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Abstract 
 
This paper describes Remote Sensing as an advance
cover (LULC) classification with particular emphasis on Image Statistic for the rugged terrain 
of the central Himalaya. Digital image classification 
maps from remote sensing data at p
utilizes only the remote sensing data often deteriorates, due to the presence of shadows of 
high peaks, especially in mountainous regions. In this study, a multi
classification approach has been used to map land cover in the Himalayan region of 
Rudraprayag District with high mountain peaks having elevations up to 6654 m above mean 
sea level has. Remote sensing data from IRS LISS IV image along with Normalized 
Difference Vegetation Index (NDVI
were used to perform multi-source image classification using supervised maximum likelihood 
classifier method. The results exhibit a notable improvement in the accuracy of classification
from 71.25% to 89.33% on integrating of NDVI and DEM as ancillary data with the 
data of satellite image.  
Key Word: Land Use Land Cover, Maximum Likelihood Classifier, LISS IV, NDVI, DEM.

 

1. Introduction 

Land use Land cover classification is the process of grouping 
individual classes based on theirpixel values. If a pixel fulfils a specific set of criteria, then 
the pixelis assigned to the particular class that corresponds to that criteria. This processis also 
known to as image segmentation.
for proper management, planning and monitoringof natural resources (Zhu, 1997). 
sensing image for LULC classification has proven to be useful for extracting useful thematic 
information such as landcover mapping in mountainous regions such as theHimalaya since 
these areas are generally inaccessible dueto high altitudes and ruggedness of the terrain
et. Al., 2005). In past years, several studies to map LULC using remotesensing data in
hilly areas have resulted withdifferent level of accuracy which may be governed by a 
largenumber of factors that affect the remote sensing process. Those as mentioned earlier 
may be due to the presence of hill shadows awing to the high 
valleys, the cloud cover, steep slopes low sun angles, and differential
Therefore, due to changes in environmentalconditions, spectral characteristics also change 
from oneregion to the other (Arora and Mathur, 2001
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Hence,classification only based on spectral data from a remotesensing sensor alone 
may not be sufficient to gather useful land cover information.Incorporation of additional or 
ancillary data sources in the process of remote sensing classification may result in better 
understanding and achievement of higher accuracy than utilizing spectral data from a remote 
sensing sensor alone (Watanachaturaporn et. Al., 2008). The ancillary data from various 
sources may be available in different forms and contexts, and at different frequencies, time, 
and spatial domains. Integration of data from different sources may also be referred to as 
imageor data fusion (Pohl and van Genderen, 1998). Depending on the nature of data sources 
and methodology used, image fusion may be categorized as multi-source, multi-sensor, multi-
temporal, multi-frequency, multi-polarization, or multi-resolution fusion (Arora and Mathur, 
2001; Rao and Arora, 2004; Simone et al., 2002). The classification of remote sensing data 
along with data from other sources, has generally been referred to as multi-source 
classification. In the past, several studies (e.g., Benediktsson and Sveinsson, 2003; Bruzzone 
et al., 1999; Fitzgerald and Lees, 1994; Peddle et al., 1994) were conducted on multi-source 
classification, and significant improvement in classification accuracy was achieved. 
Moreover, a number of derivatives of multispectralimages such as Normalized Difference 
Vegetation Index (NDVI) and Digital Elevation Model (DEM) may alsobe incorporated in 
the classification process to enhance thequality of land cover classification from remote 
sensing datain mountainous regions (Eiumnoh and Shrestha, 2000; Saha et. Al., 2005). 

This study aims topresent a case study to derive accurate land cover map using the 
multispectral image from IRS-LISS-IV sensor as the primary data with NDVI and DEM as 
the additional data layers to implement multi-source landcover classification using the logical 
channel approach (Tso and Mather, 2001) on a recent disaster-affected area with high 
elevationand rugged terrain of Mandakini Valley in the Himalayas. The Separability analysis 
also measures based on transformed divergence value to examinethe relative importance of 
various spectral bands and ancillarydata layers in the classification process. Most widely used 
Maximum Likelihood Classifier (MLC) has been use to performed the classification. 
 

2. Study Area 
The Mandakini watershed (Figure 1) in the Garhwal Himalaya is located at the western end 
of the Central Himalaya. The catchment stretches from Kedarnath in the north to 
Rudraprayag in the south, from 30°15′N to 30°45′N and 78°45′E to 79°30′E falling in Survey 
of India Toposheet Nos. 53J and 53N. The total area of the Mandakini valley for which a 
LULC map has been prepared is 1563 km2. Mandakini River is the main stream originating 
from the Chorabari Glacier at an elevation of 3840m and joining the Saraswati River (which 
originates from the Companion glacier) at Kedarnath. The Mandakini River joins the 
Alaknanda River at Rudraprayag. The major tributaries of the Mandakini River are the 
Madhmaheshwar, Kali and Son Rivers. The Mandakini River crosses the Main Central Thrust 
(MCT) that separates the Higher Himalaya from the Lesser Himalaya. The MCT zone is 
composed of many faults with fractured and weathered rocks. The main roadway in the 
watershed connects Rudraprayag in the south to Sonprayag in the north. Beyond Sonprayag, 
people trek about 17 km to reach Kedarnath town where the famous Kedarnath Temple is 
located(Naithani et al., 2011; Sati et al., 2011; Singh et al., 2014). Other roads connect 
significant towns and villages in the catchment. Many slopes along the roads have become 
unstable due to widening of roads in recent Chardham project as well as new construction of 
road under Pradhan Mantri Gramin Sarak Yogona and poorly designed undercutting of 
hillslopes to support high-volume traffic during the pilgrimage season. 
Moreover, the physical setting in the catchment has created many unstable steep slopes with 
loose material that are susceptible to failure in response to various triggers, including 
earthquakes and high-intensity rainfall during the monsoon season, which accounts for 50–
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90% of total annual rainfall (Asthana and Sah, 2007; Larsen and Montgomery, 2012; 
Khandelwal et al., 2015).The climate of the study area is humid-temperate in summer and 
dry, humid cold in winter. The climate of the area is subtropical at high elevations (mean 
annual rainfall is 100–150 cm) to humid subtropical at a lower altitude (150 to 200 cm yearly 
rainfall) with 80% of the rain occurring in the monsoon period from mid-June to mid-
September. 
 

 
Figure1: Study Area, Mandakini Watershed 

 
 
3. Data Used: 
 
The present study is based on mapping land cover fromIRS-1D, LISS-IV remote sensing 
data. The LISS IV multispectralimage with 5 m spatial resolution (Fig. 2a) has been used as 
theprimary data for LULC classification, whereasthe Google Earth image and Toposheets has 
been used as reference data forthe creation of training and testing data sets. Additionalor 
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ancillary data namely DEM from Cartosat 1and NDVI extracted from the LISS-IV image 
also incorporate in the process of remote sensingclassification for better result and 
achievementof higher accuracy than using spectral data from aremote sensing sensor 
alone.More description of these data sets is provided in Table 1. 
The preparation of referencedata was ably assisted with field surveys conducted in December 
2015, whichshow for same atmospheric andenvironmental conditions over the area. Due to 
the inadequateroad networked and thus inaccessible due to high elevationsand ruggedness, 
the information on existing land cover wascollected only along the accessible roads during 
the fieldsurveys.  
 
Table 1:Remote sensing and other data Characteristics used in the study. 

Data Type Data Sources Date of Acquisition  

IRS 1D LISS IV image in 3 bands (Green: 
0.52 - 0.59μm, Red: 0.62 - 0.68μm and NIR: 
0.77 - 
0.86μm) 

National RemoteSensing 
Agency 
(NRSA), India 

6th December 2012 
 

Digital elevation model (DEM) Cartosat-1 
PAN(2.5m) Stereo Data V3R1:2014 

National RemoteSensing 
Agency 
(NRSA), India 

29th April 2014. 

Topographic maps(Sheet Number 
H44G/6,14,15,16; H44H/1,2,3,4,6,8,14; 
H44I/3,4,8; H44M/13; H44N/1,5; scale 
1:50,000) 

Survey of India,  During 1962-63 

Field data on land use/land cover 
Ground truth collected 
during the study 

December, 2015. 

 
4. Methodology: 

Plenty of data processing steps are involved in performing multi-source classification. These 
include image mosaic, subset to Aoi, generation of ancillary data layers, image classification 
and accuracy assessment. All the processing has been done on Arc GIS, and ERDAS Imagine 
software. DEM and NDVI data layers were used as additionalbands (referred to as ancillary 
data) to perform multi-sourceclassification.The processing steps are briefly described below. 
 
4.1 Pre-processing of satellite image 
The DEM data of Cartosat 1 satellite was downloaded from NRSC Bhuvan.The Elevation 
mosaic and boundary of Mandakini watershed extracted by using the command of Arc-
GIS.The Cartosat1 DEM then resampled to 5m as of LISS IV image. Similar way, the 
spectral data of LISS IV satellite were stacked and mosaic. Therefore, the watershed 
boundary generated from DEM has used for subset the spectral imageries. Along with the 
spectral data incorporation of two additional bands, namely NDVI and DEM, also were 
stacked to enhance the quality of classification. So, the dataset for multi-source classification 
consisted of five data layers (three bands of multispectral LISS IV image,two ancillary data 
sources - NDVI and the DEM). Forconvenience, Green band, Red band, NIR band, NDVI 
and DEM data layers have beennumbered as 1, 2, 3, 4, and 5 sequentially. 
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4.2 Generation of Ancillary Data 
The incorporation of additional bands, namely NDVI and DEM, were used in the 
classification process to enhance the quality of land cover classification and achieve higher 
accuracy in mountainous regions. 
 
4.2.1 Generation of DEM 
The DEM data of Cartosat 1 satellite (figure 2b) was used as ancillary data in the 
classification process. In hilly areas, a major variation in the brightness values of pixels can 
be found due to the presence of shadows, which may lead to misclassification of the image. 
Therefore, the DEM was used as ancillary data in the classification process to reduce some 
confusion between shadowed areas and water bodies (Yocuaba, et. Al., 2010). Moreover, the 
elevation information from DEM may also act as a logical rule to eliminate the presence or 
absence of certain classes in particular elevation zones. For example, fallow land is not 
expected to exist at higher elevations that are covered with snow since climatic conditions do 
not allow for any agricultural activity at such high elevations. Thus, these areas should be 
categorized as barren land. Therefore, any presence of fallow land in the neighborhood of 
snow-covered areas may represent a misclassification, which can be reduced by including a 
DEM in the remote sensing classification process (Saha. et. Al., 2005). 
 
 
 

 
Figure 2: IRS 1D LISS IV colour infrared composite, NIR, Red, Green –RGB, (2.a) & IRS 
Cartosat DEM stereo Data (2.b). 
 

4.2.2 Generation of NDVI 
NDVI was used as another ancillary data layer in theclassification process to enhance the 
separability of the spectral band amongvarious land use classesand also to reduce the 
shadoweffect due to variations in topography.The NDVI data layer was generated fromNIR 
and Red bands of LiSS IV image and isdefined as: 

2.b 2.a 
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     NDVI= (NIR-R)/(NIR+R) (1) 
Whereas NIR represents the spectral reflectance ina near-infrared band while R represents the 
red band.The negative values and value near zero indicate non-vegetation classes, such as 
snow, water, barren land, built-up areas, whereas positive values represent differenttypes of 
vegetation classes (Fig. 3). The NDVI values vary from -0.20 to +0.73. 
 

 

Figure 3: NDVI from IRS 1D LISS IV image 

 

4.3 Image Classification 
In this study supervised classification of Maximum Likelihood classifier has been used in 
Erdas Imagine platform. Supervised classification methods are most commonly used in 
remote sensing andbased on the knowledge of the area to be classified. "These methods are 
oftencentral to the image analysis process since these concerns the directtransformation from 
pixel counts to thematic map" (Wilkinson, 2000). Supervisedclassification may be defined as 
the process of identifying unknown objects byusing the spectral information derived from 
training data provided by the analyst.The result of the identification is the assignment of 
unknown pixels to pre-definedCategories. 
 

Table 2: Characteristics of land cover classes 
LULC Class Description Characteristics on LISS-IV FCC 

Snow 
Snow-covered areas on highaltitude 
mountains 

Bright white 

Water Body 
Rivers and lakes Cyanish blue to blue depend on 

sediment content and depth of the 
water  

Dense Vegetation Tall, dense trees Dark red with rough texture 
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LULC Class Description Characteristics on LISS-IV FCC 

Sparse Vegetation 
Low vegetation density withan exposed 
ground surface 

Dull red to pinkishwith a smooth 
texture 

Agricultural Land Crops on hill terraces as stepcultivation Dull red and step-like arrangement 

Fallow Land 
Agricultural fields without crops Bluish/greenish grey with smooth 

texture 

Barren Land Exposed rocks without vegetation Yellowish with a bright tone 

Fresh Sediment 
Fresh landslide debris and riversediments on 
the bank 

Cyanish in a bright tone   

Settlement Towns and villages; block-likeappearance Bluish with a blocky appearance   
 

Maximum Likelihood Classifier has been found to be the most accurate and 
commonly used classifier when distributional data assumptions are met. This classifier is 
based on the decision rule that the pixels of unknown class membership are allocatedto those 
classes with which they have the highest likelihood of association (Foody et al., 1992). It 
requires estimates of the mean vector and variance-covariance matrix for eachclass.In this 
study, MLC has been used here to produce a nine of land cover classes using different band 
combinationsbasedon previous studies done over the Himalayan region with magnificent 
mountain peakswith elevations up to 4785 m above mean sealevel (Saha et al. 2005).The 
particular description of these classes alongwith their interpretative characteristics on the 
FalseColour Composite (FCC) of LISS-IV image is provided in Table 2. 

 
4.4 Preparation of training dataset 

 
The volume of the training data set is also significant in supervised classificationif statistical 
estimates are to be reliable. As the success of a classificationhighly depends on the quality of 
the training data, these mustbe selected from the representative of the region of the land 
coverclasses under investigation. Data should thus be collectedfrom relatively homogeneous 
areasconsisting of thoseclasses. The sample size is mainly related to thenumber of features 
whose statistical properties are to be estimated. Typically, it isrecommended that the 
minimum training set size is some 10-30 times the numberof wavebands per class being used 
for classification (Mather, 1999; Piper, 1992).Generally, an extensive training set is required 
for mapping from multispectral datasets. Supervised classification methods require more user 
interaction, especially inthe collection of training data.In this study, the training data set 
consisted of about1.23% of the total pixels in the LISS IV image. The number oftraining 
samples for each LULC class (Table 3) were chosen inproportion to the area covered by the 
respective classes onthe ground. The High spatial resolution Google Earth image and 
topographic map were used as referencedata (ground truth) to delineate the training pixels on 
theLISS IV image. Wherever there appeared to be confusionin identifying the classes, these 
were verified in the Google earth Image or in toposheet and if accessed then in the field.The 
quality oftraining data of each class evaluated throughhistogram plots. Most of the training 
pixel in each class were typicallydistributed having a single peak, which is a necessity of 
themaximum likelihood classifier used in this study. 
 
Table 3:Number of training pixels for each land cover class used inclassification 

LULC Class Number of 
Training Pixels 

Snow 317546 
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LULC Class Number of 
Training Pixels 

Water Body 1812 

Dense Vegetation 329128 

Sparse Vegetation 76015 

Agricultural Land 53502 

Fallow Land 8924 

Barren Land 10772 

Fresh Sediment 11631 

Settlement 4176 

Total 813506 
 

4.5 Separability analysis 
The dataset for multi-source classification consisted of five data layers (three bands of 

multispectral LISS IV image,two ancillary data sources - NDVI and the DEM). 
Forconvenience, Green band, Red band, NIR band, NDVI and DEM data layers have 
beennumbered as 1, 2, 3, 4, and 5 respectively. A separabilityanalysis was performed using 
the training dataset, selectedearlier, to identify the combination of bands that shows 
thehighest distinction between the land cover classes.Separability is a statistical measure 
devised based on spectral distances computed for a combination of bands.From several 
separability measures, the TransformedDivergence (TD) has been used in this study (Jensen, 
1986).The TD values range from 0 to 2000. A value close to 2000indicates the best 
separability. The values between 1800 and2000 are generally considered adequate for the 
selection ofappropriate band combinations. Since, the aim of the presentstudy is on the 
inclusion of ancillary data in the classificationprocess, the average TD values of various band 
combinationsthat included ancillary data, was computed. 
Various bandcombinations that produced average TD values near to2000 were considered 
appropriate for classification (Table4). The band combination 1, 2, 3, 4 and 5 resulted in 
thehighest average TD value, which illustrates that LISS IV image together with DEM and 
NDVI data layer, has produced the bestseparability among various pairs of land cover 
classes. 
 
Table 4:Various band combinations and their average TD values  

**Band 
Combination 

Average TD 

1,2,3 1691 

1,2,3,4 1991 

1,2,3,5 1983 

1,2,3,4,5 1992 
**(Bands1,2,3: LISS IV bands; Band 4: NDVI; Band 5: DEM) 
 

4.6 Accuracy assessment 
 
Accuracy assessment is essential for image classification, especially when the classification 
data is to be used for change detection. To evaluate the accuracy of the classified image, a 
random sample of the testing pixel is selected on the classified image, and then their class is 
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compared with the reference data or ground-truthing. The choice of a suitable sampling 
scheme and the determination of an appropriate sample size for testing data plays a vital role 
in the assessment of classification accuracy (Arora and Agarwal, 2002). 
In the accuracy assessment process, the overall accuracy indicates the accuracy of the 
complete image classification. It is a probability that the number of precisely classified pixels 
divided by the whole number of pixels in the error matrix). In contrast, users and producers 
accuracy measures indicate the accuracy of individual classes. Users accuracy is defined as 
the probability that a pixel classified on the map actually represents that class on the real 
world or reference data. In contrast, producer's accuracy establishes the possibility that a 
pixelon reference data has been classified correctly. In this study, information from Google 
earth Image, together with Toposheet and field visits, was used as reference data to generate 
testing data set. Stratified random sampling method was applied for the generation of the 
testing pixel. A total of 150 testing pixels for each class were selected, which are significantly 
larger than the sample size of 75 to 100 pixels per class, as recommended by Congalton 
(1991) for accuracy assessment purposes. For a valid comparison, the same testing dataset 
was used to determine the overall and producer's accuracy for LULC classes from the 
classified images of different band combination. 
 
Table 5: Producer’s accuracy of individual classes derived from 
classifications using band combination 1,2,3 &1,2,3,4,5 

Classes 
Producer Accuracy (in %) 

Band 1,2,3 Band 1,2,3,4,5 
Snow 82.00 93.75 
Water Body 75.33 84.00 
Dense Vegetation 77.00 91.67 
Sparse Vegetation 79.50 88.56 
Agricultural Land 72.50 91.50 
Fallow Land 66.67 78.67 
Barren Land 74.29 90.50 
Fresh Sediment 75.00 71.00 
Settlement 68.44 86.67 
Overall Accuracy 85.21 91.04 
 

5. Results and Discussions 
 
The objective of this study is to execute a multi-sourceclassification approach to produce an 
accurate land covermap for the rugged terrain of Himalaya. The accuracy of land cover 
mapsobtained from multi-source classification of a dataset using band combinations1,2,3,4,5 
is highest as of 91.04% while classification based only on spectral data of LISS IV image 
using band combination 1,2,3 produced an accuracy of 85.21%. So, on the inclusion of NDVI 
and DEM data layerwith spectral dataaccuracyin theclassification process increased 
remarkably. To assess the classification accuracy of individual land cover classes,producer’s 
accuracies were also determined for theclassification that provided the highest overall 
accuracy (i.e.,the classification obtained by using band combination 1, 2, 3, 4, 5). These 
accuracy values were also compared withthose obtained from the classification produced by 
usingonly LISS IV satellite spectral data (Table 5). A glance at producer’saccuracy values 
shows that the accuracy of most of theclasses has increased when NDVI and DEM data 
layers added in the classification process. So it is illustrated that themisclassifications 
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between the classes have been reduced. Inparticular, the classes, namely Waterbody, snow, 
sparse vegetation, agriculture,fallow and barren land and settlements, showed asubstantial 
increase in accuracy ranging from 5% to 15%. The reason behind the increase in accuracy is 
that the barren land class was considerablymisclassified with the classes settlements when 
only spectral data were used. Since, at high elevations,the presence of these classes is scarce, 
the addition of DEM datalayer reduced this misclassification. Secondly, due to thepresence of 
shadows in the region, the classification usingonly spectral data showed misclassification of 
agriculture and fallow landto the class sparse vegetation. The addition ofNDVI and DEM 
data layers reduced the shadow effect and resulted in the reduced this misclassification. 
 

On visual comparison of two classified images using only spectral band 1,2,3  (Fig. 
4a) with FCC and using band combination 1,2,3,4,5 (Fig. 4b), it is observed that the addition 
of DEM and NDVI ancillary data layersresulted in the correct classification of shadowed 
areas totheir corresponding vegetation classes, which was not thecase when only spectral data 
was used for classification.Thus, this study clearly demonstrates the utility ofincorporating 
NDVI and DEM in the image classification process, especially for rugged terrain. 
 

 
Figure 4: The LULC classification produced from the band combination 1, 2, 3 (fig.4.a) and 
created from the band combination 1, 2, 3,4,5 (fig.4.b) (i.e., Green, Red and INR bands of 
IRS LISS IV image,NDVI image and DEM) 
 
 

6. Conclusions 
 

Remote sensing data are attractive for land use land cover classification, especially for 
the hilly region where most of the area is inaccessible due to ruggedness in topography and 
high altitudes of the terrain. However, remote sensing data acquired overa mountainous 
region with high relief resulted inshadowed regions which lead to inaccurate classificationif 
only spectral data from remote sensing sensors were used.Therefore, ancillary data were 
included to enhance thequality of image classification.The case study presentedin this paper 
also showed a remarkable increase in accuracyof land cover classification on the 
incorporation ofNDVI and DEM data layers with IRS-LISS-IV image. The classification 
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produced from remote sensing data alone, itwas revealed that the class dense forest, sparse 
vegetation,fallow land, and barren land are highly confused with otherclasses resulting in 
misclassifications and thus lowering theaccuracy. However, these misclassifications were 
reduced onthe addition of NDVI data and were further reduced when the DEMdata were 
included. The classes were mapped withhigh accuracy when both the NDVI image and the 
DEM wereincluded, as the misclassifications decreased significantly. The present study thus 
highlights theeffectiveness of integrating DEM and NDVI data layers withthe spectral data to 
enhance the quality of land coverclassifications in mountainous regions such as the 
Himalayas. 
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