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ABSTRACT 
The order difference interval graph of a group G, denoted by ΓODI(G), is a graph with V(ΓODI(G))=G and 
two vertices a and b are adjacent in ΓODI(G) if and only if o(b) − o(a)∈ [o(a), o(b)]. Without loss of 
generality, assume that o(a)≤o(b). In this paper, we try to classify all finite abelian groups whose order 
difference interval graphs are toroidal and projective. 
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INTRODUCTION 
There are different ways to associate to a group a certain graph. In this context, it is interesting to ask for 
the relation between the structure of the group, given in group theoretical terms, and the structure of the 
graph, given in the language of graph theory. There are many papers on assigning a graph to a group and 
investigating algebraic properties of group using the associated graph, for instance, see[1,2,3]. 
Let G be a finite group. One can associate a graph to G in many different ways. Since the order of an 
element is one of the most basic concepts of group theory, Balakrishnan and Kala [4] defined the order 
difference interval graph of a group G denoted by ΓODI(G) as follows: Take V (ΓODI(G)) = G and two 
vertices a and b are adjacent in ΓODI(G)if and only if o(b)−o(a)∈[o(a),o(b)]. Without loss of generality, 
assume that o(a)≤o(b). Here o(a) and o(b)denote the orders of a and b, respectively. In this paper, we try 
to classify all finite abeliean group G whose order difference interval graph has genus at most one. 
It is well known that any compact surface is either homeomorphic to a sphere, or to a connected sum of g 
tori, or to a connected sum of k projective planes (see [8, Theorem 5.1]). We denote by Sg the surface 
formed by a connected sum of g tori, and by Nk the one formed by a connected sum of k projective planes. 
The number g is called the genus of the surface Sgand k is called the crosscap of Nk. When considering the 
orientability, the surfaces Sg and sphere are among the orientable class and the surfaces Nk are among 
the non-orientable one. 
A simple graph which can be embedded in Sg but not in Sg−1 is called a graph of genus g. Similarly, if it can 
be embedded in Nk but not in Nk−1, then we call it a graph of crosscapk. The notation sγ(G) and γ(G) are 
denoted for the genus and crosscap of a graph G, respectively. It is easy to see that γ(H)≤γ(G) and 
γ(H)≤γ(G) for all subgraph H of G. Also a graph G is called planar if γ(G)=0, it is called toroidali fγ(G)=1, 
and it is called projective if γ(G)=1. 
A remarkable characterization of planar graphs was given by Kuratowski in 1930.  Kuratowski’s Theorem 
says that a graph G is planar if and only ifit contains no subdivision of K5 or K3,3. A graph is outerplanar if 
it can be embedded into the plane so that all its vertices lie on the same face. 
Throughout this paper, we assume that G is a finite group. We denote the group of integers addition 
modulo n by Zn and the Euler function by φ(n). For basic definitions on groups, one may refer[7]. 
 
Genus and Crosscap of ΓODI(G) 
The main goal of this section is to determine all finite abelian groups G whose order difference interval 
graph has genus one. 
Lemma 2.1. [4]Let a be a generator element in group G of order n. Then a is adjacent to all the non-
generator elements of G in the graph ΓODI(G). 
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In view of preceding lemma, we have the following result. 
Lemma 2.2. Let G be a cyclic group of order n. Then ΓODI(G) has a subgraph isomorphic to Kφ(n),n−φ(n). 
Moreover, if n is prime, then ΓODI(G)∼=K1,n−1. 
The following characterization of outer plannar graphs was given by Char-tr and and Harary [6]. Using 
this characterization, we characterize all finite groups G whose ΓG is outerplanar. 
Theorem 2.3.[6]A graph G is outer planar if and only if it contains no subdivision of K4 or K2,3. 
 
Theorem 2.4. Let G be a finite abelian group. Then ΓODI(G) is outer planar if and only if G is isomorphic to 
Zn,n≥1 orZ4, where p is a prime.  

 
Suppose G has an element of order pm,m ≥3.  Then G has a cyclic subgroup H of order pm.Then by Lemma 
2.2, ΓODI(H) contains K4,4 as a subgraph. Therefore ΓODI(G) has a subgraph which is isomorphic to K4,4, a 
contradiction. Thus G has elements of order at most p2. 
If order of every element of G is p, then G∼=Zn. 
Suppose G has an element of order p2.If p ≥ 3, then by Lemma 2.2, ΓODI(G) contains K2,3 as a subgraph 
which is a contradiction. Hence p must be 2. 
Suppose G is a cyclic 2- group, then G∼=Z4. 
Suppose G is a non-cyclic 2-group. If G has a subrgoup which is isomorphic to Z2 × Z4, then ΓODI(Z2 × Z4) 
contains K2,3 as a subgraph. Hence ΓODI(G)contains K2,3 as a subgraph, a contradiction. 
Conversely, if G∼=Zn, then ΓODI(G)∼=K1,pn−1. If G∼=Z4,then ΓODI(G)∼=K4−e. 
 
Theorem2.5. Let G be a finite abelian group. Then ΓODI(G) is planar if and only if G is isomorphic to 
Zn,n≥1orZ4, where p is a prime. 

 
Case 1.  Suppose G is a p-group.  Suppose G has an element of order pm, m≥ 3. Then G has a cyclic 
subgroup H of order pm. Then by Lemma 2.2, ΓODI(H) contains K4, 4 as a subgraph. Therefore ΓODI(G)has a 
subgraph 
which is isomorphic to K4,4, a contradiction. Thus G has elements of order atmost p2. 
If every element of G is of order p, then G∼=Zn. 
Suppose G has an element of order p2. Then G has a cyclic subgroup H of order p2.Suppose p ≥ 3, then by 
Lemma 2.2, ΓODI(H) contains a subgraph which is isomorphic to K3, 6 and so is ΓODI (G). Hence p=2. 
Suppose G is a cyclic 2-group, then G∼=Z4. 
Suppose G is a non-cyclic 2-group. If G has a subrgoup which is isomorphic to Z2 × Z4, then ΓODI(Z2× Z4) 
contains K3,3 as a subgraph, ΓODI(Z2× Z4) is non-planar and so is ΓODI(G). 

 

 
For a rational number q, ⌈q⌉ is the first integer number greater or equal than q. In the following lemma we 
bring some well-known formulas for genus of a graph(see[9]). 
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In the following theorem we determine all finite groups whose ΓODI (G) has genus one. 
 
Theorem 2.7. Let G be a finite abelian p-group. Then γ (ΓODI(G))=1 if and only if G is isomorphic to Z2×Z4, 
Z8,Z9. 
Proof. Assume that γ(ΓODI(G))=1. Suppose G is a p-group of order pn. Then by Theorem 2.5, n≥2 and G≇Zn. 
Case 1. Supppose G is cyclic. If n≥4, then by Lemma 2.2, K8, 8 is a subgraph of ΓODI(G). Therefore by Lemma 
2.6, γ(ΓODI(G))≥9, a contradiction. Thus n≤3. 
Suppose n = 3.If p ≥ 3, then by Lemma 2.2, ΓODI(G) contains K18,9 as a subgraph. Hence by Lemma 2.6, 
γ(ΓODI(G)) ≥ 28, which is a contradiction. Hence p=2 and G∼=Z8. 
Suppose n = 2.If p ≥ 5, then by Lemma 2.2, ΓODI(G) contains K20,5 as a subgraph. Therefore by Lemma 2.6, γ 
(ΓODI(G))≥14, a contradiction. Hence p=2,3. By Theorem 2.5, ΓODI(Z4)is planar and hence G∼=Z9. 
Case 2. Suppose G is non-cyclic. Then G has a subgroup which is isomorphic to Zp×Zpm, m≥2. Consider 
the sets S1={x∈G:|x|=p},S2={y∈G:|y|=pm}.Clearly|S1|≥p2−1 and |S2|≥pm(p−1).If p≥3,then the subgraph 
induced by S1∪S2contains K8,18as a subgraph. Therefore γ(ΓODI(G)) ≥ 24, a contradiction. Thus p = 2.If 
m ≥ 3, then ΓODI(G)contains K3,8 cas a subgraph and so γ(ΓODI(G))≥2, a contradiction. 
Suppose G has a subgroup H which is isomorphic to Zp× Zp× Zp2 . Then consider S1={a∈H:|a|=p2} and 
S2={b∈H:|b|=p}. It is clear that |S1| ≥ 8 and |S2| ≥ 7.Hence the subgraph induced by S1∪S2 is isomorphic 
to K8,7. Therefore by Theorem 2.6, γ(ΓODI)(H)) ≥ 8 and so is γ(ΓODI)(H)) ≥ 8,which is a contradiction. 

 
 

Fig.1 Embedding of ΓODI(Z8)∼=ΓODI(Z2×Z4)         Fig.2 Embedding of ΓODI(Z9) 
 
Suppose G has a subgroup H which is isomorphic to Zp2×Zp2.Then it is easily seen that K4,5 as a subgraph of 
ΓODI(G). Therefore by Lemma 2.6,γ(ΓODI(G))≥2,a contradiction. Thus G∼=Z2×Z4. 
Converse follows from Figs. 1,2. 
 
Theorem 2.8. Let G be a finite abelian non-p-group. Then γ(ΓODI(G))=1 if and only if G is isomorphic to 
Z6. 

 
Case 1.G is a cyclic group.  If n ≥ 3, then by Lemma 2.2, K8,22 as a subgraph of ΓODI(G).Therefore by Lemma 
2.6, γ(ΓODI(G)) ≥ 40.  Thus n = 2.  Suppose k i≥ 2 for some i.  Then by Lemma 2.2, K4,8  as a subgraph of 
ΓODI(G).  Hence by Lemma γ(ΓODI(G))≥3, which is a contradiction. Therefore k i=1,i=1,2 
and so|G|=p1p2. If pi≥5 ,then by Lemma 2.2, ΓODI(G) contains K4,6 as a subgraph, a contradiction. Therefore 
|G|=6 and hence G∼=Z6. 
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Case 2.  Suppose G is not a cyclic group.  Then G has a subgroup H  which is isomorphic to Zp1×Zp1×Zp2. 
Consider S1={x∈H:|x|=p1p2} and S2 = {y ∈H : |y| = p1} ∪{e}.It is clear that, the subgraph induced by S1∪S2 
contains K4,6 as a subgraph, a contradiction. 
Converse follows from Fig.3. 
In the following lemma we bring some well-known formulas for crosscap of a graph(see[9]). 

 
By slight modifications in the proof of Theorem 2.7 and Theorem 2.8 with Lemma 2.9, one can prove the 
following theorem. 
Theorem 2.10. Let G be a finite abelian group. Then γ(ΓODI(G))=1 if and only if G is isomorphic to Z6. 
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