 1, 7, and 8 along with the fact that x0 = 0 is the
sole equilibrium of Equation (19).
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(2) The proof used to show that all solutions with positive initial conditions converge to x+ follows from
an application of Theorem 2 (as used above in the proof of Theorem 4). Notice that x1 = F (x0, x−1) > 0
if either x0 > 0 or x−1 > 0 (and similar for x2), so I = (0,∞) is an attracting and invariant interval. Thus
all nonzero solutions must converge to x+.

(3) The proof follows from an application of Theorems 1-4 of [17] applied to the cooperative second
iterate of the map corresponding to Equation (19). The proof is completely analogous to the proof of
Theorem 5 in [4], so we omit the details.

(4) The proof follows from an immediate application of Theorem 5 in [4]. 2

3.4 Linear-Quadratic: f(u, v) = cu+ dv2

We consider the difference equation

xn+1 =
a(cxn + dx2n−1)

1 + cxn + dx2n−1
, n = 0, 1, . . . . (23)

Remark 2 For the analysis that follows, we will consider Equation (23) with c > 0 and d > 0. Notice
that when d = 0 Equation (23) reduces to Equation (2), a special case of Equation (16). When c = 0
Equation (23) is essentially Equation (8) with delay.

An equilibrium of (23) satisfies
dx3 + cx2 + x = acx+ adx2

so that all nonzero equilibria satisfy

dx2 + (c− ad)x+ (1− ac) = 0, (24)

whence we easily deduce the possible solutions

x± =
ad− c±

√
(c− ad)2 + 4d(ac− 1)

2d
,

which are real if and only if R = (c− ad)2 + 4d(ac− 1) ≥ 0.
Notice that

R ≥ 0 ⇐⇒ c2 − 2acd+ a2d2 + 4acd− 4d ≥ 0 ⇐⇒ (ad+ c)2 ≥ 4d. (25)

Here we have that

λ(x) =
a(c+ 2dx)

(1 + cx+ dx2)2
.

Theorem 10 Equation (23) always has the zero equilibrium x0 = 0, and

x0 is


locally asymptotically stable if ac < 1
nonhyperbolic if ac = 1
unstable if ac > 1.

Proof. The proof follows from the fact that λ(x0) = ac. 2

Theorem 11 Consider Equation (23) and assume c > 0 and d > 0.
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(1) Suppose either
(a) c ≥ ad and 1 ≥ ac, or
(b) c < ad, 1 > ac, and R < 0.
Then Equation (23) has no positive equilibria.

(2) Suppose either
(a) 1 < ac, or
(b) c < ad and 1 = ac.
Then Equation (23) has the positive equilibrium solution x+, and it is locally asymptotically stable.

(3) Suppose c < ad, 1 > ac, and R = 0. Then Equation (23) has the positive equilibrium solution x±,
and it is nonhyperbolic of stable type.

(4) Suppose c < ad, 1 > ac, and R > 0. Then Equation (23) has two positive equilibria, x+ and x−; x+
is locally asymptotically stable, and x− is unstable.
Let K = a2d2 + 14acd− 3c2 − 3a3cd2 − 6a2c2d− 3ac3 − 4d.
(i) If K < 0, then x− is a saddle point.
(ii) If K > 0, then x− is a repeller.
(iii) If K = 0, then x− is nonhyperbolic of unstable type (that is one characteristic value is λ1 = ±1
and the other |λ1| > 1).

Proof. Much of the analysis is similar to the considerations in the proof of Theorem 7. Notice that

λ(x) =
a(c+ 2dx)

(1 + cx+ dx2)2
=

a(c+ 2dx)

(a(c+ dx))2
=

c+ 2dx

a(c+ dx)2
=

1

a(c+ dx)
+

dx

a(c+ dx)2
.

For the parametric values for which x+ exists,

λ(x+) ≤ 1 ⇐⇒ dx+
a(c+ dx+)2

≤ a(c+ dx+)− 1

a(c+ dx+)

⇐⇒ dx+ ≤ (c+ dx+) (a(c+ dx+)− 1) = (c+ dx+)(cx+ + dx2+)

⇐⇒ d ≤ (c+ dx+)2

⇐⇒ 4d ≤ (2c+ 2dx+)2 = (ad+ c+
√
R)2,

which is true by (25). Thus if R > 0, x+ is locally asymptotically stable, and if R = 0, x± is nonhy-
perbolic. In the latter case the characteristic equation of the linearization of Equation (23) about x±,
y2 = Fu(x±, x±)y + Fv(x±, x±), reduces to ady2 − cy + c− ad = 0, which has characteristic values y1 = 1
and y2 = c−ad

ad , where −1 < y2 < 0 since ad > c. Thus in this case x± is nonhyperbolic of stable type.
When x− exists,

λ(x−) > 1 ⇐⇒ 4d > (ad+ c−
√
R)2

⇐⇒ 4d+ (ad+ c)
√
R > (ad+ c)2

⇐⇒ (ad+ c)
√
R > (ad+ c)2 − 4d = R

⇐⇒ (ad+ c)2 > R = (ad+ c)2 − 4d

which is true since d > 0. To more specifically classify x−, we must calculate δ(x−). Notice

δ(x−) =
a(2dx− − c)

(1 + cx− + dx2−)2
=

a(2dx− − c)
(a(c+ dx−))2

=
4(2dx− − c)
a(2c+ 2dx−)2

=
4
(
ad− 2c−

√
R
)

a(ad+ c−
√
R)2

,
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and so we have that

δ(x−) ≷ 1 ⇐⇒ 4
(
ad− 2c−

√
R
)
≷ a

(
ad+ c−

√
R
)2

⇐⇒ (a(ad+ c)− 2)
√
R ≷ a(ad+ c)2 − 4ad+ 4c = aR+ 4c.

Notice that R > 0 automatically implies a(ad+ c) > 2, as

0 < (ad+ c)2 − 4d < a2d2 + 2acd+ a2d2 − 4d = 2d (a(ad+ c)− 2)

since c < ad. Therefore we may square both sides to obtain

δ(x−) ≷ 1 ⇐⇒ (a(ad+ c)− 2)2R ≷ (aR+ 4c)2

⇐⇒ R
(
a2(ad+ c)2 − 4a(ad+ c) + 4

)
≷ a2R2 + 8acR+ 16c2

⇐⇒ R
(
a2R− 4ac+ 4

)
≷ a2R2 + 8acR+ 16c2

⇐⇒ R(1− 3ac)− 4c2 ≷ 0

⇐⇒ a2d2 + 14acd− 3c2 − 3a3cd2 − 6a2c2d− 3ac3 − 4d ≷ 0.

Thus if

K = a2d2 + 14acd− 3c2 − 3a3cd2 − 6a2c2d− 3ac3 − 4d, (26)

K < 0 implies x− is a saddle point and K > 0 implies it is a repeller. If K = 0, x− is nonhyperbolic, and
we expect in such case to be nonhyperbolic of unstable type. Indeed one can show that in the event K = 0,
the characteristic equation of the linearization of Equation (23) about x−, y2 = Fu(x−, x−)y+Fv(x−, x−),
has roots y1 = −1 and y2 = Fu(x−, x−) + 1 > 1, which immediately shows the desired result. 2

The investigation of the existence of periodic solutions of Equation (23) is an interesting one that
involves a thorough analysis of potential parametric cases. This analysis will reveal the potential for the
existence of several nonzero periodic solutions. The juxtaposition of Equation (19) with Equation (23)
illustrates an interesting phenomenon in which, loosely speaking, the dominance of the delay term xn−1
contributes to the possibility of periodic solutions arising.

A minimal period-two solution {φ, ψ, φ, ψ, . . .} with φ, ψ > 0 and φ 6= ψ must satisfy
ψ =

af(φ, ψ)

1 + f(φ, ψ)
=

a(cφ+ dψ2)

1 + cφ+ dψ2

φ =
af(ψ, φ)

1 + f(ψ, φ)
=

a(cψ + dφ2)

1 + cψ + dφ2

. (27)

Eliminating either ψ or φ from System (27) we obtain(
dφ2 + (c− ad)φ+ (1− ac)

)
h(φ) = 0, or

(
dψ2 + (c− ad)ψ + (1− ac)

)
h(ψ) = 0,

where

h(x) = −d3x6 + d2(c+ 2ad)x5 − d(c2 + 2d+ 3acd+ a2d2)x4 + d(c+ 3ac2 + 2ad+ 3a2cd)x3 (28)

− (c2 + ac3 + d+ 2acd+ 3a2c2d+ a3cd2)x2 + ac(1 + ac)(2c+ ad)x− a2c2(1 + ac).

Since dx2 + (c − ad)x + (1 − ac) 6= 0 for any x that is not a solution of the equilibrium equation (24),
minimal period-two solutions must be the solutions of the equation

h(x) = 0. (29)
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Theorem 12 Any real solutions of Equation (29) are positive numbers for c, d > 0, and there exist up to
three minimal period-two solutions of Equation (23). Furthermore, let K be as defined in Equation (26),
and define the following expressions:

J = 4a5cd4 − 8a4c2d3 + 12a3c3d2 − 24a3cd3 − 8a2c4d+ 28a2c2d2 − a2d3 + 4ac5 + 4ac3d

+ 32acd2 + 4c4 + 8c2d+ 4d2

∆1 = 6d6

∆2 = d10
(
8a2d2 − 16acd− 7c2 − 24d

)
∆3 = −2d12

(
8a5cd5 + 13a4c2d4 + 10a3c3d3 − 44a3cd4 + 4a2c4d2 − 34a2c2d3 − 4a2d4 − 19ac5d

+14ac3d2 + 44acd3 + 6c6 + 7c4d+ 5c2d2 + 16d3
)

∆4 = c2d13
(
−16a9cd8 − 12a8c2d7 + 24a7c3d6 + 152a7cd7 − 68a6c4d5 + 80a6c2d6 + 8a6d7 + 48a5c5d4

−164a5c3d5 − 464a5cd6 − 60a4c6d3 + 20a4c4d4 − 180a4c2d5 − 64a4d6 + 56a3c7d2 − 332a3c5d3

+388a3c3d4 + 488a3cd5 − 48a2c8d+ 272a2c6d2 + 255a2c4d3 + 152a2c2d4 + 136a2d5 + 24ac9

+8ac7d+ 124ac5d2 + 180ac3d3 − 152acd4 + 24c8 + 68c6d+ 32c4d2 − 44c2d3 − 32d4
)

∆5 = 2c4d13J
(
3a8c2d6 + 2a7cd6 − 18a6c2d5 − a6d6 + 6a5c5d3 + 10a5c3d4 − 8a5cd5 − 10a4c4d3

+44a4c2d4 + 6a4d5 + 54a3c5d2 − 25a3c3d3 − 6a3cd4 + 3a2c8 − 8a2c6d+ 35a2c4d2 − 39a2c2d3

−9a2d4 + 6ac7 + 2ac5d+ 4ac3d2 + 14acd3 + 3c6 + 10c4d+ 11c2d2 + 4d3
)

∆6 = a2c6d14(ac+ 1)KJ2.

(1) If ∆i > 0 for all 2 ≤ i ≤ 6 then Equation (29) has six real roots. Consequently, Equation (23) has
three minimal period-two solutions.
(2) If ∆j ≤ 0 for some 2 ≤ j ≤ 5 and ∆i > 0 for i 6= j, then Equation (29) has two distinct real roots and
two pairs of conjugate imaginary roots. Consequently, Equation (23) has one minimal period-two solution.
(3) If ∆i ≤ 0, ∆i+1 ≥ 0 (such that at least one of these is strict) for some 2 ≤ i ≤ 4, and if ∆6 < 0, then
Equation (29) has three pairs of conjugate imaginary roots. Consequently, Equation (23) has no minimal
period-two solutions.
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Proof. The proof of the first statement follows from Descartes’ Rule of Signs.
Let disc(h) denote the 12× 12 discrimination matrix as defined in [12]:

disc(h) =



a6 a5 a4 a3 a2 a1 a0 0 0 0 0 0
0 6a6 5a5 4a4 3a3 2a2 a1 0 0 0 0 0
0 a6 a5 a4 a3 a2 a1 a0 0 0 0 0
0 0 6a6 5a5 4a4 3a3 2a2 a1 0 0 0 0
0 0 a6 a5 a4 a3 a2 a1 a0 0 0 0
0 0 0 6a6 5a5 4a4 3a3 2a2 a1 0 0 0
0 0 0 a6 a5 a4 a3 a2 a1 a0 0 0
0 0 0 0 6a6 5a5 4a4 3a3 2a2 a1 0 0
0 0 0 0 a6 a5 a4 a3 a2 a1 a0 0
0 0 0 0 0 6a6 5a5 4a4 3a3 2a2 a1 0
0 0 0 0 0 a6 a5 a4 a3 a2 a1 a0
0 0 0 0 0 0 6a6 5a5 4a4 3a3 2a2 a1



.

Here ak equals the coefficient of the degree-k term of h as defined in Equation (28); that is, a6 = −d3,
a5 = d2(c+ 2ad), a4 = −d(c2 + 2d+ 3acd+ a2d2), a3 = d(c+ 3ac2 + 2ad+ 3a2cd), a2 = −(c2 + ac3 + d+
2acd+3a2c2d+a3cd2), a1 = ac(1+ac)(2c+ad), and a0 = −a2c2(1+ac). Let ∆k denote the determinant of
the submatrix of disc(h) formed by its first 2k rows and 2k columns for k = 1, 2, . . . , 6. Then the values of
∆k are listed above, and the veracity of the statements above may now be verified by employing Theorem
1 of [12]. Notice that ∆1 > 0 for all d > 0. 2

Remark 3 The parametric conditions discussed above do not exhaust all of the parametric space but
cover a substantial region of parameters for which Equation (23) possesses hyperbolic dynamics.

We will use the sufficient conditions provided in Theorems 10, 11, and 12 to obtain some global dynamic
scenarios discussed in [4]. We will not investigate the dynamics of Equation (23) when it has one or no
positive fixed point since in such cases the dynamics should be similar to the dynamics of Equation
(19) discussed in Theorem 9. The following theorem relies on results from [4] and summarizes potential
hyperbolic dynamic scenarios for Equation (23) in the event it possesses three fixed points and zero, one,
or three pairs of hyperbolic period-two points. In particular, Theorem 3 is applicable to case (ii) of the
following result. See also the statement and proof of Theorem 11 in [4].

Theorem 13 Consider Equation (23) and assume 0 < c < ad, ac < 1 such that R > 0.

(i) If ∆i > 0 for all 2 ≤ i ≤ 6 then Equation (23) has three equilibria x0 < x− < x+, where x0 and
x+ are locally asymptotically stable and x− is a repeller, and three minimal period-two solutions
{φ1, ψ1}, {φ2, ψ2}, and {φ3, ψ3}. Here (φ1, ψ1) ≺ne (φ2, ψ2) ≺ne (φ3, ψ3), {φ1, ψ1} and {φ3, ψ3} are
saddle points, and {φ2, ψ2} is locally asymptotically stable. The global behavior of Equation (23) is
described by Theorem 8 of [4]. In this case there exist four continuous curvesWs(φ1, ψ1), Ws(ψ1, φ1),
Ws(φ3, ψ3), Ws(ψ3, φ3) that have endpoints at E− = (x−, x−) and are graphs of decreasing functions.
Every solution which starts below Ws(φ1, ψ1) ∪ Ws(ψ1, φ1) in the northeast ordering converges to
E0 = (x0, x0) and every solution which starts aboveWs(φ3, ψ3)∪Ws(ψ3, φ3) in the northeast ordering
converges to E+ = (x+, x+). Every solution which starts above Ws(φ1, ψ1) ∪Ws(ψ1, φ1) and below
Ws(φ3, ψ3) ∪Ws(ψ3, φ3) in the northeast ordering converges to {φ2, ψ2}. For example, this happens
for a = 1, c = 389

2176 , and d = 249
64 .
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(ii) If ∆j ≤ 0 for some 2 ≤ j ≤ 5 and ∆i > 0 for i 6= j, then Equation (23) has three equilibria x0 < x− <
x+, where x0 and x+ are locally asymptotically stable and x− is a repeller, and one period-two solution
{φ1, ψ1}, which is a saddle point. The global behavior of Eq. (23) is described by Theorem 7 of [4].
In this case there exist four continuous curvesWs(φ1, ψ1),Ws(ψ1, φ1),Wu(φ1, ψ1),Wu(ψ1, φ1), where
Ws(φ1, ψ1),Ws(ψ1, φ1) have endpoints at E− = (x−, x−) and are graphs of decreasing functions. The
curves Wu(φ1, ψ1),Wu(ψ1, φ1) are graphs of increasing functions and start at E0 = (x0, x0). Every
solution which starts below Ws(φ1, ψ1) ∪ Ws(ψ1, φ1) in the northeast ordering converges to E0 and
every solution which starts above Ws(φ1, ψ1) ∪ Ws(ψ1, φ1) in the northeast ordering converges to
E+ = (x+, x+) . For example, this happens for a = 1, c = 1

5 , and d = 237
64 .

(iii) If ∆i ≤ 0 and ∆i+1 ≥ 0 (such that at least one of these is strict) for some 2 ≤ i ≤ 4, and if
∆6 < 0, then Eq. (23) has three equilibria x0 < x− < x+, where x0 and x+ are locally asymptotically
stable and x− is a saddle point, and no period-two solution. The global behavior of Equation (23) is
described by Theorem 5 of [4] or Theorem 9 case (4). For example, this happens for a = 1, c = 493

1024 ,
and d = 157

48 .

Equation (23) exhibits global dynamics similar to that of Equation (10), which was investigated in [4].
Therefore, we pose the following conjecture.

Conjecture 1 There exists a topological conjugation between the maps in Equations (10) and (23).
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[4] A. Bilgin, M. R. S. Kulenović, and E. Pilav, Basins of Attraction of Period-Two Solutions of Monotone
Difference Equations. Adv. Difference Equ., (2016), 2016: 74.
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