
APPROXIMATION OF SOLUTIONS OF THE INHOMOGENEOUS

GAUSS DIFFERENTIAL EQUATIONS BY HYPERGEOMETRIC

FUNCTION

S. OSTADBASHI, M. SOLEIMANINIA, R. JAHANARA AND CHOONKIL PARK∗

Abstract. In this paper, we solve the inhomogeneous Gauss differential equation and
apply this result to estimate the error bound occurring when an analytic function is ap-
proximated by an appropriate hypergeometric function.

1. Introduction

More than a half century ago, Ulam [22] posed the famous Ulam stability problem which

was partially solved by Hyers [7] in the framework of Banach spaces. The Hyers’ theorem was

generalized by Aoki [4] for additive mappings. In 1978, Rassias [14] extended the theorem

of Hyers by considering the unbounded Cauchy difference inequality

‖f(x+ y)− f(x)− f(y)‖ 6 ε(‖x‖p + ‖y‖p), (ε ≥ 0, p ∈ [0, 1)).

Since then, the stability problems of various functional equations have been studied by many

authors (see [1, 6, 8, 9, 13, 15, 17, 18, 19, 20]).

Alsina and Ger [3] were the first authors who investigated the Hyers-Ulam stability of

differential equations. They proved that if a differentiable function f : I → R is a solution of

the differential inequality |y′(t) − y(t)| ≤ ε, where I is an open subinterval of R, then there

exists a solution f0 : I → R of the differential equation y′(t) = y(t) such that |f(t)−f0(t)| ≤ 3ε

for any t ∈ I. From then on, many research papers about the Hyers-Ulam stability of

differential equations have appeared in the literature, see [2, 5, 10, 11, 12, 21, 23] for instance.

The form of the homogeneous Gauss differential equation has the form

x(1− x)y′′ + [r − (1 + s+ t)x]y′ − sty = 0. (1.1)

It is easy to see that

y1 = 1 +
st

1!r
x+

(st)(s+ 1)(t+ 1)

2!r(r + 1)
x2 +

(st)(s+ 1)(s+ 2)(t+ 1)(t+ 2)

3!r(r + 1)(r + 2)
x5 + · · ·

2010 Mathematics Subject Classification. Primary 39B82, 35B35.
Key words and phrases. Gauss differential equation; analytic function; hypergeometric function; approxi-

mation.
∗Corresponding author: Choonkil Park (email: baak@hanyang.ac.kr, fax: +82-2-2281-0019).

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.1, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

109 OSTADBASHI 109-116



and

y2 =x1−r[1 +
(s− r + 1)(t− r + 1)

1!(2− r)
x

+
(s− r + 1)(s− r + 2)(t− r + 1)(t− r + 2)

2!(2− r)(3− r)
x2

+
(s− r + 1)(s− r + 2)(s− r + 3)(t− r + 1)(t− r + 2)(t− r + 3)

3!(2− r)(3− r)(4− r)
x5 + ...]

are a fundamental set of solutions of equation (1.1) (if r 6= 1). The series y1 known the

hypergeometric function is convergent for |x| < 1 and is represented by

y1 = F (s, t, r, x).

Note that

y2 = x1−rF (s− r + 1, t− r + 1, 2− r, x)

is of the same type. Thus the general solution is

yc = c1y1 + c2y2 = c1F (s, t, r, x) + c2x
1−rF (s− r + 1, t− r + 1, 2− r, x).

2. Inhomogeneous Gauss differential equation

In this section, we consider the solution of inhomogeneous Gauss differential equation of

the form

x(1− x)y′′ + [r − (1 + s+ t)x]y′ − sty =
+∞∑
m=0

amx
m, (2.1)

where the coefficients an’s of the power series are given such that the radius of convergence

is positive.

Theorem 2.1. Assume that the radius of convergence of the power series
∑+∞

m=0 amx
m is

R0 > 0 and

R1 = lim
k→∞

| ck
ck+1

| > 0. (2.2)

Let ρ be a positive number defined by ρ = min{1, R0, R1}. Then every solution y : (−ρ, ρ)→
C of differential equation (2.1) can be expressed by

y(x) = yc(x) +
+∞∑
m=1

cmx
m, (2.3)

where c1 = 1
ra0 and

cm =
am−1

m(m− 1 + r)

+
1

m!

m−1∑
i=1

am−i−1

i+1∏
j=1

1

m− j + r

i∏
j=1

(m+ s− j)(m+ t− j)
(2.4)

for any m ∈ {2, 3, · · · }.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.1, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

110 OSTADBASHI 109-116



Proof. We will show that each function y : (−ρ, ρ) → C defined by (2.3) is a solution of

the inhomogeneous Gauss differential equation (2.1), where yc is a solution of homogeneous

Gauss differential equation (1.1). For this purpose, it is only necessary to show that yp(x) =∑∞
m=1 cmx

m satisfies differential equation (2.1). Therefore, letting yp(x) =
∑∞

m=1 cmx
m in

differential equation (2.1), we obtain

+∞∑
m=1

m(m+ 1)cm+1x
m + r

+∞∑
m=0

(m+ 1)cm+1x
m −

+∞∑
m=2

m(m− 1)cmx
m

− (1 + s+ t)
+∞∑
m=1

mcmx
m − st

+∞∑
m=1

cmx
m =

+∞∑
m=0

amx
m.

Hence

rc1 +
+∞∑
m=1

[(m+ 1)(m+ r)cm+1 − (m+ s)(m+ t)cm]xm =
+∞∑
m=0

amx
m.

Therefore, we get c1 = 1
ra0 and

cm+1 =
1

(m+ 1)(m+ r)
am +

(m+ s)(m+ t)

(m+ 1)(m+ r)
cm, (m = 1, 2, ...).

By some manipulations, we obtain

cm =
am−1

m(m− 1 + r)

+
1

m!

m−1∑
i=1

am−i−1

i+1∏
j=1

1

m− j + r

i∏
j=1

(m+ s− j)(m+ t− j)
(2.5)

for any m ∈ {2, 3, ...}. The condition (2.2) implies that the radius of convergence of yp(x) =∑+∞

m=1
cmx

m is R1. By using the ratio test, we can easily show that the radius of convergence

of yc is 1. Thus y is certainly defined on (−ρ, ρ). �

Corollary 2.2. Assume that the assumptions of Theorem 2.1 hold. Then there exists C > 0

such that

+∞∑
m=1

cmx
m ≤

+∞∑
m=1

am−1
m(m− 1 + r)

xm

+
+∞∑
i=1

+∞∑
m=2

Cam−2
(m+ i− 1)2

i∏
j=0

(1− −st
(m+ i− j − 1)(m+ i− j + s+ t− 1)

)xm+i−1.

Proof. Since there exists a constant C > 0 with

1

m!

i+1∏
j=1

1

m− j + r
≤ C

m2

i∏
j=0

1

(m− j)(m− j + s+ t)
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for any m = 2, 3, ... and for any i = 1, 2, ..., it follows from (2.5) that

+∞∑
m=1

cmx
m = c1x+

+∞∑
m=2

cmx
m =

1

r
a0x+

+∞∑
m=1

am−1
m(m− 1 + r)

xm

+
+∞∑
m=2

1

m!

m−1∑
i=1

am−i−1

i+1∏
j=1

1

m− j + r

i∏
j=0

(m+ s− j)(m+ t− j)xm

≤
+∞∑
m=1

am−1
m(m− 1 + r)

xm +
+∞∑
m=2

m−1∑
i=1

Cam−i−1
m2

i∏
j=0

(m+ s− j)(m+ t− j)
(m− j)(m− j + s+ t)

xm

=
+∞∑
m=1

am−1
m(m− 1 + r)

xm +
+∞∑
m=2

m−1∑
i=1

Cam−i−1
m2

i∏
j=0

(1− −st
(m− j)(m− j + s+ t)

)xm

=
+∞∑
m=1

am−1
m(m− 1 + r)

xm +
+∞∑
i=1

+∞∑
m=i+1

Amix
m

=
+∞∑
m=1

am−1
m(m− 1 + r)

xm +
+∞∑
i=1

+∞∑
m=2

Am+i−1ix
m+i−1,

where we define

Ami :=
Cam−i−1
m2

i∏
j=0

(1− −st
(m− j)(m− j + s+ t)

)

for all i = 1, 2, · · · and m = 2, 3, · · · . �

3. Approximation property of hypergeometric function

In this section, we investigate an approximation property of hypergeometric functions.

More precisely, we will prove that if an analytic function satisfies the condition (2.2), then

it can be approximated by a hypergeometric function. Suppose that y is a given function

expressed as a power series of the form

y(x) =
∞∑

m=0

bmx
m, (3.1)

whose radius of convergence is R0 > 0. Then we obtain

x(1− x)y′′+[r − (1 + s+ t)x]y′ − sty

=
∞∑

m=0

[(m+ 1)(m+ r)bm+1 − (m+ s)(m+ t)bm]xm

=
∞∑

m=0

amx
m,

(3.2)

where we define

am := (m+ 1)(m+ r)bm+1 − (m+ s)(m+ t)bm (3.3)

for all m ∈ {0, 1, 2, 3, · · · }.
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Lemma 3.1. If the am’s, the bm’s and the cm’s are as defined in (3.3), (3.1) and (2.4), then

cm = bm −
b0
m!

m∏
j=1

1

m− j + r

m−1∏
j=1

(m+ s− j)(m+ t− j) (3.4)

for all m ∈ {0, 1, 2, 3, ...}.

Proof. The proof is clear by induction on m. For m = 1 and by (3.3) we have

c1 =
a0
r

=
1

r
(rb1 − stb0) = b1 −

st

r
b0. (3.5)

Assume now that formula (3.3) is true for some m. It follows from (2.4), (3.3) and (3.4) that

cm+1 =
am

(m+ 1)(m+ r)
+

(m+ s)(m+ t)

(m+ 1)(m+ r)
cm

=
1

(m+ 1)(m+ r)

(
(m+ 1)(m+ r)bm+1 − (m+ s)(m+ t)bm

)
+

(m+ s)(m+ t)

(m+ 1)(m+ r)

(
bm −

b0
m!

m∏
j=1

1

m− j + r

m−1∏
j=1

(m+ s− j)(m+ t− j)
)

= bm+1 −
b0

(m+ 1)!

m+1∏
j=1

1

m+ 1− j + r

m∏
j=1

(m+ 1 + s− j)(m+ 1 + t− j),

as desired. �

Theorem 3.2. Let R and R0 be positive constants with R < R0. Assume that y : (−R,R)→
C is a function of the form (3.1) whose radius of convergence is R1. Also, bm’s and cm’s are

given by (3.3) and (3.4), respectively. If R < min{1, R0, R1}, then there exist a hypergeo-

metric function yh : (−R,R)→ C and a constant d > 0 such that |y(x)− yh(x)| ≤ d x
1−x for

all x ∈ (−R,R).

Proof. We assume that y can be represented by a power series (3.1) whose radius of conver-

gence is R < R0. So

x(1− x)
+∞∑
m=2

m(m− 1)bmx
m−2 + [r − (1 + s+ t)x]

+∞∑
m=1

mbmx
m−1 − st

+∞∑
m=0

mbmx
m

is also a power series whose radius of convergence is R0, more precisely, in view of (3.2) and

(3.3), we have

x(1− x)
+∞∑
m=0

m(m− 1)bmx
m−2 + [r − (1 + s+ t)x]

+∞∑
m=0

mbmx
m−1

− st
+∞∑
m=0

mbmx
m =

+∞∑
m=0

amx
m
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for all x ∈ (−R,R). Since the power series
∑+∞

m=0 amx
m is absolutely convergent on its inter-

val of convergence, which includes the interval [−R,R] and the power series
∑+∞

m=0 |amxm|
is continuous on [−R,R]. So there exists a constant d1 > 0 with

n∑
m=0

|amxm| ≤ d1

for all integers n ≥ 0 and for any x ∈ (−R,R).

On the other hand, since

+∞∑
k=1

| −st
(m− k − 1)(m− k − 1 + t+ s)

| ≤ stπ2

6
=: d2, (m = 2, 3, ...),

we have

|
+∞∏
k=1

(1− −st
(m− k − 1)(m− k − 1 + t+ s)

| ≤ d2, (m = 2, 3, · · · )

(see [16, Theorem 6.6.2]). Hence, substituting i− j for k in the above infinite product, there

exists a constant d3 with

|
i∏

j=0

(1− −st
(m− i− j − 1)(m− i− j − 1 + t+ s)

| ≤ d3

for all i = 1, 2, · · · and m = 2, 3, · · · . Therefore, it follows Lemma 2.2 that

|
∞∑

m=0

cmx
m| ≤ d1d3

x

1− x
(3.6)

for all x ∈ (−R0, R0). This completes the proof of our theorem. �

Corollary 3.3. Assume that R and R0 are positive constants with R < R0. Let y : (R,R0)→
C be a function which can be represented by a power series of the form (3.1) whose radius of

convergence is R0. Moreover, assume that there exists a positive number R1 satisfying the

condition (2.2) with bm’s and cm’s given in (3.1) and Lemma 3.1. If R < min{1, R0, R1}
then there exists a hypergeometric function yh : (−R,R)→ C such that |y(x)−yh(x)| = O(x)

as x→ 0.

Example 3.4. Now, we will introduce an example concerning the hypergeometric function

for differential equation (2.1) with st = 1
16 . Given a constant R with 0 < R < 1 and assume

that a function y : (−R,R) −→ C can be expressed as a power series of the form (3.1), where

bm = {0, m=0
1

4m
, m≥1.

It is easy to see that the radius of convergence of the above power series is R1 = 4. Since

b0 = 0 it follows from Lemma 3.1 that cm = bm for each m ∈ {0, 1, 2, 3, ...}. Moreover, there

exists a positive constant R1 such that the condition (2.2) is satisfied

R1 = lim
k→+∞

| ck
ck+1

| = lim
k→+∞

| bk
bk+1
| = 4.
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Now we assume r = s = t = 1
4 . Then we get

+∞∑
m=0

|amxm| ≤
1

16
+

15

64
|x|+

+∞∑
m=2

4(m+ 1
4)2 − (m+ 1)(m+ 1

4)

4m+2
|x|m

≤ 1

16
+

15

64
+

+∞∑
m=2

3m(m+ 1
4)

4m+2

≤ 1

16
+

15

64
+

+∞∑
m=2

1

2m+2
≤ 1

16
+

15

64
+

1

8
=

27

64

for all x ∈ (−R,R). Since R < min{1, R0, R1} = 1, we can conclude from (3.6) that there

exists a solution function yh : (−R,R) → C of the Gauss differential equation (2.1) with

r = s = t = 1
4 satisfying |y(x)− yh(x)| ≤ 27

64
x

1−x for all x ∈ (−R,R).
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