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ABSTRACT 
This study investigates the role of Toeplitz operators in mathematical analysis, focusing on their 
application within functional analysis and factor theory. It highlights the behavior of infinite, linear, and 
symmetric operators in solving matrix equations, emphasizing the development and testing of efficient 
methods for solving operator equations in linear algebra. The study considers practical applications 
across various scientific fields, analyzing matrix equations involving subtraction. It explores conventional 
solutions and transformations of matrices with distinct eigenvalues using operator theory and spectral 
analysis. The research also examines finite linear operators and their applications in practical contexts, 
aiming to deepen the understanding of matrix equations in areas such as transport theory, theoretical 
physics, and group theory, thus contributing to a more comprehensive grasp of complex systems. 
 
Keywords: Unbounded operator; Operator equation; Solvability conditions; Hellinger-Toeplitz theorem; 
Linear operators; Symmetric operators; Sylvester equation; Practical implications. 
 
INTRODUCTION 
The relationships between matrices are foundational for modeling and analyzing complex systems [1], 
[2], [3]. These relationships are crucial across scientific domains [4], [5]. These relationships are crucial 
across various scientific domains. 
Matrix equations of the form AX−XB=C, where matrices interact through subtraction, are particularly 
significant [6], [7]. Such equations provide a framework for exploring phenomena in physics and 
engineering [8], [9]. 
They offer a structured approach to investigating complex system dynamics [10]. 
This research aims to explore matrix equations of this form, analyzing their properties and solutions to 
reveal their significance in fields like transport theory, theoretical physics, and group theory [11], [12]. 
 We seek to understand how these equations contribute to scientific phenomena, providing insights into 
complex systems [13]. The study will investigate the practical applications of these equations, focusing on 
the behavior of infinite, linear, and symmetric operators.  
We will examine effective methods for solving these equations and their impact on advancements in 
mathematical analysis and practical applications [14], [15], [16].  
This exploration will enhance our understanding of matrix equations and their role in addressing 
complex phenomena across various scientific disciplines. 
 
Theorems and Proposition 
Existence and Uniqueness of Solutions 
Theorem 1  
Let A and B be bounded linear operators on a Hilbert space, and let C be a bounded operator. The 
equation AX − XB =  C has a unique solution X if and only if the spectra of A and B are disjoint. 
Proof: 
Suppose that T is operator in the space of operators defined by the relation (2) by the condition  
σ A ∩ σ B = ϕ so T is invertible. where σ(T)  ⊂ σ A − σ B , then 0 ∉ σ(T) 
The condition 0 ∉ σ A − σ B , we can generalize to the matrix case, and this analogy is useful in our 
discussion.  
To extend the definitions and conditions for the existence of solutions, we consider finite linear operators. 
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Conditions for Non-Singularity 
Proposal 1  
The operator T defined as T: H →  K, X →  AX −  XB, is non-singular if and only if σ(A)  ∩  σ(B)  =  ∅. 
Proof 
Suppose T is non-singular. T(X)=AX−XB=0.  
In other words, the only solution to the equation 
AX= XB is X=0. 
The consequences of this assumption, we assume σ(A)  ∩  σ(B)  =  ∅. 
That is, there exists a common eigenvalue λ ∈ σ(A) and λ ∈ σ(B). Thus, there exist non-zero vectors v ∈ H 
and w ∈ K such that  
Av = λv  and  Bw = λw. 
Consider the operator X = vw∗, where w∗ is the adjoint of w. It is clear that for such an X, the following 
holds: 
AX=A(vw∗)=(λv)w∗=λvw∗ and 
XB = (vw∗)B = v(λw∗) = λvw∗. 
Therefore, we have σ(A) ∩ σ(B) = ∅. 
 
Sufficiency 
Let σ(A) ∩ σ(B) = ∅. We want to show X = 0. That is, AX = XB, or equivalently AX − XB = 0. 
Let X be a nonzero solution and consider the spectral decomposition of A and B. Since the spectra of A and 
B are separated, no eigenvalue of A corresponds to any eigenvalue of B. Now, for each eigenvalue λA for A 
and eigenvalue λB  for B.  
In other words, the separation of spectra rules out the existence of nonzero solutions of 
AX = XB. Therefore, T(X) = 0 means that 
X = 0, so T is non-singular. 
 
Spectral Properties and Convergence Conditions 
The spectra of matrices A and B  are  σ(A) and σ(B) respectively. When both A and B are bounded 
matrices, their spectral radii ρ(A) and ρ(B) respectively, are finite. 
 In order for the solution of the operator equation AX = XB to converge, a necessary condition is that the 
difference in the spectral radii of A and B is strictly greater than zero: , i.e., ρ(A)  −  ρ(B)  >  0. 
This condition ensures that the exponential growth rate of the solutions is bounded, leading to 
convergence.  
In other words, this spectral separation prevents instability and ensures well-posed solutions to the 
equation. 
When either A or B, or both, are unbounded, additional conditions are required to guarantee convergence. 
One common condition is that the difference in their spectral radii remains finite, even when considering 
unbounded spectra. Mathematically, this can be expressed as: 
lim sup(σ(A))  −  lim inf(σ(B))  >  0. 
where lim sup and lim inf denote the limit superior and limit inferior of the spectra, respectively. 
The convergence of solutions for the operator equation AX =  XB depends critically on the spectral 
properties of the matrices A and B.  
In this way, using the additional conditions on spectra such as the disjoint spectra and the boundedness of 
their radii we can prove the convergence, and thus, state the solid basis for the using of these equations in 
different scientific and engineering applications. 
 
Proposal Mathematics  Analysis Of Toeplitz Operator 
Toeplitz operators are fundamental in the studying of linear operators with a special emphasis toward 
functional analysis and operator theory. To give some general ideas of Toeplitz theory and its 
applicability for solving operator equations. 
 
Some Algebraic Properties of Toeplitz Operators 
Theorem 1 
Hence let be their be a Hilbert space, and let be a Toeplitz operator. In case of ‘is Hermitian’ holds then it 
is bounded. 
Proof 
let’s look at an example of Toeplitz operator acting on a Hilbert space. Our first goal is to prove that if is 
Hermitian, then it is bounded. 
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First, recall that a Hermitian operator satisfies the property:First, recall that a Hermitian operator 
satisfies the property: 
⟨Tx, y⟩  =  ⟨x, Ty⟩ for all x, y ∈  H, 
where ⟨·, ·⟩ denotes the inner product in the Hilbert space H. Now, let's consider the norm of the Toeplitz 
operator T: 

‖T‖  =  sup{‖Tx‖ ∶  ‖x‖  =  1}. 
Since T is Hermitian, we have: 

‖Tx‖² =  ⟨Tx, Tx⟩  =  ⟨x, TTx⟩  =  ⟨x, T²x⟩. 
By the Cauchy-Schwarz inequality, we have: 

|⟨x, T²x⟩|  ≤  ‖x‖  ·  ‖T²x‖. 
Thus, the following discussion is based on the results of the spectral decomposition of the Hermitian 
operator. 
Since is Hermitian, is has eigenvectors of an orthonormal basis of eigenvectors. 
We denote the eigenvalues of T, and the corresponding orthonormal eigenvectors by and, respectively, 
( λ₁, λ₂, . . . , λn ) and (  v₁, v₂, . . . , vn  ). For this purpose, one employs the usual spectral decomposition of 
the given operator by its eigenvalues (λ₁, λ₂, . . . , λn)  and its corresponding orthogonal eigenvectors 
(v₁, v₂, . . . , vn). 
The spectral decomposition of an operator is given by: 

T =  λi

n

i=1

Pi  

Pi  is the orthogonal projector on the subspace generated by the eigenvector vi , and λi . 
We use spectral decomposition. of  operator T is given by: 

Pi = vivi
T  

Where vivi
T  is the exterior product of vi with itself (transposed). 

So, the operator T can be expressed as: 
T = λ1P1v1

T + λ2P2v2
T +⋯+ λn Pnvn

T  
Using the weighted sum of orthogonal projections onto the eigenvectors.  
Now, let's consider the norm of T²: 

‖T²‖  =  sup{‖T²x‖ ∶  ‖x‖  =  1}. 
Since T² is also Hermitian, we have: 

‖T²x‖² =  ⟨T²x, T²x⟩  =  ⟨x, T⁴x⟩. 
By the Cauchy-Schwarz inequality, we have: 

|⟨x, T⁴x⟩|  ≤  ‖x‖  ·  ‖T⁴x‖. 
Now, using the spectral decomposition of T, we can express T⁴ as: 

T⁴ =  ( λᵢ Pi)⁴

𝐧

𝐧=𝟏

  

=   λᵢ2  Pi⁴

𝐧

𝐧=𝟏

 

Therefore, we have: 

‖T⁴‖  =  sup{‖T⁴x‖ ∶  ‖x‖  =  1}  =  sup{‖ λᵢ4
𝐧

𝐧=𝟏

⟨vᵢ|x⟩vᵢ‖ ∶  ‖x‖  =  1}. 

Since {vᵢ} forms an orthonormal basis, we have: 

‖( λi  ⟨vᵢ|vᵢ⟩)⁴

i

‖  ≤   |λᵢ|⁴  ⟨vᵢ|x⟩vᵢ ²

i

  ≤    |λi|⁴.

i

  

Now, let M =  max{|λ1|⁴, |λ2|⁴, . . . , |λn |⁴}. 
Therefore, we have: 

‖T⁴‖  ≤  M. 
Now, let's go back to the expression for ‖Tx‖²: 

‖Tx‖² =  ⟨x, T²x⟩  =    λᵢ 2    ⟨vᵢ|x⟩vᵢ ²

𝐧

𝐧=𝟏

 

Since {vᵢ} forms an orthonormal basis, we have: 

‖Tx‖² ≤  λᵢ²   

𝐧

𝐧=𝟏

 . 

Therefore, we have: 
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‖Tx‖  ≤  √(‖T⁴‖)  ≤  √M. 
This shows that the norm of T is bounded, i.e., T is a bounded operator.  
 
Applications in Functional Analysis  
Theorem 2 
Toeplitz operators play a crucial role in functional analysis, particularly in studying bounded linear 
operators on Hilbert spaces. 
Proof 
A Toeplitz operator is characterized by its matrix having constant entries along each diagonal. 
Mathematically, this means that for all i, j, the entries tij   satisfy : 

tij = f i − j ,  

for some function f. To show To show that Toeplitz operators are bounded, we need to demonstrate that 
there exists a constant Msuch that for any vector x in the Hilbert space H, the norm of Tx is bounded by 
M ∥ x ∥. 

Let  T be a Toeplitz operator represented by the matrix  tij . Then, for any vector x =  x₁, x₂, . . .   in, H we 

have:  

Tx = ( t1jxj

j

, t2jxj

j

, … ) 

By the Cauchy-Schwarz inequality, we have: 

∥ Tx ∥2
2=     tij  

2

j

    xj 

j

2

 

i

. 

Since tij  depends only on  i − j , the sums    tij  
2

j   are finite for each i. Let 

 Mi =   tij  
2

j . Then, we have:  

∥ Tx ∥2
2≤ Mi ∥ x ∥2

2

i

 

Since the sums Mii  Mi are finite, there exists a constant M such that ∥ x ∥2
2≥ Mi ≥ M for all i. Therefore, 

we have: 
∥ Tx ∥2≤  M‖x‖2i = M ∥ x ∥2. 
This shows that Toeplitz operators are bounded, which highlights their significance in functional analysis 
as bounded linear operators on Hilbert spaces. 
 
Practical Applications  
The understanding of solvability conditions for operator equations has practical implications in various 
scientific and engineering domains. 
 By applying mathematical analysis and operator theory, solutions to such equations can be efficiently 
obtained, leading to advancements in fields such as quantum mechanics, signal processing, and control 
theory. 
There are many methods used in specific conditions to find a unique solution to that situation, we have 
the simplest method, which is the (SVD) method. 
To apply Singular Value Decomposition (SVD) to the matrix equation AX−XB=C , as follows 
                               AX =  XB +  C                                                               (1) 
We have obtained equation (1) by substituting the SVD decompositions of A and B, such that  
A = UA ΣA VA

t      and    B = UBΣB VB
t  . 

  The equation  (1) becomes,  
                                    UA

t UA ΣA VA
t XVB  =  UA

t XUBΣB VB
t  VB + UA

t CVB                         (2) 
      As,     UA

t UA = I  and   VB
t  VB = I  ,   the equation   (1) becomes 

               ΣA VA
t XVB  =  UA

t XUBΣB + UA
t CVB                                                                                    (3)  

                             X = VA (ΣA
−1UA

t UBΣB − VA
t CVB)VB

t                                                                      (4)   
Where UA  and UB  are orthogonal matrices whose columns are the left singular vectors of A and B, 
respectively.  
ΣA  and ΣB  are diagonal matrices containing the singular values of A and B, and VA  and VB  are orthogonal 
matrices whose columns are the right singular vectors of A and B, respectively. 

Here, ΣA
−1 represents the inverse of the diagonal matrix ΣA . This expression gives the solution for X in 

terms of the decomposition matrices UA , UB , ΣA , ΣB , VA , VB , and C. 
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Illustrative ExampleS 
Quantum Mechanics 
In quantum mechanics, operator equations like AX −  XB =  C arise in the study of quantum systems. 
Understanding the solvability conditions of such equations is essential for predicting the behavior of 
quantum particles and designing quantum algorithms. 
Suppose we have the following matrices: 

A =  
3 0
0 −1

 , B =  
3 0
0 −1

   and  C =  
6 2√15

2√15 −6
  

UA = UB =  
1 0
0 1

      ,   ΣA = ΣB =  
3 0
0 1

  

ΣA
−1 =  

1 3 0
0 1

    and   VA = VB =  
1 0
0 1

  , VA
t CVB =  

6 2√15

2√15 −6
  

ΣA
−1UA

t UBΣB =  
1 3 0

0 1
  

1 0
0 1

  
3 0
0 1

 =  
1 0
0 1

  

 ΣA
−1UA

t UBΣB − VA
t CVB =  

1 0
0 1

 −  6 2√15

2√15 −6
 =  −5 −2√15

−2√15 7
  

X =  
1 0
0 1

  −5 −2√15

−2√15 7
  

1 0
0 1

  

    =  
−5 −2√15

−2√15 7
 . 

By using the SDV method, you can achieve a structured approach to managing the data involved in solving 
equations such as  AX−XB=C  calculations and increase efficiency in obtaining solutions. 
 
Singular Value Decomposition (SVD) for Image Compression 
In the domain of image processing, our utilization of matrix equations for data compression and feature 
extraction is highlighted. For instance, given an image represented as a matrix of pixel intensities, we can 
exploit singular value decomposition (SVD) in order to decompose the image matrix into three matrices 
denoted as U, Σ  and  Vt , where U and V  are orthogonal matrices of eigenvectors and Σ is a diagonal matrix 
of singular values.  By preserving only the dominant singular values and their corresponding 
eigenvectors, it is possible to achieve an approximation of the original image with reduced 
dimensionality.  Image compression is achieved while simultaneously preserving image features of 
importance.   
 
Numerical Example of Image Compression Using SVD 
Consider a small 4 × 4 grayscale image, where the matrix A represents pixel values: 

𝐀 =  

𝟐𝟐 𝟐𝟐
𝟐𝟐 𝟐𝟐

𝟐𝟐 𝟐𝟐
𝟐𝟐 𝟐𝟐

𝟏𝟎 𝟏𝟎
𝟏𝟎 𝟏𝟎

𝟏𝟎 𝟏𝟎
𝟏𝟎 𝟏𝟎

  

we decompose the matrix A into three matrices U, Σ, and Vt : 
A = UΣ Vt  

The Σ matrix contains the singular values of matrix A: 

Σ =  

𝟔𝟒  𝟎 
𝟎   𝟎 

𝟎 𝟎
𝟎 𝟎

𝟎     𝟎
𝟎    𝟎

  
𝟎 𝟎
𝟎 𝟎

  

Compute the U  and Vt  Matrices: 

𝐔 =

 

 
 
 
 
 
 

𝟏

√𝟐
𝟎

𝟏

√𝟐
  𝟎

𝟏

√𝟐
𝟎

−
𝟏

√𝟐
𝟎

𝟏

√𝟐
  𝟎

𝟏

√𝟐
  𝟎

𝟏

√𝟐
𝟎

−
𝟏

√𝟐
𝟎
 

 
 
 
 
 
 

,  Vt =  

 

 
 
 

𝟏

√𝟐
  

𝟏

√𝟐
𝟎 𝟎

 
𝟎 𝟎
𝟏 𝟎

𝟏

√𝟐
−
𝟏

√𝟐
𝟎        𝟎

  
𝟎 𝟎
𝟎 𝟏

 

 
 
 

     

To compress the image, we retain only the largest singular value in Σ and set the others to zero. This 
creates a compressed version of the Σ  matrix: 
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Σ′ =  

𝟔𝟒  𝟎 
𝟎   𝟎 

𝟎 𝟎
𝟎 𝟎

𝟎     𝟎
𝟎    𝟎

  
𝟎 𝟎
𝟎 𝟎

  

We then reconstruct the compressed image using the modified matrices U, Σ′, and Vt: 
A′ = UΣ′ Vt . 
After performing the necessary matrix multiplications, the reconstructed matrix A′ looks like this: 

A′ =  

𝟐𝟐 𝟐𝟐
𝟐𝟐 𝟐𝟐

𝟐𝟐 𝟐𝟐
𝟐𝟐 𝟐𝟐

𝟏𝟎 𝟏𝟎
𝟏𝟎 𝟏𝟎

𝟏𝟎 𝟏𝟎
𝟏𝟎 𝟏𝟎

 . 

In this straightforward example, the image remains unchanged despite the compression due to the fact 
that the primary singular value preserves nearly all the image's information. However, in real-world 
examples where images are larger, retaining just a few important singular values can reduce the amount 
of data required, while obtaining acceptable images. 
 
Application of Matrix Equations in Medical Imaging 
In medical imaging, matrix equations are utilized to solve multiple-reconstruction-of-imagining raw data 
intensity in medical scanners.--for example --magnetic resonance imaging ( MRI) imaging techniques 
acquire complex signals that we process to reconstruct into useful anatomical images. 
For example, Smith et al (2020) employed matrix equations to help reconstruct brain MRI images with 
better spatial resolution. By employing a mathematical model based-on on the matrix equation, the 
authors could "utilize spatial regularization information to reduce image artifacts and improve the quality 
of reconstruction." Their results indicated substantial improvements in quality of the generated-like 
images in comparison to traditional methodologies, which supports the use of matrix equations in actual 
applications (e.g., brain imaging with high resolution). 
This example is an excellent illustration of how to practically implement matrix equations to determine 
imaging reconstruction problems to improve quality of medical diagnosis.   
 
Example in Numbers: Matrix Equations in Medical Imaging 
Matrix equations are especially useful in medical imaging, particularly in the imaging reconstruction of 
images from the raw data generated by the medical scanner. A good example of this is in MRI, it uses 
matrix equations to reconstruct complex signals into meaningful anatomical images. 
Reconstructing the 2D Image in MRI from RAW Data Using Matrix Equations  
The main objective is to reconstruct the 2D image from raw data collected from the MRI scanner. The raw 
data is in the frequency domain and is represented as a matrix    

F = PI 
F. The reconstruction process converts. 
I, the frequency domain data, to the spatial domain using matrix equations. 
P is the encoding matrix that represents the transformation between the spatial and frequency domains 
(e.g., a Fourier transform). 
Assume a simplified case where the image I is a 2×2 matrix representing a small section of an MRI scan: 

 
i11 i12

i21 i22
  

Let’s also assume the encoding matrix P is given by:  

𝐏 =  

𝟏 𝟏
𝟏 −𝟏  

𝟏      𝟏
𝟏 −𝟏

𝟏 𝟏
𝟏 −𝟏   

−𝟏 −𝟏 
−𝟏  𝟏

  

 The frequency domain data F is then computed as: 
F = P ⋅ vec(I)  

Where vec(I) is the vectorized form of the image matrix I: 

vec I =  

i11

i12

i21

i22

  

Multiplying P by vec(I), we obtain the frequency domain data F: 

𝐅 =  

𝟏 𝟏
𝟏 −𝟏  

𝟏      𝟏
𝟏 −𝟏

𝟏 𝟏
𝟏 −𝟏   

−𝟏 −𝟏 
−𝟏  𝟏

  

i11

i12

i21

i22

 =  

i11 + i12 +
i11 − i12  +

i21 +  i22

i21 −  i22

i11 + i12 −
i11 − i12 −   

i21 − i22  
i21 + i22
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To reconstruct the image, we need to invert the process by solving the matrix equation for I: 
I = P−1 ⋅ F 

Assuming P is invertible, the inverse matrix P−1  can be calculated. Applying P−1to the frequency domain 
data F yields: 

vec I = P−1 ⋅ F 
Suppose the measured frequency domain data F is: 

F =  

10
2
4
8

  

Using P−1 , we solve for vec I : 

vec I =

 

 
 
 
 

𝟏

𝟒

𝟏

𝟒
𝟏

𝟒
−
𝟏

𝟒
  

𝟏

𝟒
    
𝟏

𝟒
𝟏

𝟒
−
𝟏

𝟒
𝟏

𝟒

𝟏

𝟒
𝟏

𝟒
−
𝟏

𝟒
 

−
𝟏

𝟒
 −

𝟏

𝟒
 

−
𝟏

𝟒

𝟏

𝟒  

 
 
 
 

 

10
2
4
8

 =  

6
−2
4
2

 . 

The reconstructed image matrix I is then: 

I =  
6 −2
4 2

 . 

The complexity hiding behind these simple examples is hard to see. In MRI, the process of how the raw 
frequency domain data, known as k-space data, are converted back to the images that radiologists study 
during diagnosis is represented almost exactly by the example I just showed. It's simply turned around 
into a matrix equation so that we can construct the image from the k-space data in a single formula. 
Matrix equation are the de facto method to form images in MRI - and by constructing bigger and bigger 
matrix equations we can build higher and higher resolution images which is crucial in early-stage 
diagnosis of many diseases. Smith et al. (2020) - of some of the most advanced and impressive MRI 
reconstruction algorithms yet - instead of specifically this example. 
 
CONCLUSION 
In this work, we have studied the criteria for solvability and convergence in matrix equations of the form 
 AX −  XB =  C. Through the spectral properties of the matrices A and B, we were able to establish 
conditions for convergence of solutions to the aforementioned equations. We also examined the 
properties of Toeplitz operators and provided evidence that Hermitian Toeplitz operators are bounded.   
Results from this study shed light on the convergence properties of matrix equations and their 
applications over a wide range of scientific and engineering fields. This work allows for future research 
and potential improvements in the field of operator theories and their applications. 
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