
Journal of Computational Analysis and Applications                                                                              VOL. 33, NO. 6, 2024 
     VOL. 33, NO. 2, 20 

 

                                                                                 1259                                                                 M. Rega et al 1259-1274 

Scene Classification on Remote Sensing Images with Deep 
Convolutional Neural Network based on Modeling of Mayfly 

Optimization Algorithm 
 

M. Rega1, Dr. S. Sivakumar2 
 

1Research Scholar,Department of Computer and Information Science, Annamalai 
University,Annamalainagar-608002, Email: rekhamohanraj00@gmail.com 

2Assistant Professor, PG Department of Computer Science, Government Arts College, Chidambaram – 
608102, Email: sivassa77@gmail.com 

*Corresponding Author 
 

         Received: 15.07.2024             Revised: 19.08.2024                       Accepted: 22.09.2024 

 
 
ABSTRACT 
Scene Classification (MFO-DCNNSC) technique on Remote Sensing Images. In the MFO-DCNNSC 
technique, the RS images undergo preprocessing using Wiener filtering (WF) to improve the image 
quality. To extract features, the MFO-DCNNSC technique applies the Inception-ResNetv2 model for 
learning the hierarchical depiction of the visual data. The MFO algorithm is useful for the appropriate 
range of the hyperparameters linked to the Inception-ResNetv2 method. With the great feature learning 
abilities of deep neural networks (DNNs), RSI scene classification compelled by deep learning (DL) has 
gained extraordinary attention and got important inventions.Scene classification is a vital study issue in 
RSI that has concerned numerous researchers presently. DL techniques are gaining a reputation in image 
feature analysis and reaching advanced performances in scene classification of RSI. This 
researchproposes a Mayfly Optimizer Algorithm with Deep Convolutional Neural Network. At last, the 
scene classification process has been executed by the usage of the deep belief network (DBN) model. To 
point out the improved performance of the MFO-DCNNSC approach, a huge assortment of experiments 
have been executed on the benchmark database. The obtained values pointed out that the MFO-DCNNSC 
technique outperforms the other models in terms of distinct measures.  
 
Keywords: Scene Classification; Mayfly Optimization Algorithm; Convolutional Neural Network,Remote 
Sensing Image,Wiener Filtering. 
 
1. INTRODUCTION 
With the growth of Earth surveillance technology, many dissimilar types such as synthetic aperture radar 
and multi/hyperspectral higher-resolution imageries of the surface of Earth have been readily accessible 
[1]. So, it is mainly noteworthy to effectively recognize their semantic content, and more intellectual 
classification models of land use and land cover (LULC) are required [2]. Remote sensing image (RSI) 
scene classification targets to mechanically allocate an exact semantic label to every RSI scene patch as 
per its contents, which has become a keen study topic in the area of RSI analysis because of its key 
applications in LULC such as land resource organization, urban planning, traffic control, and disaster 
monitoring [3]. With the development of the spatial resolution of RSI, the classification of RSI slowly 
made 3 similar classification branches at dissimilar stages such as scene-level, object-level, and pixel-level 
[4]. It is worth to declare that we employ the word “RSI classification” as a common concept [5]. To be 
exact, in the initial works, researchers mostly concentrated on categorizing RSI at the pixel or sub-pixel 
level over labelling every pixel in the RSI with a semantic class, since the spatial resolution of RSI is very 
low. The pixel size is parallel to the object size of interest [6]. 
Current research has shown that data-driven deep learning (DL) methods get advanced outcomes in 
scene classification due to their capabilities to learn higher-level abstract features from imageries [7]. The 
improvements in hardware for graphic processing units (GPU) deliver the ability to procedure a huge 
number of data on DL structures. DL provides an architecture for feature learning techniques that 
contains many processing stages to absorb RSI features at dissimilar abstraction levels [8]. The 
Convolutional neural network (CNN) is noble at selecting local features and gradually increasing their 
receptive domains for additional ideas [9]. Transfer-based DL methods function on the basis that vital 
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elements of images are similar; so, they use pre-trained approaches which are trained on larger-scale 
databases for RSI uses [10]. 
This research presents a Mayfly Optimizer Algorithm with Deep Convolutional Neural Network Scene 
Classification (MFO-DCNNSC) technique on Remote Sensing Images. In the MFO-DCNNSC technique, the 
RS images undergo preprocessing using Wiener filtering (WF) to improve the image quality. To extract 
features, the MFO-DCNNSC technique applies the Inception-ResNetv2 model for learning the hierarchical 
depiction of the visual data. Following by, the MFO algorithm is useful for the appropriate range of the 
hyperparameters connected to the Inception-ResNetv2 technique. At last, the scene classification 
procedure has been executed by the use of the deep belief network (DBN) model. To point out the 
superior performance of the MFO-DCNNSC model, a huge array of experiments have been executed on the 
benchmark database. 
 
2. Related Works 
Tian et al. [11] developed an innovative few-shot scene classification technique named hierarchical-
relation network (HiReNet) system containing an embedding and relation network. Primary, Siamese 
architecture was employed. The technique also presents a hierarchical relation learning (HRL) method. 
Also, the system introduces a feature aggregation method for extraction that combines multilevel features 
and utilizes channel attention to re-weight these features. In [12], a lightweight modular network system 
was developed. Primarily, a lightweight self-compensated convolution (SCC), and an SSC technique were 
presented. Subsequently, a self-compensating bottleneck module (SCBM) method dependent upon the 
SCC was presented. Lastly, the technique employed the developed self-compensation bottleneck 
component for making a lightweight as well as modular self-compensation CNN (SCCNN) method. Shi et 
al. [13] introduced a global context feature extraction method that integrates the semantics data of 
various areas over a global pooling and a 3 diverse scale sub-area pooling. Similarly, a 3 branch joint 
feature extraction method was built. Lastly, a lightweight CNN dependent upon joint features (LCNN-JF) 
was made employing depth wise separable convolution, conventional convolution, joint feature 
extraction classifier, and component for classification. 
In [14], a massive kernel CNNs into the scene classification task was presented. Similarly, the efficient 
data with the feature maps has been also intensely channel-based. Hence, to completely model such a 
channel dependency, an innovative channel separation and mixing component was developed. The 
integration of them makes a huge Kernel Separable Mixed Convnet (LSMNet), permitting the system to 
take the efficient needs of feature map at the channel and spatial sizes. Wei, Geng, and Yin [15] developed 
a discriminative system HCA-TSA dependent upon the head-tail global joint dual attention device. 
Similarly, the channel attention method spatial attention module Tail-Spatial Attention (TSA) and Head-
Channel Attention (HCA) have been developed. The model employs the context data refinement capability 
of the GRU method. 
In [16], an innovative dual-encoding technique calledmaster–the slave encoding network (MSE-Net) 
system was designed. The main encoder-dependent ViT removes higher-level semantic features, but the 
MSE dependent upon CNN, captures relatively low-level spatial structure data. Secondarily, this study 
further improves 2 fusion approaches. The primary scheme comprises the auxiliary enhancement units 
(AEUs). The second approach is an interactive perception unit that enables relations and a combination of 
the two encoder’s representations. Shi et al. [17] introduced a feature-augmented self-distilled CNN 
(FASDNet) architecture. Initially, ResNet34 was employed as the backbone network for the extracting 
process. The subsequent one is a feature augmentation pyramid module (FAPM) was developed for 
removing and combing multi-level feature data. Subsequently, auxiliary branches have been built. The 
self-distillation algorithm was employed among the FAPM and the backbone network. In conclusion, the 
developed method was cooperatively supervised through cross-entropy loss, log it distillation loss, and 
feature distillation loss. 
 
3. The Proposed Method 
In this paper, we have proposed an MFO-DCNNSC model on RSI. The main intention of the MFO-DCNNSC 
model encompass different kinds of processes namely WF-based image preprocessing, Inception-
ResNetv2-based feature extraction, MFO-based hyperparameter tuning, and DBN-based classification 
process. Fig. 1 demonstrates the entire procedure of the MFO-DCNNSC technique. 
 
3.1. Image Preprocessing  
Primarily, the MFO-DCNNSC technique on RSI undergoes preprocessing using WF to improve the image 
quality.WF is a signal processing model used to decrease noise from images while trying to reinstate the 
new and exact signal [18]. Unlike median filtering, WF takes into account both the noisy and wanted 
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signal features, creating an adaptive filtering model. It functions in the frequency area, using the power 
spectral density of the noisy and preferred signals to alter the filtering parameters dynamically. WF is 
mainly effectual in situations where the statistical properties of the desired signal and noise are 
identified. This technique is commonly employed in image deconvolution, restoration, and improvement, 
where the objective is to increase the complete quality and clarity of images by justifying the effects of 
numerous kinds of noise. 
 

 
Fig. 1. Overall process of the MFO-DCNNSC technique 

 
3.2. Inception-ResNetv2 Model 
To extract features, the MFO-DCNNSC technique applies the Inception-ResNetv2 model for learning the 
hierarchical depiction of the visual data.The Inception‐ResNetV2 architecture integrates inception 
modules that are basic modules that permit to extraction of multi‐scale features [19]. This module 
consists of the parallel convolutional branch with varying filter sizes, allowing to capture of features at a 
receptive field. The residual connection in the Inception‐ResNetV2 architecture contributes to mitigating 
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the gradient vanishing problems, enabling effective deep network training. The Inception module extracts 
various features from the different sizes of convolution kernels and various scales to optimize the 
adaptability of the network. This can diminish the model’s complexity and reduce the specific convolution 
kernel. This process accelerates parameter optimization and network training which transmit the signals 
of numerous units to all the layers forward or backward. It is necessary to apply a 1×1 convolutional layer 
to decrease or enhance the dimension since the feature map yh  might be a variant in the ResNet.  
F yh = e ∗ yh + β                                                  (1) 
xh = Rl F + s y                                                 (2) 
yh+! = Rl xh                                                           (3) 
Here s(y) refers to the simple transformation for the input, β represents the offset, yh  denotes the 
input, xh denotes the sum of two branches, e denotes the weight, Rl denotes the ReLU function, the 
convolution operation is F(yh ), and yh+1 denotes the final output of the residual block. 
Rl y =  maxi 0, y                                                 (4) 
The threshold of 0 and y value is used as input and obtain the output. The objective of the ResNet learning 
unit is to avoid the gradient disappearing problem during the training network model, and. If the method 
has attained a certain capacity, then this layer might be similarly mapped and aidwith rapid and simple 
network training.  
αYm

αYj
=

αYj + F(Yj, τj, βj)

αYj
= 1 +

αF(Ym, τm. βm)

αYm
          (5) 

Where the input of mth  unit is Ym, Yj specifies the input of jth  residual units, the residual function 
represented as F(. ). 
 
3.3. Hyper parameter Tuning using MFO 
In this work, the MFO algorithm is found useful for the appropriate range of the hyperparameters 
connected to the Inception-ResNetv2 technique.The GA,PSO, and firefly method features have been joined 
in this algorithm termed FA [20]. The MA is very effectual hybrid optimizer procedure that depends upon 
the mayflies (MFs) behaviour during mating and enhances the PSO search. This optimizer method ignores 
the MF's lifetime and accepts an adult directly after producing which only the sturdiest endure. Each MF's 
position in the solution space specifies the possibility that originated at that place. Arbitrarily produced 

are sets of female and male MFs. To restate, P =  p1, p2 , … , pdMax
 

T
 the location vector signifies the search 

space into MFs, the agent performs the search will primarily be planted. The objective function estimates 
the location vector efficiency with x. Employing the vector of velocity, the MF location is studied in its 

movement way that is learned by its individual and social movement skills =  k1, k2, … , KdMax
 

T
 . An MF 

will go up or down the search depending on its present finest location (represented by Pest) and the 
optimal locations gained by other mayflies in the swarm (signified by gbest ).  
 
Male Mayfly (MMF) Flight 
The combination of MMFs into groups is a sign that their position is reviewed in light of novel info and 
situations. An upgraded type of MMF location is as below: 
Pm t + 1 = km t + 1 + pm t                             (6) 
For the ith MF, pm (t) is its present position and pm (0) falls among xMin  and xMax . pm (t + 1) represents the 
MF position and km (t + 1) signifies the MF velocities.  
The constant speed is intended as below because the MMF marital dance endures at the peak of some 
meters. 

kmd  t + 1 = vmd  t + q1 × exp −ςDp
2
 ×  pbestmd − pmd  t  + 

q2 × exp −ςDg
2
 ×  gbestd − pmd  t                              (7) 

q1  and q2denotes the attractive co-efficient that defines the significance of the psychological and social 
modules. When MFs are in an σ situation, they could not able to see each other. Employing Eqs. (9) and 
(10), we can define the distances Dp , and Dp  that pi has pbestm  and gbest, correspondingly. The ith 

agent’s speed in the dth dimension is signified by kmd , while its location is specified by pmd . d stands for 
dimension index, which ranges from 1 to dMax , where d refers to the maximal amount of dimensions. 
pbestmd denotes the finest location by the ith agent in the dth dimension and intended as below. 

pbestm =  
xm t + 1 , f xm t + 1  < 𝑓 pbestm 

pbest, f xm t + 1  ≥ f pbestm 
                            (8) 

Here, f denotes the quality define objective function. We define Dp
2  and Dg

2 which are as follows: 
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Dp
2 =    pmd − pbestm 

dMax

n=1

 

0.5

                                          (9) 

Dg
2 =    pmd − gbest 

dMax

d=1

 

0.5

                                           (10) 

The sturdy and healthy MFs will continue dancing vertically, defending the algorithm’s optimum result. 
So, the healthy MFs should uphold the subsequent speed shift, which presents a component of chance in 
the process. 
kmd  t + 1 = kmd  t + ND × ɷ                                    (11) 
Here,ND denotes the nuptial dance co-efficient and ɷ signifies the randomly generated number among 
−1 and 1. 
 
Female Mayfly (FMF) Flight 
FMFs will not group like males. They head directly for the men to mate. Utilizingrm (t), we can observe 
where the ith FMF has been positioned in the search space, and then utilize the following expression to 
alter our location: 
rm t + 1 = km t + 1 + rm t                                   (12) 
To perfect this occurrence, we accept that the most gorgeous female will be pulled to the most attractive 
male; the next female will be drained to the next male, and so on. By employing the below expression, we 
can define the velocity: 

kmd  t + 1 =  

kmd  t + q2 × exp  −ςD if
2
 ×  pmd  t − rmd  t  ,

f rm > 𝑓 pm 

umd  t + qw × ɷ, f rm ≤ f pm 

    (13) 

Here, rmd (t) represents the location and umd (t) signifies the velocity of the ith FMF in the dth dimension 
at time t. MMF and FMF separate distances are signified by Dif

2 , D is dual times than the original distance. 
The co-efficient of qw , is selected randomly. 
 
Mating Procedure 
The cross-over operation is employed to model the behavior of MF mating defined under one male and 
female are selected from every set to be the parents, just males are appealed to precise female. Winner 
selection are completely dependent either on opportunity or objective function. For every cluster, the 
healthy female mate with the healthiest male. From the below-mentioned formulation, we can expect the 
offspring of the cross-over. 
α1 = β × male +  1 − β × female                                    (14) 
α2 = β × female +  1 − β × male                                    (15) 
Here, α1 and α2 denotes the 1st and 2nd generations."β"refers therandomly generated number within a 
definite range. Furthermore, male and female signify biological parents. It is noticeable that a child is 
expected to have no preliminary speed. 
The fitness function (FF) is the significant aspect prompting the MFO mode performance. The 
hyperparameter range procedure contains the solution encode technique to evaluate the efficacy of the 
candidate solution. In this paper, the MFO model reflects accuracy as the foremost standard to project the 
FF and conveyed as below.  
Fitness =  max  P                                                        (16) 

P =
TP

TP + FP
                                                            (17) 

Here, FP and TP represent the false and true positive values. 
 
3.4. DBN based Classification 
At last, the scene classification procedure is executed by the application of the DBN model.As a kind of 
neural network (NN), DBN consists of multiple restricted Boltzmann machines (RBMs) [21]. The input 
layer represents the original data character, and the output layer represents the data label. In the deep 
architecture, the main features of data have been extracted from the input to the output layers via the 
abstraction layer. The input of DBN is the first RBM layer, and the output is the last hidden layer of RBM. 
The DBN is processed as a multilayer perceptron (MLP); if applied for classification, we add a logistic 
regression layer to the output. The DBN includes a few RBMs. RBM consists of hidden and visible 
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units.The energy of RBM joint configuration comprises weight and bias. Consider h = {0,1}m  and   
v = {0,1}n  as the hidden and visible state units, correspondingly.  

E v, h; θ = − ai

n

i=1

vi − bj

m

j=1

hj −  wij

m

=1

n

i=1j

vjhj                    (18) 

In Eq. (18), the number of visible and hidden units are represented as n and m, correspondingly. the 
model parameters are denoted as θ = {aj , bj , wij }, the weight between ith  and jth  visible and hidden units 

are represented bywij ; the visible and hidden units are indicated as ai  and bj , correspondingly. Fig. 2 

shows the architecture of DBN. 
 

 
Fig 2. Architecture of DBN 

 
The formula of joint probability for the hidden and visible vectors is: 

p v, h; θ =
1

Z θ 
exp −B v, h; θ                                       (19) 

Let Z(θ) be a normalization factor that can be represented by: 

Z θ =   exp

hv

 −B v, h; θ                                        (20) 

p hj = 1 θ =
1

1 + exp −bj −  wiji vi 
                             (21) 

p vi = 1 θ =
1

1 + exp −ai − wijj hj 
                             (22) 

 
4. Result Analysis and Discussion 
The performance outcomes of the MFO-DCNNSC method takes place employing UCM [22] and AID [23] 
dataset and as reported. 
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Fig 3. UCM dataset (a-b) Confusion matrices of MFO-DCNNSC model (c-d) PR-curve and ROC-curve 

 
Fig. 3 displays the classifier results of the MFO-DCNNSC system at UCM database. Figs. 3a-3b showcases 
the confusion matrices accomplished by the MFO-DCNNSC technique with 70%:30% of TRAPH/TESPH. 
This figure point to that the MFO-DCNNSC technique can be identified and categorized with 21 class 
labels suitably. Concurrently, Fig. 3c indicate the PR result of the MFO-DCNNSC model. The figure 
described that the MFO-DCNNSC algorithm gives greater PR effectiveness with every class. Also, Fig. 3d 
showcases the ROC result of the MFO-DCNNSC method. This figure denoted that the MFO-DCNNSC 
method provides capable results with increased ROC values with diverse class labels. 
A wide-ranging scene classification results provided by the MFO-DCNNSC method on the 70% of TRAPH 
under UCM dataset as reported in Table 1. These experimentation outcomes highlights that the MFO-
DCNNSC method correctly identified all forms of scenes existed in the UCM dataset. It is also noticed that 
the MFO-DCNNSC algorithm has the ability of recognizing the samples with maximum classifier results. 

 
Table 1: Scene classification of MFO-DCNNSC model with UCM dataset under 70% of TRAPH 

Classes 𝐀𝐜𝐜𝐮𝐲 𝐏𝐫𝐞𝐜𝐧 𝐑𝐞𝐜𝐚𝐥 𝐅𝐬𝐜𝐨𝐫𝐞 

TRAPH (70%) 
C1 95.78 48.61 58.33 53.03 
C2 96.39 60.34 53.85 56.91 
C3 95.03 48.53 46.48 47.48 
C4 95.78 57.14 60.27 58.67 
C5 95.85 58.06 50.70 54.14 
C6 96.12 58.67 62.86 60.69 
C7 95.44 56.63 60.26 58.39 
C8 96.67 66.67 63.89 65.25 
C9 96.19 61.97 60.27 61.11 
C10 97.01 69.09 58.46 63.33 
C11 95.85 59.42 55.41 57.34 
C12 95.37 51.81 60.56 55.84 
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C13 95.85 53.45 47.69 50.41 
C14 95.58 53.73 51.43 52.55 
C15 96.12 59.21 63.38 61.22 
C16 96.19 57.97 59.70 58.82 
C17 95.99 60.00 54.17 56.93 
C18 96.94 64.79 69.70 67.15 
C19 95.58 56.06 50.68 53.24 
C20 95.65 51.95 59.70 55.56 
C21 94.49 46.84 48.68 47.74 
Average 95.90 57.19 56.98 56.94 

 
The overall scene classification results offered by the MFO-DCNNSC technique with 30% of TESPH at UCM 
datasets as displayed Table 2. These accomplished outcomes underscores that the MFO-DCNNSC system 
appropriately recognized all categories of scenes present in the UCM dataset. It is also observed that the 
MFO-DCNNSC algorithm can be the capability of recognizing the samples with boosted classifier 
outcomes. 
 

Table 2: Scene classification of the MFO-DCNNSC system under UCM dataset with 30% of TESPH 

Class  𝐀𝐜𝐜𝐮𝐲 𝐏𝐫𝐞𝐜𝐧 𝐑𝐞𝐜𝐚𝐥 𝐅𝐬𝐜𝐨𝐫𝐞 

TESPH (30%) 
C1 96.19 70.00 70.00 70.00 
C2 96.67 71.88 65.71 68.66 
C3 96.83 71.43 51.72 60.00 
C4 95.87 51.52 62.96 56.67 
C5 96.51 64.00 55.17 59.26 
C6 96.67 66.67 60.00 63.16 
C7 96.35 48.48 72.73 58.18 
C8 96.83 64.29 64.29 64.29 
C9 96.19 56.00 51.85 53.85 
C10 96.19 66.67 62.86 64.71 
C11 96.98 64.00 61.54 62.75 
C12 96.03 57.14 55.17 56.14 
C13 94.44 50.00 51.43 50.70 
C14 96.35 62.07 60.00 61.02 
C15 96.98 65.62 72.41 68.85 
C16 95.24 54.55 54.55 54.55 
C17 96.19 56.25 64.29 60.00 
C18 96.51 71.43 58.82 64.52 
C19 96.98 62.50 74.07 67.80 
C20 95.24 54.55 54.55 54.55 
C21 94.76 32.00 33.33 32.65 
Average 96.19 60.05 59.88 59.63 

 
The average classifier study of the MFO-DCNNSC technique with UCM dataset is computed and described 
in Fig. 4. This figure demonstrated that the MFO-DCNNSC method accomplished increased results. Based 
on 70% of TRAPH, the MFO-DCNNSC method get average accuy , precn , recal , and Fscore  of 95.90%, 

57.19%, 56.98%, and 56.94%, correspondingly. Similarly, with 30% of TESPH, the MFO-DCNNSC 
algorithm offers average accuy , precn , recal , and Fscore  of 96.19%, 60.05%, 59.88%, and 59.63%. 
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Fig 4. Average of the MFO-DCNNSC method under UCM dataset 

 

 
Fig 5. Accuy  curve of the MFO-DCNNSC method at UCM dataset 

 
The effectiveness of the MFO-DCNNSC algorithm with UCM dataset is clearly demonstrated in Fig. 5 in the 
usage of training accuracy (TRAA) and validation accuracy (VALA) curves. This figure represents useful 
analysis into the behaviour of the MFO-DCNNSC method over diverse epoch counts, signifying its learning 
process and generalization capabilities. Noticeably, the figure infer a continuous improvement in the 
TRAA and VALA with a growth in epochs. It make sure the adaptive nature of the MFO-DCNNSC technique 
with pattern recognition process under the TRA and TES data. The arising trend in VALA outlines the 
capability of the MFO-DCNNSC method on altering to the TRA data and also surpassing in providing 
correct classification on unnoticed data, pointing out the robust generalization abilities. 
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Fig 6. Loss curve of the MFO-DCNNSC technique with UCM dataset 

 
Fig. 6 illustrates an extensive representation of the training loss (TRLA) and validation loss (VALL) results 
of the MFO-DCNNSC method with UCM dataset over distinct epochs. The progressive diminishes in TRLA 
highpoints the MFO-DCNNSC system optimizing the weights and decreasing the classification error on the 
TRA and TES data. The figure indicate a clear understanding into the MFO-DCNNSC model relevant to the 
TRA data, highlighting its proficiency in capturing patterns within both datasets. Mainly, the MFO-
DCNNSC system incessantly increases its parameters in lessening the differences among the prediction 
and real TRA class labels. 
The Accuy comparison study of the MFO-DCNNSC method under UCM dataset can be determined and 

represented in Table 3 and Fig. 7 [24, 25]. These obtained findings painted that the SC+Pooling, SG+UFL, 
and CCM-BOVW methods are shown minimized accuy  values of 81.67%, 86.64%, and 86.64%, 

correspondingly. Meanwhile, the PSR, COPD, and Dirichlet systems have reported closer accuy  values of 

89.10%, 91.33%, and 92.80%. But, the MFO-DCNNSC algorithm gains higher results with increased accuy  

of 96.19%. 
 

Table 3: Accuy  outcome of the MFO-DCNNSC system with other algorithms under UCM dataset 

UCM Dataset 

Method Accuracy (%) 

SC+Pooling 81.67 

SG+UFL 86.64 

CCM-BOVW  86.64 

PSR Model 89.10 

COPD Model 91.33 

Dirichlet 92.80 

MFO-DCNNSC 96.19 

 

 
Fig 7. Accuy  outcome of the MFO-DCNNSC model with UCM dataset 
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Fig 8. AID dataset (a-b) Confusion matrices of MFO-DCNNSC system (c-d) PR-curve and ROC-curve 

 
Fig. 8 showcases the classifier results of the MFO-DCNNSC method at AID database. Figs. 8a-8b displays 
the confusion matrices succeeded by the MFO-DCNNSC system with 70%:30% of TRAPH/TESPH. This 
figure detailed that the MFO-DCNNSC algorithm can be identified and categorized with 30 class labels 
correctly. Meanwhile, Fig. 8c denotes the PR result of the MFO-DCNNSC model. The figure displays that 
the MFO-DCNNSC algorithm offers exceptional PR effectiveness with every class. In conclusion, Fig. 8d 
displays the ROC result of the MFO-DCNNSC technique. This figure characterized that the MFO-DCNNSC 
technique acquires efficient experimentation results with boosted ROC values with different class labels. 
Table 4 presented the overall scene classification results accomplished by the MFO-DCNNSC technique on 
the 70% of TRAPH with AID dataset. These experimentation outcomes shown that the MFO-DCNNSC 
algorithm appropriately identified all categories of scenes existing in the UCM dataset. It is also noticed 
that the MFO-DCNNSC technique has the ability of recognizing the samples with maximal classifier 
results. 
 

Table 4: Scene classification of MFO-DCNNSC model under AID dataset with 70% of TRAPH 

Class  𝐀𝐜𝐜𝐮𝐲 𝐏𝐫𝐞𝐜𝐧 𝐑𝐞𝐜𝐚𝐥 𝐅𝐬𝐜𝐨𝐫𝐞 

TRAPH (70%) 
C1 95.67 35.14 37.68 36.36 
C2 96.57 46.75 53.73 50.00 
C3 95.57 34.25 35.71 34.97 
C4 96.19 35.94 37.10 36.51 
C5 96.10 40.00 41.18 40.58 
C6 95.76 41.77 43.42 42.58 
C7 96.00 41.18 38.89 40.00 
C8 95.95 40.98 33.78 37.04 
C9 95.00 30.00 32.88 31.37 
C10 96.10 40.00 44.78 42.25 
C11 95.62 36.36 32.43 34.29 
C12 95.71 36.71 42.03 39.19 
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C13 95.76 33.93 26.76 29.92 
C14 96.52 47.89 48.57 48.23 
C15 96.14 42.47 44.29 43.36 
C16 96.71 41.07 38.98 40.00 
C17 96.14 43.04 48.57 45.64 
C18 96.19 43.59 48.57 45.95 
C19 95.38 41.86 43.37 42.60 
C20 96.57 36.59 24.59 29.41 
C21 96.29 40.35 34.33 37.10 
C22 96.33 43.84 47.06 45.39 
C23 96.05 36.92 36.36 36.64 
C24 96.52 51.56 44.00 47.48 
C25 96.38 48.28 37.84 42.42 
C26 95.90 38.98 31.51 34.85 
C27 96.05 38.55 50.00 43.54 
C28 96.05 42.68 49.30 45.75 
C29 95.90 39.13 38.03 38.57 
C30 95.71 41.67 46.05 43.75 
Average 96.03 40.38 40.39 40.19 

 
An extensive scene classification results succeeded by the MFO-DCNNSC algorithm with the 30% of 
TESPH under AID dataset and as revealed in Table 5. These experimental results underlines that the MFO-
DCNNSC algorithm suitably recognized all categories of scenes existing in the AID dataset. It is also 
detected that the MFO-DCNNSC method can be the ability of recognizing the samples with higher 
classifier results. 
 

Table 5: Scene classification of MFO-DCNNSC method with AID dataset under 30% of TESPH 

Class  𝐀𝐜𝐜𝐮𝐲 𝐏𝐫𝐞𝐜𝐧 𝐑𝐞𝐜𝐚𝐥 𝐅𝐬𝐜𝐨𝐫𝐞 

TESPH (30%) 
C1 95.00 26.67 25.81 26.23 
C2 95.33 39.02 48.48 43.24 
C3 95.11 28.12 30.00 29.03 
C4 95.44 45.71 42.11 43.84 
C5 94.89 29.41 31.25 30.30 
C6 96.22 30.77 33.33 32.00 
C7 96.22 40.00 42.86 41.38 
C8 96.44 40.62 50.00 44.83 
C9 95.89 30.77 29.63 30.19 
C10 95.22 34.38 33.33 33.85 
C11 95.67 27.59 30.77 29.09 
C12 95.89 36.36 25.81 30.19 
C13 96.00 26.67 13.79 18.18 
C14 95.67 35.48 36.67 36.07 
C15 96.78 51.72 50.00 50.85 
C16 95.56 51.52 41.46 45.95 
C17 96.00 39.29 36.67 37.93 
C18 95.89 38.71 40.00 39.34 
C19 97.11 34.48 58.82 43.48 
C20 97.11 70.97 56.41 62.86 
C21 95.33 33.33 27.27 30.00 
C22 95.22 35.90 43.75 39.44 
C23 97.00 65.22 44.12 52.63 
C24 97.00 46.43 52.00 49.06 
C25 97.00 48.65 69.23 57.14 
C26 95.78 31.03 33.33 32.14 
C27 95.56 44.74 47.22 45.95 
C28 96.67 48.15 44.83 46.43 
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C29 95.00 23.33 24.14 23.73 
C30 96.22 30.77 33.33 32.00 
Average 95.94 38.86 39.21 38.58 

 
In Fig. 9, the average classifier analysis of the MFO-DCNNSC system with AID dataset is revealed. This 
figure indicates that the MFO-DCNNSC algorithm get improved results. Based on 70% of TRAPH, the MFO-
DCNNSC method get average accuy , precn , recal , and Fscore of 96.03%, 40.38%, 40.39%, and 40.19%. Also, 

based 30% of TESPH, the MFO-DCNNSC system gives average accuy , precn , recal , and Fscore  of 95.94%, 

38.86%, 39.21%, and 38.58%. 
 

 
Fig 9. Average of the MFO-DCNNSC system with AID dataset 

 

 
Fig 10. Accuy  curve of the MFO-DCNNSC model at AID dataset 

 
The efficiency of the MFO-DCNNSC system with AID dataset is graphically demonstrated in Fig. 10 in the 
form of TRAA and VALA curves. This figure exhibit useful analysis into the behaviour of the MFO-DCNNSC 
method over multiple epoch counts, demonstrating its learning process and generalization capabilities. 
Noticeably, the figure infer a continuous enhancement in the TRAA and VALA with a progress in epochs. It 
make sure the adaptive nature of the MFO-DCNNSC method with pattern recognition process at TRA and 
TES data. The arising trend in VALA outlines the capability of the MFO-DCNNSC technique on changing to 
the TRA data and exceling in offering particular classification on undetected data, shows the robust 
generalization abilities. 
Fig. 11 displays an extensive representation of the TRLA and VALL results of the MFO-DCNNSC method 
with AID dataset over varying epochs. The progressive minimum in TRLA highpoints the MFO-DCNNSC 
algorithm optimizing the weights and lessening the classification error on the TRA and TES data. The 
figure indicate a perfect understanding into the MFO-DCNNSC model related to the TRA data, highlighting 
its proficiency in capturing patterns within both datasets. Significantly, the MFO-DCNNSC technique 
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continually enhances its parameters in decreasing the variances among the prediction and real TRA class 
labels. 
 

 
Fig 11. Loss curve of the MFO-DCNNSC method with AID dataset 

 
An extensive Accuy comparative analysis of the MFO-DCNNSC algorithm with AID dataset is determined as 

exhibited in Table 6 and Fig. 12. These experimentation outcomes specify that the GoogleNet and VGG-
VD-16 methods acquire lessened accuy  values of 86.39%, and 89.64%. Meanwhile, the ResNet50, ResNet-

50+EAM, and LCNN-BFF algorithms are achieved remarkable accuy  values of 92.57%, 93.64%, and 

91.66%. However, the MFO-DCNNSC method gains excellent results with improved accuy  of 96.03%, 

respectively. 
 

Table 6: Accuy  outcome of MFO-DCNNSC model with other algorithms under AID dataset 

AID Dataset 

Methods Accuracy (%) 

GoogleNet 86.39 

VGG-VD-16 89.64 

ResNet50 92.57 

ResNet-50+EAM 93.64 

LCNN-BFF 91.66 

MFO-DCNNSC 96.03 
 

 
Fig 12. Accuy  outcome of the MFO-DCNNSC method under AID dataset 

Thus, the MFO-DCNNSC technique can be applied for automated scene classification on the RSI. 
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5. CONCLUSION 
In this research, we have projected an MFO-DCNNSC model on RSI. The foremost intention of the MFO-
DCNNSC method encompasses different kinds of processes namely WF-based image preprocessing, 
Inception-ResNetv2 based feature extractor, MFO-based hyperparameter tuning, and DBN-based 
classification process. Primarily, the MFO-DCNNSC technique on RSI undergoes preprocessing using WF 
to improve the image quality. To extract features, the MFO-DCNNSC technique applies the Inception-
ResNetv2 model for learning the hierarchical depiction of the visual data. Following, the MFO algorithm is 
useful for the appropriate range of the hyperparameters connected to the Inception-ResNetv2 technique. 
Finally, the scene classification procedure is executed by the application of the DBN approach. To point 
out the enhanced performance of the MFO-DCNNSC technique, an extensive sort of experiments have 
been implemented on the benchmark dataset. The obtained values pointed out that the MFO-DCNNSC 
technique outperforms the other models in terms of distinct measures.  
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