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ABSTRACT 
Assume G is a graph with some pebbles distributed over its vertices. A CF pebbling move is when x 

pebbles are removed from one vertex,  pebbles are thrown away and   pebbles are moved to an 
adjacent vertex. The CF pebbling number λ(G), of a connected graph G is the least positive integer n such 
that any distribution of n pebbles on G, allows one pebble to be carried to any arbitrary vertex using a 
sequence of CF pebbling moves. The CF pebbling number of path and path related graphs are determined 
in this study.  
 
Keywords: CF pebbling move, CF pebbling number, path related graphs.  
 
1. INTRODUCTION 
Graph theory, an extensive and vibrant area of mathematics, delves into the properties and applications 
of graphs, which are structures used to model relationships between objects. Among the many intriguing 
topics within graph theory, pebbling problems have significant attention due to their combinatorial 
complexity and practical relevance in areas such as network optimization and resource management. 
This paper examines a particular variant known as the CF (Ceiling Floor) pebbling. 
The CF pebbling number of a graph quantifies the minimum number of pebbles needed to guarantee that, 
regardless of their initial distribution, a pebble can be moved to any target vertex through a series of CF 

pebbling moves. A CF pebbling move involves removing x pebbles from a vertex, discarding   
x

2
  pebbles, 

and placing  
x

2
  pebbles on an adjacent vertex. This variant, incorporating the ceiling and floor functions, 

introduces additional complexity to the pebbling process, making the determination of the CF pebbling 
number a challenging and intriguing problem. 
In this paper we study the CF pebbling number of path and path-related graphs, analyzing how this 
number evolves with varying graph configurations. We present precise formulations for the CF pebbling 
number of path Pn of length n and extend our analysis to path related graphs.  Here, 𝑝(𝑣) denotes the 
number of pebbles placed in the vertex 𝑣 in a graph 𝐺. 
 
2. Preliminaries 
Definition 2.1: Assume G is a graph with some pebbles distributed over its vertices. A CF pebbling move 

is when x Pebbles are removed from one vertex,  
x

2
  pebbles are thrown away and  

x

2
  pebbles are moved to 

an adjacent vertex. The CF pebbling number λ(G), of a connected graph G is the least positive integer n 
such that any distribution of n pebbles on G allows one pebble to carried to any arbitrary vertex using a 
sequence of CF pebbling moves.  
Definition 2.2: A CF pebbling number λ G, v , of a vertex v of a graph G is the smallest number λ(G, v) 
such that atleast one pebble may be moved to target vertex v using a sequence of CF pebbling moves, for 
any placement of λ(G, v) pebbles on the vertices of G. The maximum λ(G, v) over all the vertices of G is the 
CF pebbling number of a graph denoted as λ(G). 
Definition 2.3: A pendant vertex is a vertex that has a degree 1, meaning it is only connected to one 
edge. Pendant vertices are also known as leaf vertices or end vertices. In trees, pendant vertices are called 
terminal nodes or simply leaves. 
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3. The CF pebbling number of path and path related graphs 
Theorem 3.1. For the pathP1 , λ( P1) is 2. 
Proof. Let V (P1)  =  {v1, v2} and E(P1)  =  {v1v2}. Without loss of generality, assume v1is our target vertex 
and has zero pebbles. By placing a single pebble on v2, a pebble cannot be moved to v1. So λ(P1)  ≥  2. If 
vertex v1receives a pebble then there is nothing to prove. Assume that v1has zero pebbles, then with two 
pebbles in v2, a pebble can be moved to v1. So λ(P1)  ≤  2. 
 
Theorem 3.2. For the path P2, λ(P2) is 3. 
Proof. Let V (P2) = {v1, v2, v3} and E(P2) = {v1v2, v2v3}. By placing two pebbles on v3, a pebble cannot be 
moved to a target vertex v1. So λ(P2) ≥ 3. Without loss of generality, assume that v1is our target vertex and 
distribute three pebbles on vertices of P2. If vertex v1receives a pebble, then there is nothing to prove, so 
assume v1has zero pebbles. If v2receives atleast two pebbles then a pebble can be moved from v2to v1. so 
assume v2receives atmost one pebble. 
If v2has a single pebble then from v3, a pebble can be moved to v2and from v2a pebble can be moved to v1. 
If v2has zero pebbles, then from v3using CF pebbling move, two pebbles can be moved to v2and from v2a 
pebble can be moved to v1. 
If v2is our target vertex, then at least one of v1or v3receives at least two pebbles, then a 
pebble can be moved to v2. So λ(P2) ≤ 3.  
 
Theorem 3.3. For a pathPnof length n, λ(Pn)  =  2n−1 +  1,∀n ≥ 2. 
Proof: Let V Pn =  v1 , v2 , … , vn , vn+1  and 
E Pn =  v1v2 , v2v3, … , vn−1vn , vnvn+1 .  Assume v1is our target vertex and it has zero pebbles. 
By placing 2n−1pebbles on vn+1, a pebble cannot be moved to v1, hence λ(Pn )  ≥ 2n−1 +  1. Distributing 
2n−1 + 1 pebbles on all vertices of path Pn . The result is true when n = 2. Assume the result is true for a 
path Pk−1  (i.e., λ(Pk−1)  =  2k−2 +  1). 
To prove that the result is true for path Pk . Any path Pkcan be divided into two paths say 
Pk1

 and Pk2
. 

Let V (Pk1
)  =  {v1} and V  Pk2

 =   v2, . . . , vn , vn+1 , E Pk2
 =  v2v3, v3v4 , … , vnvn+1 . 

Case (i): If Pk1
has no pebble and all pebbles are placed on Pk2

.  Let 𝑣1  be our target vertex. Using 

2. 2n−2 +  1 pebbles, two pebbles can be moved to v2and a pebble can be moved to v1. 
Case (ii): If Pk1

has all pebbles and Pk2
receives no pebbles.  Let any vertex 𝑣𝑖 , 𝑖 ≠ 1, be our target vertex. 

Then from v1, 2n−2 +  1 pebbles can be moved to v2, using 2n−2 + 1 pebbles, a pebble can be moved to any 
target vertex of Pk2

using induction. So λ(Pn)  ≤  2n−1 +  1.  

 

Theorem 3.4. For star graph K1,n , λ K1,n = n + 1 for n ≥ 1. 

Proof: Let V K1,n =  v0, v1, … vn  such that deg v0 = n and deg vi = 1; 1 ≤ i ≤ n. 

Now, put 2 pebbles on vn  and one pebble on each of the vertices vi , 1 < 𝑖 < 𝑛. Then no pebble could be 

moved to v1. Thus  λ K1,n ≥ n + 1.  

Now, Consider a distribution L of n+1 pebbles on the vertices of K1,n .  
Case (i): Assume that𝑣1be our target vertexand p v1 = 0.  If n+1 pebbles are distributed to n vertices of 
K1,n − {𝑣1} such that there exists a vertex with at least 2 pebbles.  
 Suppose, p v0 = 2. Since d v0, vi = 1; 1 ≤ i ≤ n, one pebble could easily moved to v1 by CF pebbling 
move.  
 On the other hand if p v0 ≤ 1 then at least n pebbles are distributed in n-1 pendant vertices other than 
𝑣1 . 
 Then either any one pendant vertex has at least 3 pebbles or two pendant vertices has at least 2 pebbles. 
However, by CF pebbling move two pebbles could be moved to v0 and hence could place a pebble in v1. 
Case(ii): Now, assume v0 as the target vertex such that p v0 = 0. Then the distribution of n+1 pebbles in 
the n pendant vertices of K1,n  ,  one vertex has at least 2 pebbles. Clearly, d v0 , vi = 1; 1 ≤ i ≤ n, a pebble 

could be moved to v0. Hence λ K1,n ≤ n + 1. 

 
Definition 3.1:  
The addition of two graphs 𝐺1and 𝐺2 is a graph with a vertex set that is the union of 𝐺1 and 𝐺2 and an edge 
set that is the union of 𝐺1 and 𝐺2. 
 
Theorem 3.5. Let 𝑃𝑛  be a path of length n.  Then λ Pn + K1 = n + 2 for n ≥ 1. 
Proof: Let V Pn + K1 =  v0, v1, v2, … , vn+1 . Let deg(v0) = 𝑛 + 1, deg(vi) = 2, 
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  𝑖 = 1, 𝑛 + 1  and deg(vj) = 3 for all j = 2, 3,..,n. 

By putting one pebble each on the vertices v1, v2, … , vn+1,we cannot move a pebble to v0. Thus,  
λ Pn + K1 ≥ n + 2 
Case (i): Suppose there are n+2 pebbles, which has been distributed on the vertices  
of Pn + K1 .  
Let v0 be the target vertex. If p v0 = 0, then there exists some i ∈  1,2, … , n + 1  such that p vi ≥ 2. So, 
we can move one pebble to v0 by CF move from such vi . 
Case (ii):Let vk  be the target vertex such that p vk = 0 and 1 ≤ k ≤ n + 1. 
 Sub case a: If p v0 ≥ 2 or p vi ≥ 3 for some i ≠ k, then {v0, vk} or {vi , v0, vk} forms a transmitting sub 
graph. Hence we can move a pebble to vk . 

 Sub case b: If p v0 = 1,then there exist some vj , 𝑗 ≠ 0, 𝑘 such that p vj ≥ 2. Then {vj , v0, vk} forms a 

transmitting sub graph and we are done.  
 Sub case c: If p v0 = 0 then there should be at least one vertex vs  such that p vs ≥ 3 or there exists 

atleast two vertices vj  and vt  such that p vj  ≥  2 and p vt ≥ 2, then two pebbles can be moved to vo  

each one from vj  and vt  and hence apebble could be moved from v0 to vk .  Thus λ Pn + K1 ≤ n + 2. 

 
Definition 3.2:[2]  A graph which joins the empty graph 𝐾𝑚  on m nodes and the path graph Pn  on n nodes 
is called fan graph. If m  1 then it is called fan graph and if m  2 it is called double fan. 
 
Theorem 3.6. λ Pn + 2K1 = n + 3 for n ≥ 1. 
Proof: Let V Pn + K1 = {x0, y0, v1, v2 , … , vn+1}. Let deg(x0) 𝑎𝑛𝑑 deg⁡(y0) = 𝑛 + 1, deg(vi) = 3, 𝑖 = 1, 𝑛 +
1  and deg(vj) = 4 for all j = 2, 3,..,n. 

Placing n+2 pebbles, one on each vertices x0, y0, v1 , v2, … , vn leaves the vertex vn+1 unpebbled.  Thus 
λ Pn + 2K1 ≥ n + 3. 
Case (i): Suppose there are n+3 pebbles, which has been distributed on the vertices of  
Pn + 2K1 .  
Let x0 be the target vertex such thatp x0 = 0 , then there exists some i ∈  1,2, … , n + 1  such that 
p vi ≥ 2. So, we can move one pebble to x0 by CF move from such vi ′s.   
Suppose all p vi < 2, then 
 i) If p(y0) ≥ 3  thenx0 can be pebbled as d(x0, y0) = 2. 
ii) If  p(y0) ≤2 , then there exists atleast one vi  such that p(vi) ≥ 1, thus {y0, vi , x0}forms a transmitting 
subgraph and hence x0can be pebbled. 
A similar case holds if y0 is the target vertex. 
Case (ii):Let vk  be the target vertex such that p vk = 0 and 1 ≤ k ≤ n + 1. 
 Sub case (a): If p x0 ≥ 2 or p vi ≥ 3 for some i ≠ k, then {x0, vk} or {vi , x0, vk } forms a transmitting sub 
graph. Hence we can move a pebble to vk . A similar case holds if x0 is replaced by 𝑦0. 
 Sub case (b): If p x0 = 1,then there exist some vi  such that p vi ≥ 2 . Thus{vi , x0, vk} forms a 
transmitting sub graph and we are done .  If all vi  such that p(vi) < 2, then  

p(y0) ≥ 2.  Thus,  y0 , vj , x0, vk  forms a transmitting subgraph such that p(vj) = 1, 

𝑗 ≠ k and hence a pebble can be moved to vk . 
 Sub case (c): If p x0 = 0then there exist some vi  such that p vi ≥ 2 . Thus {vi , x0, vk} forms a 
transmitting sub graph and we are done .  If all vi  such that p(vi) < 2, then  
p(y0) ≥ 3.  Thus, {y0 , vj , x0, vk} forms a transmitting subgraph such that p(vj) = 1, 

 j≠ k and hence a pebble can be moved to vk .Thus λ Pn + 2K1 ≤ n + 3. 
 
Theorem 3.7: 
For cycle 𝐶𝑛  with n vertices, 𝑛 < 8, λ 𝐶𝑛 = 𝑛. 
Proof: 
Let 𝑉 𝐶𝑛 = {𝑣1 , 𝑣2, … , 𝑣𝑛 } where  𝑛 < 8. 
Without loss of generality, let us assume that 𝑣1  be our target vertex and 𝑝 𝑣1 = 0. 
Let n-1 pebbles be placed on the vertices of 𝐶𝑛  in such a way that 𝑝 𝑣𝑖 = 1 for all 𝑖 ≠ 1. Then 𝑣1  cannot be 
pebbled. Hence λ 𝐶𝑛 ≥ 𝑛. 
Case (i) : n is even 
Let n pebbles be placed on the vertices of  𝐶𝑛  other than  𝑣1 .  That is, n pebbles are placed on n-1 vertices. 
Consider the following distribution. 
Subcase 1:  If all pebbles are placed on 𝑣𝑛

2
+1, then by CF pebbling move 𝑣1  can be pebbled. 

Subcase 2:  If 𝑝  𝑣𝑛

2
+1

 = 0.  Consider the paths  
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𝑃1: 𝑣1 , 𝑣2 , … , 𝑣𝑛

2
. 

𝑃2: 𝑣𝑛

2
+2, … , 𝑣𝑛 , 𝑣1  . 

Here 𝑃1  and 𝑃2  are paths of lengths 
𝑛

2
− 1.  Since the pebbles are distributed in these paths, either 𝑃1  or 𝑃2  

has atleast 
𝑛

2
 pebbles.  Since 

𝑛

2
> 1 + 2

𝑛

2
−2 for n= 4, 6, 𝑣1  can be pebbled. 

Subcase 3:  If 0 < 𝑝  𝑣𝑛

2
+1 < 𝑛.  Consider the paths  

𝑃1: 𝑣1 , 𝑣2 , … , 𝑣𝑛

2
+1

. 

𝑃2: 𝑣𝑛

2
+1

, … , 𝑣𝑛 , 𝑣1  . 

Both 𝑃1  and 𝑃2  are paths of length 
𝑛

2
 .  If either the path has atleast 1 + 2

𝑛

2
−1 pebbles then 𝑣1  can be 

pebbled.  If both path has less than 1 + 2
𝑛

2
−1  pebbles, then 

 1) For n=4, 𝑣1  can be pebbled by CF pebbling move. 

2) For n = 6, either 𝑃1  or 𝑃2  has atleast 
𝑛

2
 pebbles, thus  𝑣1  can be pebbled. 

Case (ii): n is odd 
Let n pebbles be placed on the vertices of  𝐶𝑛  other than  𝑣1 . Consider the paths 

𝑃1: 𝑣1 , 𝑣2 , … , 𝑣
 
𝑛

2
 
. 

𝑃2: 𝑣
 
𝑛

2
 +1

, … , 𝑣𝑛 , 𝑣1  . 

The paths  𝑃1  and 𝑃2  are of length  
𝑛

2
 .Clearly either 𝑃1  or 𝑃2  has atleast  

𝑛

2
  pebbles.  Thus when n=3,5 𝑣1  

can be pebbled. 

If n = 7, placing a pebble in an intermediate vertex of either 𝑃1  or 𝑃2  means  
𝑛

2
  pebbles are enough to 

pebble 𝑣1  by CF pebbling moves through the corresponding path. 

Without loss of generality, let us assume that 𝑝  𝑣
 
𝑛

2
 
 = 4 and the path 𝑃2  has 3 pebbles.  If  𝑝  𝑣

 
𝑛

2
 +1

 ≥ 2, 

then by CF pebbling move 2 pebbles can be moved to 𝑣
 
𝑛

2
 
 and thus 𝑣1  can be pebbled. 

If 𝑝  𝑣
 
𝑛

2
 +1

 ≤ 1, then atleast one of the intermediate vertices of 𝑃2  has pebbles.  Thus from  𝑣
 
𝑛

2
 
, by CF 

pebbling move 2 pebbles can be moved to 𝑣
 
𝑛

2
 +1

 and hence 𝑣1  can be pebbled . 

Thus, λ 𝐶𝑛 ≤ 𝑛. 
 
Lemma 3.1:  For n = 1,2,  λ P1 × K2 = 4 and λ P2 × K2 = 6. 
Proof: 
Since P1 × K2  is a cycle 𝐶4 and λ(𝐶4) = 4. 

Now consider P2 × K2 .   Let 𝑉 P2 × K2 = {v1, v2, v3 ,u1 , u2, u3 } and E(P2 × K2) =   vivi+1 ∪ {uiui+1 ∪

 vjuj : 1 ≤ 𝑖 ≤ 2, 1 ≤ 𝑗 ≤ 3}  .  Let deg(v1) = deg v3 = deg u1 = deg⁡(u3 ) = 2 and deg(v2 ) =

deg⁡(u2) = 3. 
Let u3 be the target vertex.  If five pebbles are placed in such a way that p(v)=1   for all 𝑣 ≠ u3 . Then no 
pebble can reach u3 .  Thus λ P2 × K2 ≥ 6. 
Case (1): Let v be the target vertex such that deg(v)=2 and p(v)=0.  Let 6 pebbles be placed on the graph 
as follows. 
i) If any vertex w such 𝑤 ≠ 𝑣 and w is adjacent to v  has atleast 2 pebbles then one pebble can be moved to 
the target vertex. 
ii) If for all vertex w, 𝑝 𝑤 = 1, such that 𝑤 ≠ 𝑣 and w is adjacent to v  and if there exists any 𝑥 such that 
p(x)≥ 2 and x is adjacent to w, then one pebble can be moved to w and v can be pebbled. 
iii) If for all vertex w, 𝑝 𝑤 = 1, such that 𝑤 ≠ 𝑣 and w is adjacent to v  and if x is adjacent to w  and  
a) for all x, p(x) =0 then the remaining vertex  y  has four pebbles and thus one pebble can be moved to w 
and from w, v can be pebbled. 
b)for all x,  p(x)=1 then the remaining vertex y  has two pebbles and thus v can be pebbled. 
c) either of the vertex x adjacent to w has one pebble then the remaining vertex y  has 3 pebbles, then two 
pebbles can be moved to x and from there one pebble can be moved to w and hence v can be pebbled. 
iv) if for all vertex w, 𝑝 𝑤 = 0, such that 𝑤 ≠ 𝑣 and w is adjacent to v , then consider the path𝑃1:  {v, w, x, 
y} and its symmetric path 𝑃2: {𝑣, 𝑤, 𝑥} .   If 𝑃1  has atleast 5 pebbles  then v can be pebbled.  If 𝑃1  has less 
than 5 pebbles then the remaining pebbles must be in 𝑃2. If 𝑃2  has atleast 3 pebbles then one pebble can 
be moved to v through the path 𝑃2 . Otherwise 𝑃2has 2 pebbles then a pebble can be moved to 𝑃1  and 
hence the target can be reached.  
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Case (2): Let v be the target vertex such that deg(v)=3 and p(v)=0. Let 6 pebbles be placed on the graph 
as follows. 
i) If any u such that p(u)≥ 2 such that u is adjacent to v then one pebble can be moved to v. 
ii) Let p(u) < 2 for all u such that u is adjacent to v.Let the remaining vertices be x and y and 

deg(x)=deg(y)=2 and d(x,v)=d(y,v)=2. Then if p(x)=3 or p(y)=3 then one pebble can be moved to v.  
If p(x)=0, then there exists a y-v path with atleast 4 pebbles thus v can be pebbled. If p(x)=1, then 
there exists a {y,u,v} path with 3 pebbles such that p(y)=2 and p(u)=1 or p(y)≥3.  Thus, {y,u,v}forms 
a transmitting subgraph and hence v can be pebbled.  A similar case holds if x is replaced by y. 

Thus λ P2 × K2 ≤ 6. 
 
Theorem 3.8.  Let Pn  be a path of length n.  Thenλ Pn × K2 = 1 + 2n  for n ≥ 3. 
Proof: Let V Pn × K2 =  v1, v2, … , vn , vn+1, … , v2n+2  and 

E(Pn × K2) =   vivi+1 ∪ {vjvj+1 ∪  vkvk+n+1 : 1 ≤ 𝑖 ≤ 𝑛, 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛 + 1,1 ≤ 𝑘 ≤ 𝑛 + 1 } Let 

deg(v1) = deg vn  = deg vn+1 = deg⁡(v2n+2 ) = 2 and deg(vi)=3 for all 𝑖 ≠ 1, 𝑛, 𝑛 + 1, 2𝑛 + 2. 
If the vertex v2n+2 contains 2npebbles, then by CF pebbling move, no pebbles could be shifted to v1. Thus 
λ Pn × K2 ≥ 1 + 2n .  
Now prove that λ Pn × K2 ≤ 2n + 1.  
Consider a distribution L of 2n + 1 pebbles on V Pn × K2 .  
Case (i): Let y be a target vertex such that deg y = 2. Without loss of generality, let y = v1 . Then 
d v1, vt ≤ n + 1, 2 ≤ t ≤ 2n + 2 . And there is a path from vn+2 to v1, a pebble could be shifted to the 
target y = v1 by the distribution of 2n + 1 pebbles on either path 
𝑃1 =  v2n+2, vn+1, … , v2, v1  or path𝑃2 =  v2n+2, v2n+1, … vn+2 , v1  .  
If pebbles are distributed on both the paths, then one of the paths has atleast 1 + 2𝑛−1 
pebbles.  If all 1 + 2𝑛−1 are placed on v2n+2 then through the path that contains all 1 + 2n  pebbles, one 
pebble can be moved to the target vertex.   If 1 + 2𝑛−1 pebbles are distributed on some vertices of any one 
of the path say 𝑃1  then clearly atleast 2𝑛−1 − 𝑛 ≥ 1  pebbles can be  moved to 𝑃1  from the path 𝑃2  and as 
these pebbles are distributed in the intermediate vertices of the path, also one pebble in the intermediate 
vertex at a distance i from the initial vertex of the path is equivalent to 1 + 2𝑖−1pebbles placed at the 
initial vertex of the path, the target vertex can be pebbled. 
Case (ii): Let y be any target vertex, deg y = 3and p y = 0. Consider two paths  
𝑃1 =  v1, v2, … , vi , … , vn+1  and  𝑃2 =  vn+2, vn+3, … , vn+i+1, … , v2n+2 . 
Let y =𝑣𝑖 .  Then if 𝑝(𝑃1) ≥ 1 + 2𝑛−1  then 𝑣𝑖can be pebbled as d(v,𝑣𝑖)< 𝑛 for all 𝑣 ∈ 𝑉(𝑃1).  If 𝑝(𝑃2) ≥ 1 +
2𝑛−1  then two pebbles can be moved to vn+i+1  as  d(v,𝑣𝑛+1+𝑖)< 𝑛 for all 𝑣 ∈ 𝑉(𝑃2) and hence one pebble 
can be moved to vi . 
A similar proof holds if the target vertex is on the path 𝑃2 . 
Thus λ Pn × K2 ≤ 1 + 2n  for n ≥ 3. 
 
Theorem 3.9.λ Pn ⊙ K1 = 2n+1 + n for n ≥ 1. 

Proof: Let V(Pn) = {v1, … , vn+1} and V Pn ⊙ K1 =  v1, … , vn+1, v1
′ , … , vn+1′  and 

 E(Pn ⊙ K1) = 𝐸(Pn) ∪ {𝑣𝑖𝑣𝑖
′ : 1 ≤ 𝑖 ≤ 𝑛 + 1}. 

Let vn+1′ be the target vertex. 
Without loss of generality place 2n+1 pebbles on v1′ and remaining n-1 pebbles on the pendant vertices 
except vn+1′.  

By the successive CF pebbling moves, v1 will receive  
2n +1

2
  pebbles, then v2 will receive   

2n +1

4
 pebbles in 

the next move. 
proceeding like this vn+1 will receive exactly one pebble, this will make vn+1′ as unreachable.  
Hence λ Pn ⊙ K1 ≥ 2n+1 + n. 
Consider a distribution of 2n+1 + n pebbles.  
Case (i):Choose any vertex vi , 1 ≤ 𝑖 ≤ 𝑛 + 1 such that p vi = 0 as a target vertex.Consider the path 

𝑃′ = {v1
′ , v1, … , vn+1 , vn+1

′ } of length n+2. 

If all 2n+1 + n pebbles are distributed on the path 𝑃′ then our target vertex can be easily pebbled. If all 

2n+1 + n pebbles are distributed in a way that p(𝑃′) = 0 then atleast 2n + 1 pebbles will reach the 

intermediate vertices 𝑣𝑗 , 2 ≤ 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗, of 𝑃′.  Thus, our target vertex can be pebbled as the distance 

between the target vertex and the intermediate vertices 𝑣𝑗 , 2 ≤ 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗,  of 𝑃′ is atmost n-1. 

If 2n+1 + n pebbles are distributed on both Pnand pendant vertices.  Let s > 0  be the number of pebbles 
distributed on the pendant vertices such that p(Pn) = 2n+1 + n − s.  If s = 1, then 2n+1 + n − 1 pebbles on 
Pn  are enough to reach the target vertex with one pebble.   
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Suppose n >  s > 1.  Then the number of pebbles  on the path Pn  will be atleast 2n+1 + 1.  Hence one pebble 
can reach the target vertex.  Suppose s ≥ n.  Then the number of pebbles the pathPncan receive from both 
the path Pn   and the pendant vertices will be atleast 1+2n .  Since Pn  is a path of length n, one pebble can be 
moved to the target vertex. 
Case (ii):  Let vi ′ be the target vertex such that 𝑝(vi ′) = 0 and 1≤ 𝑖 ≤ 𝑛 + 1. 
If all the pebbles are placed either on path Pn  or on the pendant vertices except the target vertex then the 
target vertex can be easily pebbled as the distance between the target vertex and any other vertex in the 
graph is atmost n+2.  
If 2n+1 + n pebbles are distributed on both Pnand pendant vertices.  Let s > 0  be the number of pebbles 
distributed on the pendant vertices such that p(Pn) = 2n+1 + n − s.   
Now, proceeding as above in case (i), for any values of s, the target vertex can be easily pebbled as each 
pendant vertex is non-adjacent,an intermediate vertex of path Pnat a distance of i from the initial vertex of 
path Pnhas one pebble is equivalent to placing 1+2i−1 pebbles on the initial vertex of path Pn  and the 
distance between the target vertex and anyother vertex in the graph is atmost n+2. 
Thus λ Pn ⊙ K1 ≤ 2n+1 + n. 
Hence λ Pn ⊙ K1 = 2n+1 + n. 
 
4. CONCLUSION 
In this paper we find the CF pebbling number of path and path related graphs. The CF pebbling number of 
other standard graphs is an open problem. 
 
REFERENCES 
[1]   F.R.K. Chung, Pebbling in Hypercubes, SIAM J. Discrete Math.2 (1989), 467-472. 
[2]   J. Jannet Raji and S. Meenakshi, “ Roman Domination Number Of Double Fan Graphs”,Advances and 

Applications in Mathematical Sciences Volume 21, Issue 1, November 2021, Pages 485-491 © 2021 
Mili Publications, India. 

 
 


