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ABSTRACT 
This study investigated that an efficient fault detection is essential in distribution systems to ensure the 
dependability and stability of electrical networks, especially when including renewable energy sources 
like solar PV.This study presents a Fault detection approach for the IEEE-33 bus system that incorporates 
with Solar PV. The method utilises sophisticated deep learning models, notably VGG-16 paired with 
Temporal Convolutional Networks (TCN). Study assess the efficacy of several models, such as VGG-16 and 
TCN, Hybrid CNN-LSTM, Bi-LSTM, and ANN, across numerous fault categories. The findings of this study 
indicate that the VGG-16 & TCN model surpasses the other designs, obtaining an outstanding accuracy of 
99.8%, along with excellent precision, recall, and F1-score. The examination of the confusion matrix 
reveals that both VGG-16 and TCN exhibit a high level of accuracy in classifying fault types, with just a few 
instances of misclassification. Furthermore, the ROC curve analysis substantiates the exceptional efficacy 
of VGG-16 and TCN, as shown by their ROC value 99, surpassing that of other models. The exceptional 
performance may be ascribed to the strong feature extraction capabilities of VGG-16 and the efficient 
processing of sequential data by TCN. The study's findings indicate that the VGG-16 & TCN model is the 
most efficient for fault identification. 
 
Keywords: Fault detection, Active distribution network, Solar PV, VGG-16, Temporal Convolutional 
Network (TCN), Deep learning. 
 
1. INTRODUCTION 
Power outages in transmission lines are mostly caused by unanticipated and irregular faults[1]. Power 
system problems are inevitable and must not be disregarded. Fault detection and classification are crucial 
for ensuring the stability of both traditional and intelligent power grids[2]. Transmission line faults and 
equipment breakdowns may result in substantial interruptions to the power system, resulting in power 
outages and equipment damage. Hence, it is crucial to ensure precise and prompt identification and 
categorization of faults in order to maintain the stability and safety of the smart grid[3]. A smart grid is a 
sophisticated and ever-changing system that necessitates ongoing surveillance and upkeep to guarantee 
dependability and effectiveness. Fault detection and categorization are essential activities in the 
operation and administration of smart grids. According to [4], most of the problems in the transmission 
part of the power system occur in transmission lines. Short-circuit faults are common and considered the 
most severe form, presenting significant dangers to transmission lines[5]. These dangers include 
reducing the operational lifetime of components, increasing power losses, causing cable heat, and 
damaging insulators. 
Over the last two decades, there has been a swift advancement in numerous domains related to 
identifying, classifying, and detecting power system malfunctions. Growing numbers of researchers are 
now able to conduct studies with a high breadth and depth because of advancements in signal processing 
techniques, artificial intelligence and machine learning, global positioning system (GPS), and 
communications, which have allowed the boundaries of conventional fault protection techniques to be 
stretched. Precisely identifying and categorising transmission line defects can lower the cost of replacing 
power lines and improve the likelihood of power grid safety. Customers experience power outages due to 
transmission line failures [6]. 
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1.1 Overview of Fault Detection and Classification 
Transmission line faults can result in a variety of disruptions, including overheating, mechanical stress, 
and unbalanced power flow. Furthermore, reliable fault detection and classification (FDC) is crucial to 
maintaining grid system stability. While the process of recovering from failure phases is contingent upon 
human intervention and the detection and classification method employed to pinpoint the specific type of 
failure and its location within the network. This is important because a quick and accurate FDC 
guarantees prompt repair, increases the likelihood of separating problematic phases from the 
transmission system, and improves the transient stability and power quality of the interconnected power 
network. Many algorithms are used to classify faults in transmission lines. Two popular approaches are 
artificial intelligence (AI) and machine learning (ML), which are chosen for their ability to learn quickly, 
produce accurate results, and identify patterns in input training data [7]. Historical fault classification 
methods are classified as well-known and contemporary methods. The popular methods include fuzzy 
logic-based approaches for fault classification, commonly referred to as hybrid methods, and Wavelet 
Transform (WT) based analysis combined with Artificial Neural Networks. Furthermore, recent fault 
classification approaches include principal component analysis (PCA), phasor measurement units (PMU), 
artificial intelligence (AI), and support vector machines (SVM). 
In the last several decades, solar energy has become a well-liked solution for energy shortages and a 
competitive substitute for fossil fuels. This ecologically benign and renewable energy source offers a 
limitless and sustainable supply of power [8]. Consequently, solar energy has the capacity to supply all of 
the world's energy needs. It is mainly dependent on the weather, though, and any changes in that regard 
could have a big effect on its output power[9]. System instability may result from variations in PV power 
production, particularly when PV power makes up a significant amount of the energy supply. To 
successfully integrate PV electricity into electrical grids and lessen the detrimental effects of fluctuating 
PV power production on the system, accurate forecasting is essential. A clever and strong AI tool for 
modelling, predicting, and enhancing the performance of many engineering systems is the artificial neural 
network (ANN). This method has proven effective in solving challenging nonlinear engineering issues[9]. 
When addressing the changing nature of environmental situations, these aspects become crucial. As a 
result, artificial neural networks (ANNs) have gained popularity in the solar energy industry, especially 
for applications including defect detection, predictive maintenance, radiation forecasting, and power 
prediction.   
Another strategy that has drawn a lot of attention recently is the use of artificial neural networks. An 
artificial neural network is a network of neurons that can learn a wide range of complicated functions via 
a sequence of nonlinear transformations. With the development of deep learning methods, these 
networks have been effectively used to perform challenging categorization tasks like voice and picture 
recognition. To solve the issue of fault detection, artificial neural networks have also been used. 
Convolutional neural networks (CNNs) are a supervised learning approach that may be tailored to 
address a wide range of complex issues in exploratory geophysics, thanks to their high degree of network 
architectural flexibility. The simplest use of CNNs among these issues may be the identification of certain 
seismic facies of interest. Faults are a unique set of edges in seismic data from the standpoint of computer 
vision. With remarkable effectiveness, CNN has been used to tackle more broad edge detection issues. 
Nonetheless, the majority of the studies used hierarchical neural networks or shallow neural networks. 
Therefore, there is more work to be done to fully explore the potential of deep neural networks for defect 
diagnostics.  
 
1.2 Relevance of Deep Learning in Power Systems 
Faults in power transmission lines may arise due to a variety of factors, including short circuits, tree or 
animal contact, lightning strikes, earthquakes, conductor clashing, and equipment corrosion. Some are 
under human influence, while others are naturally occurring. When protective relays identify a defect, 
they must clear it promptly [10]. While defects may develop for a variety of causes, locating and analysing 
them remains a key problem. Reducing post-fault analysis time allows for speedier system maintenance 
and restoration, perhaps leading to lower failure costs. To improve power system dependability, it's 
crucial to quickly and efficiently classify problem types and locations.  advocated fault-location 
observability and a novel approach for transmission networks using synchronised phasor measuring 
units (PMUs). developed deterministic and stochastic methods for locating faults in power systems using 
a low number of PMUs [11]. 
Fault type and location categorization involves three steps: (1) importing transient fault data, (2) pre-
processing using suitable methods, and (3) analysing the data. To convert three-phase voltage and 
current fault signals, pre-data processing methods such as Stransform, wavelet transform, and Fast 
Fourier Transform (FFT) may be utilised. Fault data may be analysed using several methods, including 
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machine learning and waveform-based correlation coefficients. Several academics have published articles 
on using machine learning and deep neural networks to detect and locate power system issues.Fault 
techniques are classified into model-based, knowledge-based, and data-driven approaches, which rely on 
numerical data analysis and interpretation rather than personal observation or experience [12].  
Data-driven strategies base ideas and solutions on verifiable facts, rather than assumptions or personal 
experience. Various machine learning algorithms, including decision trees, support vector machines, and 
k-nearest neighbours (k-NN), have been suggested for fault classification[13]. The study found that 
processing high-dimensional data requires computational complexity and reduction strategies for 
reconstruction. However, reducing data dimensions might lead to information loss and undermine the 
accuracy of outcomes. In Ref [14], the authors suggest a way to extract PV cell attributes from thermal 
images and compare the results using the SVM algorithm. In [15] the author presents a strategy for 
distinguishing PQ disturbances from pure sinusoidal signals using time-domain descriptor fusion (FTDD). 
The recommended technique is evaluated using multiclass SVM and Naive Bayes (NB) classifiers.[16] 
developed the Modified Multi-Class Support Vector Machines (MMC-SVM) approach to categorise open-
circuit faults in power distribution networks. Simulation findings indicate the usefulness and resilience of 
the proposed machine learning model [17]. 
In [18], a classification technique is suggested that utilizes convolutional neural networks (CNNs) with 
varying sample frequencies. The use of wavelet transform for extracting fault harmonics in the input of 
CNNs has been observed. However, the accuracy of the classification judgements and the results are 
affected by data generalization difficulties, as mentioned in[19]. Deep neural networks use convolutional 
neural networks (CNNs) as a powerful technique for image categorization. CNNs are also employed as 
fundamental components of ResNet and VGG16. Convolutional Neural Networks (CNNs) have the 
capability to categorize extensive picture collections collected from ImageNet. Various convolutional 
layers, pooling layers, and fully connected layers are used to extract the fundamental characteristics of 
the data from the pictures and categorize them via supervised learning. The authors in Ref.  introduced a 
defect classifier that use a convolutional neural network and wavelet packet analysis. The authors of [20] 
effectively suggested a classification method using Convolutional Neural Networks (CNN) with raw input 
data to enhance the accuracy of detecting transmission line defects. 
 
1.3 Background 
1.3.1 VGG 16 
The VGG-16 model is a convolutional neural network (CNN) architecture developed by the Visual 
Geometry Group (VGG) at the University of Oxford. The depth of this system is defined by its 16 layers, 
which include of 13 convolutional layers and 3 fully linked layers. VGG16 is model designed for image 
recognition.VGG-16 is well-known for its simplicity and efficacy, as well as its capability to produce high 
performance on many computer vision tasks, such as picture categorization and object identification. The 
design of the model consists of a series of convolutional layers followed by max-pooling layers, with a 
gradual increase in depth. This approach allows the model to acquire complex hierarchical 
representations of visual characteristics, resulting in strong and precise predictions. Although VGG-16 is 
less complex compared to newer designs, it continues to be widely used in deep learning applications 
because of its adaptability and outstanding performance. It is unusual in that it uses just 16 weighted 
layers rather than a huge number of hyper-parameters. It's regarded as one of the greatest vision model 
architectures [21].It is an object identification and classification algorithm capable of classifying 1000 
photos into 1000 distinct categories with 92.7% accuracy. It is one of the most common picture 
classification methods, and it works well with transfer learning. 
In the year 2014, the Visual Geometry Group at Oxford University achieved the second position in the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition for classification. They used a 
convolutional neural network architecture called VGG-16, which is both deep and straightforward. This 
model has gained significant popularity in the research community because to its straightforward 
methodology and the accessibility of its pre-trained weights, which are freely accessible online. This 
makes it easier to adapt and enhance the performance of this robust model for new tasks. The VGG-16 
network was trained using the ImageNet database. The VGG-16 network's intensive training ensures high 
accuracy even with tiny picture data sets. The VGG-16 network contains 16 convolution layers with a tiny 
33 receptive field. It contains 5 Max pooling levels, each measuring 2×2. There are three completely 
linked layers after the Max pooling layer. This is followed by three completely linked layers. It employs 
the softmax classifier as the last layer. ReLu activation is performed over all concealed levels. 
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Figure 1: An overview of the VGG-16 model architecture[22] 

 
1.3.2 TCN (Temporal Convolutional Networks) 
A neural network called a temporal convolutional network (TCN) was created specifically to process 
time-series data. In terms of efficiency, parallelism, usage of 1D convolution, capacity to capture long-
term dependencies, dilated convolutions, global and local context modelling, interpretability, shift-
invariance, implementation, simplicity, and scalability, TCN offers a number of advantages over LSTM and 
RNN architectures. Depending on the goal of signal analysis, TCN can be used to categorise defects based 
on univariate or multivariate time series data. Moreover, TCNs, like RNNs, can handle input and output 
sequences of unlimited length and employ causal convolutions to guarantee that the past is independent 
of the future. Furthermore, by joining very deep networks, TCN is able to attain very high effective history 
sizes. Compared to WaveNet, TCNs have a longer memory for handling sequential input and a simpler 
structure that allows it to make predictions based on historical data points. These features set them apart 
from other deep learning methods [23] . 

A temporal convolutional neural network is trained to predict the next l values of an input time series. 

Assume you have a series of inputs 0 1, ,..., Lx x x  and want to predict the corresponding output 

0 1, ,..., Ly y y at each time step. The output values should be identical to the inputs stretched 

forward l  steps. The major limitation is that it can only forecast the output ty for a given time step t  

using previously observed inputs: 0 1, ,..., tx x x . 

 

 
Figure 2: A casual convolution with filter kernel size k=2 [24] 

 
The TCN has two primary limitations: it may only utilise data from previous time steps, and its output 
must match the duration of its input. A 1-D fully-convolutional network architecture [25] is employed in 
TCN to satisfy these temporal criteria since all of its convolution layers have the same length and zero 
padding to guarantee that subsequent layers have the same length as the ones before them. Furthermore, 
TCN employs causal convolutions illustrates, only calculate an output at time step t in each layer using the 
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area no later than time step t in the preceding layer. The output of a normal convolution may be shifted by 
a few time steps to quickly construct the causal convolution for 1-D data.  
 
Dilated Convolutions 
In general, it is anticipated that networks will be able to retain long-term information when interacting 
with a time series. Nevertheless, the receptive field diameters are restricted unless a large number of 
layers are stacked, as demonstrated by the sample causal convolution we previously demonstrated. This 
results in complications when employing casual convolution on sequence tasks due to its substantial 
computational expense. To resolve the issues, dilated convolutions are implemented to facilitate an 
exponentially large receptive field with limit layers. 
 

 
Figure 3: A dilated casual convolution with filter size k=3 and dilated variables d=1, 2, 4. 

 
A dilated convolution is a convolution in which a step-by-step set of input values are skipped in order to 
apply a filter across an area that exceeds its size. In that it increases the receptive field size, this is 
comparable to pooling or stride convolutions; nevertheless, the output size is identical to the input. It is 
typical practice to raise the dilated factor d exponentially with network depth when using dilated 
convolutions. This guarantees that the receptive field covers every input in the history and makes it 
possible to use deep networks to get an incredibly broad receptive field as an effective history.  
 
Residual connections 
To achieve a sufficient receptive field, the network depth (n), filter size (k), and dilation factor (d) all play 
a role. Therefore, deeper and bigger TCNs are recommended. Using a deep and narrow network design, 
with several layers and a small filter size, has shown to be beneficial.  Residual connections have shown to 
be quite useful for training deep networks. Skip connections are employed in residual networks to speed 
up training and prevent the vanishing gradient issue in deep learning models. 
 
1.3.3 Spectrogram 
A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time. 
When applied to an audio signal, spectrograms are sometimes called sonographs, voiceprints, or voice 
grams.Spectrogram is a graphical representation that displays the amplitude, or intensity, of a signal at 
different frequencies across time in a waveform. One may see not only the disparity in energy levels 
between frequencies such as 2 Hz and 10 Hz, but also the temporal fluctuations in energy levels. 
Spectrograms are often used in several scientific disciplines to visually represent the frequency of sound 
waves generated by people, machines, animals, whales, aeroplanes, and other sources, as captured by 
microphones. Spectrograms are now often used in the field of seismology to analyse the frequency 
composition of continuous signals captured by individual or groups of seismometers. This aids in the 
identification and characterization of various kinds of earthquakes or other ground vibrations. The 
signal's frequency and energy are conveyed by a representation that maps frequencies down the vertical 
axis and varies colour to indicate energy levels[26]. Spectrograms are widely used in several fields such 
as speech analysis and medical applications like ECG analysis. In order to create spectrogram pictures, we 
used the Short-Time Fourier Transform (STFT) approach to analyse the time-frequency characteristics of 
the available feature data. 
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1.3.4 IEEE -33 Bus system 
The IEEE 33 Bus system is a standardised test case used in power engineering research to assess the 
performance and dependability of distribution networks. It is made up of 33 buses (nodes) and 32 radial 
lines (branches) that represent a typical distribution network. Baran and Wu suggested a 33-bus 
distribution system in 1989.  It is often used to evaluate many electrical engineering issues, including load 
flow analysis, fault analysis, and network optimisation. The system is distinguished by its single feeder 
and radial architecture, which means that all lines originate from a single substation and stretch outward, 
like a tree structure. The IEEE 33-Bus radial distribution system is used to test and evaluate different 
kinds of DG units. This system is made up of 33 buses and 32 lines, with a voltage of 12.66kV, a load 
capacity of 3.715MW, and 2.3MVar[27]. The distributed generating unit utilised represents 30% of the 
total load. The DG unit voltage is 12.66kV, and the system's lower and higher voltages are set at 0. 95p.u 
and 1.05p.u. This will allow us to see how the different DG units affect the electricity system's load ability 
margin. To provide a clear assessment of the various DG units' effects on the distribution system, the 
research will be conducted with a set optimum location and DG penetration level. The DG unit location 
was decided using an optimisation approach with a set penetration level (30% of the total load). This 
arrangement serves as a critical benchmark for academics and engineers developing and testing new 
algorithms, methods, and technologies to improve the efficiency, stability, and resilience of electrical 
distribution networks.  
 
1.4 Nomenclature 
 

Table 1: Nomenclature 

Symbol/Term Description 

CNN Convolutional Neural Network 
ANN Artificial Neural Networks 

Bi-LSTM Bidirectional Long Short-Term Memory 

TCN Temporal Convolutional Networks 
LSTM Long Short-Term Memory 

IEEE Institute of Electrical and Electronics Engineers 

STFT Short-Time Fourier Transform  

 
1.5 Paper organization 
The rest of the paper is organized as follows: Section-2 comprehensive Literature review, summarizes the 
previous work on faults detection techniques and their applications in power systems. Section-3 details 
the methodology, including the feature extraction by using the VGG-16 and classification using TCN. 
Section-4 presents the results and discussion, comparing the performance of various machine learning 
models. Finally, Section-5 concludes the study by emphasizing the efficiency of VGG-16 & TCN model and 
importance of advanced feature extraction for fault detection. 
 
2. LITERATURE REVIEW 

 

Author Aim Method Results 
[28] This study aims to enhance 

the effectiveness and 
reliability of drone imagery-
based inspections for 
component identification 
and defect detection of 
transmission lines. 

The study utilized deep learning, 
specifically the Faster R-CNN 
model, for component 
identification and defect detection 
from drone images during 
transmission line inspections, 
expanding the dataset through 
convolution kernel size 
adjustments. 

The study found deep 
learning to be highly 
effective in identifying 
defects in high-voltage 
transmission line 
components, with a 
recognition speed of 0.17 
seconds per image and a 
recognition rate of 96.8% for 
pressure-equalizing rings, 
highlighting its potential in 
power line inspection 
processes. 

[29] The goal of this study is to The study used wavelet packet The simulation results 
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create a hybrid deep-
learning model for real-time 
automated problem 
detection and classification 
in photovoltaic (PV) systems, 
which will solve the 
difficulties of manual and 
time-consuming fault 
diagnostic procedures. 

transform (WPT) for data pre-
processing of PV voltage signals, 
which were then input into deep 
learning architectures like the 
equilibrium optimizer algorithm 
(EOA) and long short-term memory 
(LSTM-SAE). This method 
automatically extracts fault 
features from pre-processed data, 
overcoming manual limitations.  

demonstrated the model's 
effectiveness in computation 
time, fault detection 
accuracy, and noise 
robustness, indicating its 
superior performance over 
previous studies in 
multidisciplinary 
applications. 

[30] The study utilizes 
transmission line voltage 
and current data to identify 
and classify power 
transmission issues, 
employing Artificial Neural 
Network (ANN) and 
Convolutional Neural 
Network (CNN) models to 
evaluate their accuracy. 
 

This study uses Kaggle voltage and 
current data to locate power 
transmission issues. Data is 
analysed and fed into two Deep 
Learning (DL) networks: an ANN 
and a CNN. These models identify 
defects using input data. 

The CNN exceeds the ANN in 
accuracy. This shows that 
CNNs handle voltage and 
current data better for 
power transmission line 
problem detection and 
classification. 

[31] This paper proposes an 
unsupervised framework for 
fault detection and 
classification of transmission 
line faults, utilizing a capsule 
network enhanced with a 
sparse filtering technique, to 
enhance model performance 
without the need for 
extensive datasets. 

The CNSF model encodes cycle 
post-fault three-phase signals into 
a single image for network input, 
demonstrating adaptability to 
changes in transmission line 
topology due to control actions or 
cascading faults, verified through 
tests on four different TL 
topologies. 

The CNSF model 
outperforms other models in 
fault detection and 
classification, efficiently 
extracting critical fault 
features without relying on 
large datasets, according to a 
rigorous study. 

[32] The study sought to resolve 
component defect detection 
and inventory challenges in 
electrical transmission 
networks, particularly in 
developing countries, by 
integrating sophisticated 
deep learning techniques 
with high-resolution UAV 
imagery. 

The Single Shot Multibox Detector 
(SSD) was used to analyse electric 
transmission power line imagery 
for fault detection, followed by the 
development of a CNN model with 
a multiscale layer feature pyramid 
network (FPN) for a streamlined 
process. 

The SSD Rest50 architecture 
variant outperformed the 
other models with a mean 
Average Precision of 
89.61%, despite a low recall 
rate. 

[33] The paper surveys recent 
machine learning techniques 
for fault detection, 
classification, and location 
estimation in transmission 
lines, emphasizing the need 
for advanced fault diagnosis 
tools to improve power 
system reliability and 
resilience in smart grids. 

The paper explores machine 
learning methodologies for fault 
diagnosis in transmission lines, 
including traditional methods like 
naive Bayesian classifiers and 
decision trees, as well as advanced 
artificial neural networks like 
feedforward and convolutional 
networks. 

The study evaluates the 
effectiveness of machine 
learning techniques in 
detecting, classifying, and 
locating faults, highlighting 
their potential for faster and 
more accurate fault 
identification, which is 
crucial for minimizing 
disruptions and ensuring 
electrical power system 
reliability. 

[34] The study aims to improve 
fault detection in seismic 

The study uses a synthetic fault 
model from the SEAM model and 

The integrated workflow 
significantly improves fault 
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data by combining 
convolutional neural 
networks with directional 
smoothing and sharpening 
techniques. 

field data from the Great South 
Basin, offshore New Zealand, to 
train a CNN for fault detection, 
followed by directional 
smoothing/sharpening to enhance 
classification outcomes. 

detection performance on 
synthetic and field datasets, 
outperforming traditional 
CNN-based methods, despite 
real-world data challenges. 

[35] This study aims to create a 
precise fault diagnosis model 
for microgrids (MG) to 
improve transient response, 
system reliability, and 
reduce fault line restoration 
costs by addressing shunt 
faults during power 
distribution. 

The proposed method employs a 
discrete-wavelet transform-based 
probabilistic generative model with 
multiple layers and a restricted 
Boltzmann machine, trained using 
unsupervised learning and fine-
tuned by an artificial neural 
network to minimize error 
between actual and predicted fault 
classes. 

The model's effectiveness is 
assessed through varying 
input signals, sampling 
frequencies, and noise 
introduction, revealing 
superior accuracy in 
diagnosing MG faults 
compared to kernel extreme 
learning machine, multi-
KELM, and support vector 
machine methods. 

[36] The study aims to create a 
fault detection and 
classification system for 
transmission lines using 
machine learning techniques, 
specifically an extreme 
learning machine (ELM) 
algorithm, to improve 
reliability and efficiency in 
fault identification. 
 

The study used MATLAB Simulink 
to simulate two transmission lines, 
TL-1 and TL-2, with a single 
generator and load. Normal and 
fault data were generated for ten 
fault types, and two distinct ELM 
models were developed for fault 
detection and classification. 

The ELM model 
outperformed traditional 
artificial neural networks 
(ANNs) in fault classification 
and detection, with 
accuracies of 99.18% for TL-
1 and 99.09% for TL-2, and 
99.53% for TL-1 and 99.60% 
for TL-2. 

[37] The paper aims to improve 
automated fault detection 
and isolation (FDI) in 
automotive instrument 
cluster systems within 
computer-based 
manufacturing assembly 
lines using deep learning 
techniques. 

The method uses data from local 
and remote sensing devices to 
analyse complex nonlinear signals, 
enabling more sophisticated fault 
diagnosis and localization 
compared to traditional boundary 
checking methods. 

The deep learning-based 
approach outperforms 
established foreign direct 
investment (FDI) methods in 
real-time fault classification 
and diagnosis, 
demonstrating superior 
performance in modeling 
spatial and temporal 
patterns in data. 

[38] This study aims to improve 
fault detection, diagnosis, 
identification, and location in 
large-scale multi-machine 
power systems by 
introducing novel Deep 
Learning models for Fault 
Region Identification, Fault 
Type Classification, and Fault 
Location Prediction. 

The study uses three new Deep 
Recurrent Neural Networks 
(DRNN) models with Long Short-
Term Memory (LSTM) to analyse 
transient data from pre- and post-
fault cycles. The models are tested 
on a Two-Area Four-Machine 
Power System, using data collected 
during different types of 
transmission line faults at different 
locations. 

The proposed algorithms 
demonstrated superior 
performance in fault 
detection, classification, and 
location prediction, 
achieving high accuracy and 
robustness compared to 
existing techniques. 

[6] This paper proposes a new 
machine learning method for 
fault detection and 
classification in electrical 
power transmission 
networks, using Long Short-
Term Memory units. 

The proposed method uses an end-
to-end learning model with LSTM 
units to analyse operational data, 
distinguishing normal and faulty 
conditions based on temporal 
sequences. It's tested across fault 
types, considering factors like fault 
resistance, distance, loading 
conditions, system parameters, and 
noise levels.  

The proposed method is 
proven to be effective in 
real-world applications due 
to its fast response time and 
resilience to varying 
operational conditions. 
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[39] The purpose of this work is 
to provide a unique single-
ended fault locating strategy 
for transmission lines that 
employs recent deep 
learning algorithms to 
improve the accuracy and 
efficiency of fault detection 
and restoration procedures. 

The proposed method uses a mixed 
convolutional neural network 
(CNN) and long short-term 
memory (LSTM) structure, trained 
on single-ended voltage and 
current measurements, to predict 
fault distances. Advanced 
techniques like adaptive moment 
estimation and dropout are 
employed to optimize the training 
process and mitigate overfitting. 

Extensive research has 
validated the approach's 
accuracy and efficacy in 
finding faults, proving its 
potential to greatly reduce 
repair and restoration 
efforts in transmission line 
networks. 

 
1.6 Research Gap 
Despite substantial progress in defect identification and classification utilising different deep learning 
algorithms, essential insufficient studies still exist. Integrating power electronics applications with fault 
detection systems is necessary to improve resilience and efficiency, especially in smart grids and 
renewable energy systems. Comprehensive reviews in real-world settings are few, with most research 
relying on synthetic data or controlled simulations. To enhance accuracy and efficiency, hybrid models 
that combine different AI approaches with real-time defect detection and localization methods need to be 
explored further. The scalability and adaptation of fault detection algorithms to large-scale power 
networks with a high renewable energy penetration are under investigation. Furthermore, advanced data 
augmentation, pre-processing techniques, user-friendly deployable solutions, economic impact analysis, 
and long-term performance studies are critical areas that must be addressed to ensure that these systems 
are practical, robust, and sustainable in a variety of real-world settings. 
 
3. METHODOLOGY 
3.1 Research methodology 
The main contribution of this study is the proposal of hybrid approach that combines VGG-16 and 
temporal convolutional network models for fault detection in an IEEE 33-bus system with solar PV 
integration.This methodology uses voltage, current, and frequency signals from the power distribution 
system to improve fault identification accuracy. In this paper we looked at the VGG-16 and TCN models 
which help us to detect faults by breaking down the fault signals into components.It employs VGG-16 for 
spatial feature extraction and TCNs for temporal patterns in time-domain signals, such as voltage sags 
and harmonics. The procedure comprises data collection, data pre-processing, feature extraction, model 
training, and evaluation. 
 

 
Figure 4: Flow chart 
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3.2 Data Collection 
The data (voltages, currents) is generated and collected by creating various types of three-phase faults 
such as line-to-line, line-to-ground, and triple-line faults at various locations and segments of a PV 
integrated 33 bus system. The system under consideration is given below.Spectrograms of this generated 
voltages and currents are utilized as the primary data to extract the features by using VGG-16.  
 

 
Figure 5: IEEE 33-Bus distribution system with PV integration 

 
Table 2: Details of test system 

Parameters Test System 1 
Bus system IEEE 33 bus 
voltage 12.66 KV 
active power demand (MW) 3.715 MW 
reactive power demand (MVAR) 2.30 MVAR 
PV plant mounted locations 15,17,33 
PV plant capacity (MVA) 0.8,1.0,0.8 
allowable voltage bounds 0.95 pu to1.05 pu 

 
3.3 Data Pre-processing 
Data pre-processing is an essential step in preparing the dataset for training the VGG16 and TCN models. 
The following are the comprehensive stages involved in data pre-processing: 
Data Cleaning 
Detect and manage missing data by eliminating rows or columns with a small number of missing values 
or by using mean/mode/median imputation to fill in the gaps. Eliminate redundant rows to mitigate bias 
throughout the model training procedure.Eliminate extraneous characteristics that do not add to the 
process of identifying faults. 
Normalization 
Standardise continuous features by scaling them to a uniform range, often from 0 to 1, in order to 
guarantee equal contribution of all characteristics to the learning process of the model. Two often used 
strategies are Min-Max Scaling and Standardisation. 
Noise Reduction 
Utilise filtering methods, such as using moving averages, to effectively smoothen the data and minimise 
the presence of noise. Detect and manage outliers by using methods like as z-score or interquartile range 
(IQR). 
 
3.4 Feature extraction based on VGG-16 
The process of image feature extraction using VGG-16 entails using the pre-trained VGG-16 model, which 
is extensively used for image classification purposes. The approach starts by loading the model without 
its top fully connected layers, resulting in the retention of just the convolutional basis for feature 
extraction. Spectrograms are used as input to VGG-16, which represents time-domain signals with 
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pictures. These spectrograms are generated by applying the Short-Time Fourier Transform (STFT) to the 
power system's voltage, current, and frequency data. The STFT contributes to the conversion of raw 
signal data into the frequency domain while retaining temporal information. This two-dimensional 
image-like format is perfect for deep learning models like VGG-16 to extract meaningful features. 
After applying pre-processing to the pictures, they are fed into the modified VGG-16 model to extract 
feature maps from a specific convolutional layer, such as block5_conv3. The collected features, which 
capture fundamental patterns and properties of the pictures, may then be used as inputs for different 
machine learning algorithms. This can assist in tasks like as identifying faults and categorising them in 
applications like the integration of solar PV with the IEEE 33-bus system. 
 Convolutional Layer: 
In the convolutional layer, a number of filters, also referred to as kernels, are applied to extract local 
features from an image. In mathematical terms, one may consider each of the convolutions as follows: 

1 1

,

0 0

.
k k

ij i m j n mn

m n

y x w b
 

 

 

  (1) 

Where, 

,i jx
 is the input pixel value at position (I, j). 

mnw
  represents the weights of the convolutional filter(kernel) 

B is the bias associated with the filter. 

ijy
  is the output for position (I,j ). 

It would slide the filter across the image, computing the dot product between the filter and local regions 
of the image, to enable the network to detect various patterns such as edges, textures, and shapes. 
 ReLu activation Function: 
After every convolutional operation, an application of the Rectified Linear Unit activation function has to 
be applied to the feature map: The rectification means that this non-linearity introduces the capability of 
learning complex patterns by ensuring that the network only activates on positive values, thus effectively 
introducing sparsity in the feature maps-which enhances the representation of useful features. 

max(0, )y x (2) 
 Max Pooling Layer: 
The max pooling layer reduces the spatial dimensions of the feature maps, during which the most 
important features are preserved, while computational complexity is reduced. 

,max{ , [0, 1]}ij i m j ny x m n p   
(3) 

,i jx
 is the input pixel value in the pooling window. 

ijy
 is the output value, which is the maximum pixel value in the pooling window. 

 Fully connected layers: 
The resulting feature maps, after passing through several convolutional and pooling layers, are flattened 
into a 1D vector fed into a fully connected layer. The mathematical operation for the fully connected layer 
is 

.y W x b  (4) 

X is the input vector 
W is the weight matrix connecting the input and output layers. 
B is the bias vector. 
Yis the output vector. 
 Softmax Classifier: 
In classification tasks, the final result is input into the softmax layer, which generates a probability 
distribution across the classes: 
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cz
 is the score for class c 

C is the total number of classes. 
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( )P y c x  is the predicted probability that the input x belongs to class c. 
 
3.1 Train-Test Split 
Following the process of feature extraction, the dataset was divided using the commonly used train-test 
split approach into separate training and testing sets. An objective evaluation of the model's performance 
on unobserved data was made possible by this divide, which guaranteed the separation of data for model 
training and evaluation. The testing set functioned as an impartial validation set to precisely evaluate the 
trained models' capacity for generalisation, while the models were trained using the training set. 
 
3.2 Model Building 
Once the features extracted from the pictures using the VGG-16 model, the resultant feature maps may be 
reshaped and inputted into the Temporal Convolutional Network (TCN) for classification purposes. The 
temporal relationships in the fault data are subsequently analysed using TCN, which recognizes the 
evolution of these features over time under various fault conditions. This entails transforming the 
retrieved characteristics into a format that is compatible with the TCN, which often requires organised 
time-series data. The feature maps, which are typically acquired as multi-dimensional arrays, may be 
flattened or converted into sequences for processing by the TCN. The TCN employs temporal 
convolutional layers to examine these sequences, recording temporal patterns in order to categorise the 
input data. This technique combines the advantages of VGG-16 for extracting reliable image features and 
TCN for analysing sequential data, improving the overall classification performance in applications like 
fault detection in the IEEE 33-bus system combined with solar PV. 
 
Model Evaluation 
The process of "model evaluation" looks at whether a produced model can be applied to fresh data in 
order to determine its generalizability. Among the many criteria for categorization performance are 
accuracy, precision, recall, F1 score, specificity, and sensitivity. By comparing estimates many times, cross 
validation ensures their accuracy. This implies that confusion matrices, for example, have a wealth of 
information to provide. Assessment is essential to development and deployment.  
 
3.3 Tools & Techniques 
In this study TensorFlow/Keras used to train the VGG16 and TCN models, with VGG16 acting as a pre-
trained feature extractor for spectrograms generated from voltage and current measurements. TCN is 
used for processing time series data. It records complicated temporal patterns using a hierarchy of 
temporal convolutions, dilated convolutions, and pooling layers. Scikit-learn is utilised for data 
preparation, which includes cleaning, normalization, and noise reduction, as well as producing evaluation 
metrics like accuracy, precision, recall, and F1-score. Pandas and NumPy are crucial for data processing, 
huge dataset management, and integration with other tools like as TensorFlow and Scikit-learn. 
Visualization tools like as Matplotlib and Seaborn help in model performance analysis by generating 
confusion matrices and ROC curves.  
To integrate Solar PV into an IEEE-33 bus system for load flow analysis, utilize MATLAB/SIMULINK 
software.  The IEEE 33-bus distribution system's bus voltage and branch loss are analysed using the 
MATLAB programming environment. According to one source, this program used to simulate and 
evaluate the performance of a PV-integrated IEEE-33 bus test system. This complete technique 
guarantees reliable model assessment and fault identification in the PV-integrated IEEE 33-bus system. 
 
Library facilities 
 Utilise TensorFlow/Keras to construct and train the VGG16 and TCN models. 
 Scikit-learn is used for data pre-processing and evaluating metrics. 
 Pandas and NumPy are utilised for the purpose of manipulating and analysing data. 
 Used MATLAB2023a version to build the model. 

 
4. RESULTS AND DISCUSSION 
4.1 Confusion Matrices 
Confusion matrices are a kind of assessment statistic used to assess the performance of a classification 
model. They may be used to compute several additional model performance measures, including accuracy 
and recall, among others. 
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Figure 6:  Confusion Metrics VGG-16 & TCN 

 

 
 

Figure 7: Confusion metrics of Hybrid CNN & LSTM 

 

 
Figure 8: Confusion metrics of Bi-LSTM 
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Figure 9: Confusion Metrics of ANN 

 
From the above confusion matrices that classify data into twelve classes (AB, ABC, ABCG, AC, ABG, ACG, 
AG, BC, BCG, BG, CG, and No Fault), show various degrees of performance among several models: VGG-16 
and TCN, Hybrid CNN-LSTM, Bi-LSTM, and ANN. Our suggested technique, VGG-16 & TCN, performs well, 
properly categorising most samples with minimum misclassifications. VGG-16 & TCN properly identifies 
all samples in the AB (158/158), ABC (160/160), and BCG (177/177) classes, with just one 
misclassification in the CG and No Fault classes. In contrast, the Hybrid CNN-LSTM model exhibits more 
variability, properly identifying 138 samples in AB with some misclassifications in other classes and 
accurately categorising 153 samples in BC with some misclassifications. The Bi-LSTM model performs 
well in BC (168/168) but misclassifies in closely related classes such as AC and AG. It accurately classifies 
176 samples in AB with minimal mistakes. The ANN model performs well but is less accurate than VGG-
16, TCN, and Bi-LSTM, correctly identifying 175 samples in AB but displaying greater misclassification 
rates in classes such as ACG and AG. Overall, VGG-16 & TCN emerges as the most accurate model, 
correctly classifying the greatest number of samples with the fewest errors, especially in classes with a 
high degree of similarity, making it the most effective approach for classifying given samples in the 
context of fault detection applications. 
 
4.2 Evaluation Metrics 
Evaluation metrics are critical for determining the success of machine learning models. They give 
quantitative measurements for model selection and Hyperparameter adjustment. Different tasks need 
different metrics, and knowing which one to employ is critical to properly interpreting model findings. 
Classification Metrics 
Common assessment measures for classification tasks that produce discrete labels include:  
Accuracy  
The simplest criteria for evaluating categorization is accuracy. It is the ratio of properly predicted 
observations to total data and gives a fast indication of how often the model is true. 
Precision  
Precision is defined as the ratio of accurately anticipated positive observations to all expected positive 
observations. It is often referred to as the positive predictive value.  
Recall 
Recall, also known as sensitivity, is the ratio of accurately anticipated positive observations to actual 
positives. These measures are very helpful for coping with unbalanced datasets. 
F1 Score  
The F1 Score represents the harmonic mean of accuracy and recall. It strikes a compromise between the 
two measures and is especially beneficial when dealing with both false positives and false negatives.  
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Table 3: Evaluation Metrics of different Models 

Model Accuracy Precision Recall F1- Score 

VGG-16 & TCN 0.998 0.99801 0.998 0.998 

Hybrid CNN -LSTM 0.9285 0.92917 0.9285 0.928495 

Bi-LSTM 0.9585 0.958712 0.9585 0.9584983 

ANN 0.971 0.971065 0.971 0.9709847 

 
 

 
Figure 10: Graph of Accuracy 

 

 
Figure 11: Graph of Precision 

 

 
Figure 12: Graph of Recall 
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Figure 13: Graph of F1-score 

 
The evaluation measures show that the VGG-16 & TCN model outperforms the other architectures in 
terms of accuracy, precision, recall, and F1-score, with a remarkable accuracy of 99.8%. This strong 
performance implies that the VGG-16's robust feature extraction capabilities, together with the Temporal 
Convolutional Network's capacity to handle sequential data, successfully capture the dataset's intricacies. 
In comparison, the Hybrid CNN-LSTM model, although still robust with an accuracy of 92.85%, exhibits a 
significant performance loss when compared to our suggested model. This mismatch suggests that the 
integration of LSTM may not be as successful as expected for this specific application, probably because to 
difficulties in learning long-range relationships. The Bi-LSTM model, with an accuracy of 95.85%, likewise 
performs well but falls below VGG-16 and TCN, indicating that the added complexity of the bidirectional 
design does not provide substantial benefits in this scenario. Finally, the ANN model, with an accuracy of 
97.1%, demonstrates a strong fundamental approach; nevertheless, it lacks the complex feature 
extraction and temporal processing capabilities of the other models. Overall, the findings support the 
usefulness of the VGG-16 & TCN design, establishing it as the best option for this task by properly 
balancing depth and temporal awareness, resulting in improved predictive performance. 
 
4.3 ROC Curves 
The Receiver Operating Characteristic (ROC) curve is a graphical diagram that shows the diagnostic 
capabilities of a binary classifier when its discrimination threshold is changed. The ROCcurve is created 
by calculating the true positive rate (TPR) and false positive rate (FPR) for each conceivable threshold (in 
practice, at predetermined intervals) and then plotting TPR vs FPR. 
 

 
Figure 14: ROC Curve of VGG-16 & TCN 
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Figure 15: ROC curve of Hybrid CNN-LSTM 

 

 
Figure 16: ROC Curve of Bi-LSTM 

 

 
Figure 17: ROC curve of ANN 

 
From the above ROC curve graphs provided, we compare the performance of several models. Our 
proposed technique is VGG-16 & TCN, performs well with a ROC curve value of 99, suggesting excellent 
accuracy and reliability in sample classification. In contrast, the Hybrid CNN-LSTM model's ROC curve 
score is 94, indicating excellent but less accurate performance. The Bi-LSTM model has a ROC curve score 
of 96, showing balanced performance despite occasional misclassifications. With a ROC curve value of 97, 
the ANN model outperforms VGG-16 & TCN and Bi-LSTM, but is somewhat less accurate. Overall, VGG-16 
& TCN is the most effective model, offering the highest ROC curve value and properly identifying the 
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greatest number of samples with the fewest mistakes, making it the best strategy for categorising 
provided data in fault detection applications. 
 
4.4 Discussion 
The findings indicate that the VGG-16 & TCN model performs better than other architectures in fault 
detection tasks, obtaining an amazing accuracy of 99.8% along with good precision, recall, and F1-scores. 
The outstanding success of this model may be credited to the VGG-16's efficient ability to extract features, 
as well as the Temporal Convolutional Network's skill in processing sequential data, which enables a 
detailed comprehension of the complexities inside the dataset. However, the Hybrid CNN-LSTM model 
and Bi-LSTM achieve accuracies of 92.85% and 95.85% respectively. Nevertheless, they have difficulties 
in capturing long-range relationships, suggesting that integrating LSTM may not provide major benefits in 
this particular situation. Similarly, the ANN model, which has an accuracy of 97.1%, has a strong 
foundational performance but does not possess the advanced skills for extracting complex features and 
processing temporal information that are inherent in the VGG-16 & TCN model. In conclusion, our results 
highlight the efficiency of the VGG-16 & TCN design, establishing it as the most dependable method for 
categorizing intricate fault detection data, especially in situations when there is a significant resemblance 
across classes. 
 
5. CONCLUSION 
In conclusion, the examination of multiple models for fault detection in the IEEE 33 Bus system combined 
with solar PV reveals the better performance of the VGG-16 & TCN model, which obtained an astonishing 
99.8% accuracy as well as remarkable precision, recall, and F1-score metrics. This achievement may be 
due to VGG-16's substantial feature extraction capabilities, paired with the Temporal Convolutional 
Network's ability to handle sequential data, which successfully captures the dataset's intricacies. In 
contrast, the Hybrid CNN-LSTM, Bi-LSTM, and ANN models performed well but fell short of the VGG-16 
and TCN in terms of accuracy and overall classification efficacy. The results indicate that the VGG-16 & 
TCN model is the most reliable strategy for defect identification in this context, providing the optimum 
balance of depth and temporal awareness, making it the ideal way for correct sample classification. 
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