NEUTROSOPHIC EXTENDED TRIPLET GROUPS AND HOMOMORPHISMS IN C^* -ALGEBRAS

JUNG RYE LEE, CHOONKIL PARK*, AND XIAOHONG ZHANG

ABSTRACT. Çelik, Shalla and Olgun [2] defined neutro-homomorphisms in neutrosophic extended triplet groups and Zhang et al. [8] investigated neutro-homomorphisms in neutrosophic extended triplet groups.

In this note, we apply the results on neutro-homomorphisms in neutrosophic extended triplet groups to investigate C^* -algebra homomorphisms in unital C^* -algebras.

1. Introduction and preliminaries

As an extension of fuzzy sets and intuitionistic fuzzy sets, Smarandache [4] proposed the new concept of neutrosophic sets.

Definition 1.1. ([5, 6]) Let N be a nonempty set together with a binary operation *. Then N is called a neutrosophic extended triplet set if, for any $a \in N$, there exist a neutral of a (denoted by neut(a)) and an opposite of a (denoted by anti(a)) such that neut(a) $\in N$, anti(a) $\in N$ and

$$a * \text{neut}(a) = \text{neut}(a) * a = a,$$

 $a * \text{anti}(a) = \text{anti}(a) * a = \text{neut}(a).$

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Note that, for a neutrosophic triplet set (N, *) and $a \in N$, neut(a) and anti(a) may not be unique.

Definition 1.2. ([5, 6]) Let (N, *) be a neutrosophic extended triplet set.

Then N is called a neutrosophic extended triplet group (NETG) if the following conditions hold:

- (1) (N,*) is well-defined, i.e., for any $a,b \in N$, one has $a*b \in N$;
- (2) (N,*) is associative, i.e., (a*b)*c=a*(b*c) for all $a,b,c\in N$.

N is called a commutative neutrosophic extended triplet group if, for all $a, b \in N$, a * b = b * a.

Let A be a unital C^* -algebra with multiplication operation \bullet , unit e and unitary group $U(A) := \{u \in A \mid u^* \bullet u = u \bullet u^* = e\}$. Then $u \bullet v \in U(A)$ and $(u \bullet v) \bullet w = u \bullet (v \bullet w)$ for all $u, v, w \in U(A)$ (see [3]). So $(U(A), \bullet)$ is an NETG.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L05, 03E72, 94D05.

Key words and phrases. neutro-homomorphism; neutrosophic extended triplet group; homomorphism in unital C^* -algebra; perfect neutrosophic extended triplet group.

^{*}Corresponding author: C. Park (email: baak@hanyang.ac.kr, fax: +82-2-2211-0019).

Proposition 1.3. ([7]) Let (N,*) be an NETG. Then

- (1) neut(a) is unique for each $a \in N$;
- (2) neut(a) * neut(a) = neut(a) for each $a \in N$.

Note that $u \bullet e = e \bullet u = u$ for any $u \in (U(A), \bullet)$. By Proposition 1.3, neut(u) = e for each $u \in U(A)$.

Definition 1.4. ([7]) Let (N, *) be an NETG. Then N is called a weak commutative neutrosophic extended triplet group (briefly, WCNETG) if a * neut(b) = neut(b) * a for all $a, b \in N$.

Since $\operatorname{neut}(v) = e$ for all $v \in U(A)$, $u \bullet \operatorname{neut}(v) = \operatorname{neut}(v) \bullet u$ for all $u, v \in U(A)$. So $(U(A), \bullet)$ is a WCNETG.

2. Neutrosophic extended triplet groups and C^* -algebra homomorphisms in unital C^* -algebras

Definition 2.1. ([8]) Let (N, *) be a WCNETG. Then N is called a perfect NETG if anti(neut(a)) = neut(a) for all $a \in N$.

Since $\operatorname{anti}(e) = e$ and $\operatorname{neut}(u) = e$ for all $u \in U(A)$, $\operatorname{anti}(\operatorname{neut}(u)) = \operatorname{neut}(u) = e$ for all $u \in U(A)$. Thus $(U(A), \bullet)$ is a perfect NETG.

Definition 2.2. ([1, 2]) Let $(N_1, *)$ and $(N_2, *)$ be neutrosophic extended triplet groups. A mapping $f: N_1 \to N_2$ is called a neutro-homomorphism if

$$f(x * y) = f(x) * f(y)$$

for all $x, y \in N_1$.

From now on, assume that A is a unital C^* -algebra with multiplication operation \bullet , unit e and unitary group U(A) and that B is a unital C^* -algebra with multiplication operation \bullet and unitary group U(B).

Definition 2.3. Let $(U(A), \bullet)$ and $(U(B), \bullet)$ be unitary groups of unital C^* -algebras A and B, respectively. A mapping $h: U(A) \to U(B)$ is called a neutro-*-homomorphism if

$$h(u \bullet v) = h(u) \bullet h(v),$$

$$h(u^*) = h(u)^*$$

for all $u, v \in U(A)$.

Theorem 2.4. Let A and B be unital C^* -algebras. Let $H: A \to B$ be a \mathbb{C} -linear mapping and let $h: (U(A), \bullet) \to (U(B), \bullet)$ be a neutro-*-homomorphism. If $H|_{U(A)} = h$, then $H: A \to B$ is a C^* -algebra homomorphism.

Proof. Since $H: A \to B$ is \mathbb{C} -linear and $x, y \in A$ are finite linear combinations of unitary elements (see [3]), i.e., $x = \sum_{j=1}^{m} \lambda_j u_j$, $y = \sum_{i=1}^{n} \mu_i v_i$ ($\lambda_j, \mu_i \in \mathbb{C}$, $u_j, v_i \in U(A)$),

$$H(x \bullet y) = H((\sum_{j=1}^{m} \lambda_j u_j) \bullet (\sum_{i=1}^{n} \mu_i v_i)) = H(\sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_j \mu_i (u_j \bullet v_i))$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_j \mu_i H(u_j \bullet v_i) = \sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_j \mu_i h(u_j \bullet v_i)$$

$$= \sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_j \mu_i h(u_j) \bullet h(v_i) = \sum_{j=1}^{m} \sum_{i=1}^{n} \lambda_j \mu_i H(u_j) \bullet H(v_i)$$

$$= H(\sum_{j=1}^{m} \lambda_j u_j) \bullet H(\sum_{i=1}^{n} \mu_i v_i) = H(x) \bullet H(y)$$

for all $x, y \in A$.

Since $H: A \to B$ is \mathbb{C} -linear and each $x \in A$ is a finite linear combination of unitary elements (see [3]), i.e., $x = \sum_{j=1}^{m} \lambda_j u_j$ ($\lambda_j \in \mathbb{C}$, $u_j \in U(A)$),

$$H(x^*) = H((\sum_{j=1}^m \lambda_j u_j)^*) = H(\sum_{j=1}^m \overline{\lambda_j} u_j^*) = \sum_{j=1}^m \overline{\lambda_j} H(u_j^*) = \sum_{j=1}^m \overline{\lambda_j} h(u_j^*) = \sum_{j=1}^m \overline{\lambda_j} h(u_j)^*$$

$$= \sum_{j=1}^m \overline{\lambda_j} H(u_j)^* = (\sum_{j=1}^m \lambda_j H(u_j))^* = H(\sum_{j=1}^m \lambda_j u_j)^* = H(x)^*$$

for all $x \in A$. Thus the \mathbb{C} -linear mapping $H: A \to B$ is a C^* -algebra homomorphism. \square

3. Conclusions

In this note, we have studied unitary groups of unital C^* -algbras as neutrosophic extended triplet groups and have extended neutro-homomorphisms in neutrosophic extended triplet groups to neutro-*-homomorphisms in unitary groups of unital C^* -algebras. We have obtained C^* -algebra homomorphisms in unital C^* -algebras by using neutro-*-homomorphisms in unitary groups of unital C^* -algebras.

ACKNOWLEDGMENTS

This work was supported by Daejin University.

Competing interests

The authors declare that they have no competing interests.

References

- M. Bal, M.M. Shalla, N. Olgun, Neutrosophic triplet cosets and quotient groups, Symmetry 10 (2018), 10:126. doi:10.3390/sym10040126.
- [2] M. Çelik, M.M. Shalla, N. Olgun, Fundamental homomorphism theorems for neutrosophic extended triplet groups, Symmetry 10 (2018), 10:321. doi:10.3390/sym10080321.

- [3] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras: Elementary Theory, Academic Press, New York, 1983.
- [4] F. Smarandache, Neutrosophic set-A generialization of the intuituionistics fuzzy sets, Int. J. Pure Appl. Math. 3 (2005), 287–297.
- [5] F. Smarandache, Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras and Applications, Pons Publishing House, Brussels, Belgium, 2017.
- [6] F. Smarandache, M. Ali, Neutrosophic triplet group, Neural Comput. Appl. 29 (2018), 595–601.
- [7] X. Zhang, Q.Q. Hu, F. Smarandache, X.G. An, On neutrosophic triplet groups: Basic properties, NT-subgroups and some notes, Symmetry 10 (2018), 10:289. doi:10.3390/sym10070289.
- [8] X. Zhang, X. Mao, F. Smarandache, C. Park, On homomorphism theorem for perfect neutrosophic extended triplet groups, Information 9 (2018), 9:237. doi:10.3390/info9090237.

JUNG RYE LEE

DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY, KYUNGGI 11159, KOREA E-mail address: jrlee@daejin.ac.kr

CHOONKIL PARK

RESEARCH INSTITUTE FOR NATURAL SCIENCES, HANYANG UNIVERSITY, SEOUL 04763, KOREA *E-mail address*: baak@hanyang.ac.kr

XIAOHONG ZHANG

DEPARTMENT OF MATHEMATICS, SCHOOL OF ARTS AND SCIENCES, SHAANXI UNIVERSITY OF SCIENCE AND TECHNOLOGY, XI'AN, P. R. CHINA; DEPARTMENT OF MATHEMATICS, COLLEGE OF ARTS AND SCIENCES, SHANGHAI MARITIME UNIVERSITY, SHANGHAI, P.R. CHINA

E-mail address: zhangxh@shmtu.edu.cn