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ABSTRACT 
The rapid growth of cloud computing has introduced more opportunities as well as significant challenges 
in ensuring the reliability and performance of cloud-based systems.Detecting unusual activities such as 
performance drops, unexpected high resource usage, or security threats, is crucial to avoid disruptions. 
This work named as “Viability Assessment about Applicability of Machine Learning in Cloud Anomaly 
Detection (VAAMLCAD)” looks into whether machine learning methods can help to identify and predict 
anomalies in cloud environment. Different machine learning models in particular Random Forest (RF), 
Decision Tree (DT), Support Vector Machine (SVM) K-Nearest Neighbor, and K-Means method to see how 
well aforementioned methods work in identifying anomalies in dynamic cloud environments. A dedicated 
testbed is constructed with state-of-the-art development frameworks and evaluation tools to measure the 
performance such as Accuracy Precision, Sensitivity, Specificity, F-Score, and Average Processing Time for 
the benchmark datasets KDD-Cup and UNSW-NB15. Rank wise discussions based on the performance of 
the compared methods are vividly elucidated in this work. 
 
Keywords: Anomaly detection, Cloud computing environment, Machine Learning, Random Forest, 
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1. INTRODUCTION 
Cloud computing environment is a system where users can access computing resources such as storage, 
servers, and applications over the internet. Instead of owning physical hardware, consumers can rent and 
use these ready-to-use resources, and can benefit through pay-per-use concept [1]. This makes the cloud 
computing environment into flexible and cost-effective one.There are different types of cloud 
environments in practice in particular,Public clouds [2], which are shared by multiple organizations and 
are available over the internet, Private clouds [3], which are dedicated to one organization, offering more 
control and security, and Hybrid clouds those combine both public and private clouds, allowing data and 
applications to be shared between them [4]. Multi-cloud environments [5] use multiple cloud services 
from different providers.Cloud computing environments are widely used for data storage, application 
development and deployment, huge dataset interpretations, and for running machine learning models. 
They help businesses and individuals to use the latest technology without investing much in physical 
infrastructures [6].Cloud computing also enhances collaboration between the teams to work on shared 
projects and access resources Globally. In addition, it offers automatic software updates and maintenance, 
that reduces the burden of the users significantly to manage and secure their systems [7]. 
An anomaly in a cloud computing environment refers to any unusual or unexpected behavior in the cloud 
environment that deviates from usual patterns. This can include sudden spikes in resource usage, such as 
CPU or memory, performance slowdowns, security threats like unauthorized access, or chaotic 
configuration changes. These anomalies can disrupt cloud services severely [8], thus it is essential to 
detect and confront them in a proper way to ensure the reliability, performance, and security of cloud 
systems. There are severaltechniques, including machine learning,and statistical analysis, are employed 
to monitor and identify irregularities in data accessing patterns [9]. These methods analyze large datasets 
to detect anomalies that deviate from the expected regular behavior, which may indicate potential issues 
or security threats. Machine learning modelscan learn from historical data and continuously adapt to new 
patterns, making them highly effective in identifying subtle and evolving anomalies. By automating the 
detection process, these technologies enhance the accuracy and efficiency of monitoring systems [10],  
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The VAAMLCAD work is intended to analyze the performance metrics of RF, DT, SVM, KNN, and K-Means 
algorithms in detecting cloud environment anomalies and classifying them into major attack categories, 
such as DoS, Probe, U2R, R2L, as well as non-attack anomalies, which are labeled as Unclassified Cloud 
Anomaly (UCA). 
 
2. Existing Method 
There are five renowned machine learning techniques specifically RF, DT, SVM, KNN, and K-Means are 
explored here for the relevance in cloud environment anomaly detection.  
 
2.1. Random Forest (RF) 
Random Forest is a powerful machine learning algorithm that belongs to the family of ensemble methods. 
It is primarily used for classification and regression tasks, making it one of the most preferred algorithms 
in the data science constellation. The fundamental principle of Random Forest is to create a 'forest' of 
several decision trees, each trained on anarbitrary subset of the data. This technique promotes to mitigate 
the risk of overfitting [11], which is a pervasive problem in traditional decision tree models. By 
aggregating the predictions from multiple trees, Random Forest improves the accuracy and robustness, 
making it suitable for various applications, including finance, healthcare, marketing, and anomaly 
detection in this case [12]. 
The construction of a Random Forest encompasses two main processes namely bootstrap sampling and 
feature selection. First, the algorithm uses bootstrap sampling, where it arbitrarily selects subsets of the 
training data with replacement to build individual decision trees [13]. This means some data points may 
be included in multiple trees, while others may not be included at all. Then, for each split in a decision 
tree, a random subset of features is selected. This randomness helps ensure that the trees in the forest are 
in a diversified manner, which is crucial for improving the performance of the model. During the 
prediction phase, the Random Forest aggregates the outputs of all treestypically using majority voting for 
classification or averaging for regressionto generate a final prediction [14]. 
One of the significant advantages of Random Forest is its robustness to overfitting, especially when 
dealing with larger datasets. While individual decision trees can easily overfit the training data, the 
ensemble approach of Random Forest helps reduce these inaccuracies. Additionally, Random Forest can 
handle both categorical and numerical data, making it highly adaptable to various types of datasets. It also 
provides an inherent measure of feature importance, allowing users to interpret which features 
significantly influence predictions. This feature is particularly beneficial for exploratory data analysis and 
feature selection.Its ability to handle complex datasets with high dimensionality makes it a valuable tool 
in any data scientist's toolkit. 
While comparing Decision Trees, Random Forest models can become computationally intensive, 
especially with large datasets and numerous trees, that leads to longer training times [15]. The algorithm 
also tends to be less effective when the dataset has a high number of irrelevant features, as it can 
introduce noise into the model. 
The architecture of random forest is illustrated in Figure 1. 
 

 
Figure 1: Random Forest Architecture 
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2.2. Decision Tree (DT) 
A Decision Tree is one of the most prominent machine learning algorithms used for classification and 
regression tasks. DT works by splitting a dataset into smaller subsets based on the values of the features. 
The structure is like a flowchart, with internal nodes representing decisions branches representing the 
possible outcomes of those decisions, and leaf nodes representing the final prediction or classification 
[16]. Decision Trees help in making systematic progressive decisions by breaking down complex 
problems into simpler and manageable segments. 
The tree starts with a root node that represents the whole dataset. This root node splits the data into 
subsets based on the feature that best dissects the data, optimizing for criteria like Gini impurity or 
information gain. The process of splitting and branching continues recursively until the algorithm reaches 
a break point, such as when all data points in a subset belong to the same class, or when further splits 
don't refinement of the model [17].One of the main advantages of Decision Trees is their modesty and 
interpretability. They replicate human decision-making processes, making them easy to understand. In 
addition, Decision Trees can handle both numerical and categorical data devoid of the need for 
normalization or scaling. Though decision trees can be vulnerable to overfitting, in particular when they 
grow excessively complex by splitting too deeply. Techniques like pruning or setting depth limits are used 
to prevent the overfitting problem of decision trees [18]. 
Decision Trees are also sensitive to small changes in the data, which can result in utterly different tree 
structures. Regardless of these limitations, Decision Trees remain a foundational tool in machine learning 
and serve as the building blocks for more sophisticated aggregation ofdifferent methods such as Random 
Forests and Gradient Boosting Machines, to improve stability and accuracy. 
A typical Decision Tree model representation is provided in Figure 2. 
 

 
Figure 2: Decision Tree Model 

 
2.3. Support Vector Machine (SVM) 
Support Vector Machine is a supervised machine learning algorithm which is widely used for 
classification and regression purposes. The primary strength of SVM is its ability to find the optimal 
hyperplane to separates different classes within a dataset. A hyperplane serves as the decision threshold, 
while support vectors are the data points proximate to the hyperplane [19]. These support vectors are 
essential for defining the position and orientation of the hyperplane, and they directly impact the 
decision-making process of the model. 
The margin in SVM is the distance intervening the hyperplane and the nearest support vectors from 
either class, and the goal of the method is to maximize this margin to enhance the generalization 
capabilities of the model. SVM utilizes the kernel trick to handle non-linear relationships in the data, that 
transforms the original feature space into a higher-dimensional space using multiple kernel functions. 
There are several common kernels such as linear, polynomial, and radial basis function (RBF), each 
allowing SVM to tackle both linear and non-linear classification challenges in an effective manner.  
SVM offers several advantages, including effectiveness in high-dimensional spaces and robustness against 
overfitting, particularly when the appropriate kernel and proper regularization techniques are employed. 
However, there are some limitations such as increased training time with large datasets and the 
complexity of selecting the appropriate kernel and tuning parameters. Moreover, SVM also struggles with 
noisy data where class overlap is pivotal[20]. 
Collectively, Support Vector Machines are powerful tools in machine learning, making them suitable for 
several applications, including finance, bioinformatics, and image recognition. Their ability to handle 
complex datasets and deliver accurate results has established them as a prominent choice in the field. 
Thus, SVM is included in this work to detect anomalies in cloud computing environments.  
A typical SVM Architecture is portrayed in Figure 3. 
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Figure 3: Support Vector Machine 

 
2.4. K-Nearest Neighbor (KNN) 
KNN is a supervised machine learning algorithm which is used for both classification and regression 
purposes. It works by classifying new data points according to their similarity with existing data in the 
training set. The algorithm quantifies the distance between new data point with all other points, to select 
the k nearest neighbors [21]. For classification tasks, KNN assigns the data point to the most common 
class among its neighbors, while in regression, it predicts the value by calculating the average of the 
values of the nearest neighbors. 
KNN is a lazy learner, that means it doesnot create an explicit model during training phase. Instead, it 
preserves the entire dataset and performs calculations exclusivelyduring the prediction process. KNN is a 
non-parametric, so it refrains from assuming any specific distribution for the data, which allows flexibility 
when dealing with different types of datasets with various features sets.While KNN is simple and easy to 
understand, it has some limitations. It can be computationally expensive, especially with large datasets, 
since it must compute distances for every individual prediction [22]. In addition, KNN algorithm is 
sensitive to irrelevant features, and performance can vary based on the value of k. KNN is effective for 
smaller datasets and is widely used in applications such as image recognition, recommendation systems, 
and other tasks where data proximity plays a crucial role in decision-making. 
KNN serves as a powerful tool for anomaly detection in cloud environments, leveraging its simplicity and 
effectiveness to monitor and maintain system integrity. KNN offers various advantages, including 
simplified implementation and interpretability.Thus, KNN is nominated in this work to explore the 
performance of cloud environment anomaly detection [23].The diagrammatic representation of KNN 
algorithm is displayed in Figure 4.  
 

 
Figure 4: KNN Model 
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2.5. K-Means 
K-Means is a commonly used unsupervised machine learning algorithm designed for clustering tasks. The 
primary objective of K-Means is to segment a dataset into k distinct clusters, with each data point 
assigned to the cluster represented by the nearest mean – represented as centroid in classification 
context. It is widely used in market segmentation to tailor marketing strategies based on customer 
behavior and demographics [24]. KNN also clusters similar documents in natural language processing, 
enhancing search and retrieval systems. In anomaly detection, K-Means identifies outliers, which is 
valuable for fraud detection in finance and performance monitoring in IT. Additionally, it improves 
recommendation systems by analyzing user-item interactions and providing personalized suggestions. In 
social network analysis, it identifies communities based on user interactions, while in healthcare, it 
clusters patient data for personalized medicine.  
The algorithm begins by randomly selecting k initial centroids from the dataset. In the assignment step, 
each data point is assigned to the nearest centroid based on a distance metric, typically Euclidean 
distance to form k clusters. As a subsequent update step, the centroids are recalculated by computing the 
average of the data points within each cluster, and the process iterates until convergence, where 
centroids stabilize and assignments are no longer changing significantly.K-Means is characterized by its 
simplicity and efficiency, making it easy to implement and suitable for large datasets [25]. K-Means has 
some limitations such as sensitivity to the initial choice of centroids and the assumption that clusters are 
spherical and equally sized. In addition, users must specify the number of clusters k in advance, which can 
be challenging if the optimal number is ambiguous. 
K-Means is effective for various applications, such as segmenting customers based on behavior, reducing 
the number of colors in images, and clustering similar documents. Overall, K-Means remains a powerful 
tool in unsupervised learning, offering valuable insights through its clustering capabilities. A 
diagrammatic representation is provided in Figure 5. 
 

 
Figure 5: K-Means Clusters 

 
3. Experimental Setup 
A unified testbed is essential to compare different machine learning algorithms in anomaly detection for a 
handful of reasons such as Standardization, Reproducibility, Benchmarking, Variable configurability, 
Evaluation efficiency, and to maintain Equality among the compared methods.  
A unified testbed ensures that all ML algorithms are evaluated using the same data, metrics, and 
experimental conditions. This standardization eliminates inconsistencies that could arise from 
differences in datasets or evaluation criteria, providing a fair and consistent basis for comparison. It will 
be easier to attribute performance differences to the algorithms themselves rather than external factors 
while using a standard experimental setup. It will be also easier to maintain reproducibility in anomaly 
detection research, as it allows experiments to be replicated with identical conditions, ensuring the 
reliability of performance outcomes. It also serves as a benchmarking platform where various ML models 
can be evaluated and ranked based on consistent metrics, offering a clear comparison of their strengths. 
Additionally, it controls important variables, such as noise or class imbalance, to ensure that the 
comparison focuses on the algorithms themselves rather than external factors. This streamlined setup 
enables efficient evaluation and helps test models under realistic conditions, simulating the challenges 
they would face in real-world scenarios. 
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A computer with i7 8th generation processor backed by 16GB memory, and 1TB NVMe M2 storage is used 
to write the source codes and to evaluate the performance of the compared methods. A dedicated User 
Interface (UI) is designed to load the datasets, communicate with a simulator, execute the compared 
methods sequentially, collect the experimental log results from the simulator, and to generate the graphs. 
Visual Studio IDE is used to develop the UI and C+ 20.0 is used to code the compared algorithms. 
Benchmark datasets in specific KDD-Cup and UNSW-NB15 are used in the evaluation process. The 
industrial standard simulator OPNET is used to evaluate the performance of the discussed methods. The 
experimental setup structural diagram is provided in Figure 6. 
 

 
Figure 6: Experimental Setup 

 
4. RESULTS AND DISCUSSIONS 
During the evaluation process, elementary parameters such as True Positive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN) are measured for different anomaly classes for every 10% of 
data of KDD-Cup, and UNSW-NB15 dataset individually. Based on the readings, the benchmark anomaly 
detection performance metrics such as Accuracy, Precision, Sensitivity, Specificity, and F-Score values are 
computed. Average anomaly detection time is also measured during the entire evaluation process for the 
nominated methods. The observed readings are tabulated in this section along with the comparison 
graphs.  
 
4.1. Accuracy 
Anomaly detection accuracy in cloud computing is crucial for ensuring security, performance, and cost-
efficiency. It minimizes false positives and false negatives, preventing unnecessary interventions and 
undetected issues that could lead to service disruptions or security breaches. By optimizing resource 
usage and detecting performance bottlenecks early, it helps maintain high availability and improved user 

experience. Accuracy is calculated by the formula Accuracy =
TP +TN

TP +TN +FP +FN
 

Measured Accuracy of the methods for KDD-Cup, and UNSW-NB15 datasets are listed in Table 1 and  
Table 2 Respectively. 
 

Table 1: Accuracy (KDD-Cup Dataset) 
Accuracy (%) [KDD-Cup] 
Data RF DT SVM KNN K-Means 
10 96.28799 94.159 95.786 96.467 95.380997 
20 96.327 94.14 95.811 96.475 95.464989 
30 96.30299 93.99699 95.752 96.393 95.331009 
40 96.347 94.06999 95.85201 96.48799 95.363998 
50 96.33299 94.246 95.842 96.424 95.434998 
60 96.332 94.302 95.898 96.476 95.447006 
70 96.319 94.19801 95.92 96.44401 95.310005 
80 96.328 94.25301 95.827 96.40399 95.463997 
90 96.341 94.023 95.748 96.427 95.423996 
100 96.33501 94.18099 95.862 96.42701 95.358994 

 
Based on the observed results, the rank-wise performance on the KDD-Cup dataset, KNNemerges as the 
top-performing model, with accuracy ranging from 96.393% to 96.48799%, slightly outperforming 
Random Forest. RF follows closely in second place, maintaining strong and stable accuracy between 
96.28799% and 96.347% across all data percentages. SVM ranks third, with accuracy ranging from 
95.748% to 95.920%, showing solid performance but slightly below KNN and RF. In fourth place is K-
Means, which achieves accuracy between 95.310005% and 95.464989%, consistently lower than the top 
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two models. DT ranks last, with accuracy ranging from 93.99699% to 94.302%, making it the weakest 
performer among the models tested. 
 

Table 2: Accuracy (UNSW-NB15 DATASET) 
Accuracy(%) [UNSW-NB15] 
Data RF DT SVM KNN K-Means 
10 93.136 90.9 92.519 92.899 92.310997 
20 92.80901 90.56 92.878 92.88001 92.378006 
30 92.92799 90.791 92.39101 92.92101 92.219994 
40 93.176 90.92999 92.481 92.815 92.385994 
50 93.071 90.548 92.44 92.788 92.228989 
60 93.103 90.828 92.384 93.035 92.402 
70 93.06599 90.93001 92.481 92.79299 92.365005 
80 92.89201 91.039 92.605 92.965 92.416 
90 93.051 91.045 92.385 92.979 92.324997 
100 93.12 90.95799 92.484 92.85899 92.353996 

 
As per the observed results, the rank-wise performance on the UNSW-NB15 dataset, RF ranks first, 
consistently achieving the highest accuracy, ranging from 92.80901% to 93.176%.KNNfollows in second 
place, with accuracy between 92.788% and 93.035%, closely trailing RF. In third place is SVM, with 
accuracy ranging from 92.384% to 92.878%, performing well but slightly below KNN and RF. K-Means 
ranks fourth, with accuracy between 92.219994% and 92.416%, maintaining lower but consistent 
accuracy. DT ranks last, with accuracy from 90.548% to 91.045%, making it the weakest model in the 
comparison. 
The comparison graphs of Accuracy score for KDD-Cup, and UNSW-NB15 datasets are given in Figure 7 
and 8 respectively.  
 

 
Figure 7: Accuracy (KDD-Cup Dataset) 

 

 
Figure 8: Accuracy (UNSW-NB15 dataset) 
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In both the KDD-Cup and UNSW-NB15 datasets, RF and KNN consistently outperformed the other models, 
achieving the highest accuracy rates. SVM followed closely, showing competitive but slightly lower 
performance, while K-Means and DT followed behind. Overall, RF and KNN proved to be the most reliable 
models across both datasets for accurate anomaly detection. 
 
4.2.Precision 
Precision is one of the crucial factors in cloud anomaly detection because it directly impacts the efficiency 
of the system, resource management, and security. High precision ensures that detected anomalies are 
actually significant issues, minimizing false positives. False positives in cloud environments can lead to 
unnecessary interventions, such as triggering costly recovery processes or reallocating resources when 
no real threat exists. This wastes computational power and increases operational costs. In addition, 
precision is critical for maintaining trust in automated anomaly detection systems. If a system constantly 
flags benign activities as anomalies, administrators may begin to ignore alerts, potentially missing actual 
critical issues. This can compromise the security and performance of cloud systems. Therefore, high 
precision allows cloud services to respond only to genuine threats or irregularities, optimizing resource 
use, reducing downtime, and improving overall system reliability. Precision is calculated using the 

formula Precision =  
TP

TP +FP
.. Observed precision values for KDD-Cup and UNSW-NB15 datasets are 

provided in Table 3, and 4 respectively. 
 

Table 3: Precision (KDD-Cup dataset) 
Precision (%) [KDD-Cup] 
Data RF DT SVM KNN K-Means 

10 96.07 94.76601 95.894 96.334 95.853996 

20 96.196 94.632 95.794 96.29601 96.036003 

30 96.106 94.556 95.82201 96.162 95.841995 

40 96.14 94.74199 95.888 96.34599 95.917999 

50 96.164 94.87399 95.91 96.25 95.954002 

60 96.17799 94.992 95.918 96.37199 95.949997 

70 96.15199 94.872 95.994 96.284 95.860001 

80 96.174 94.946 95.83199 96.21 95.939995 

90 96.174 94.658 95.718 96.302 95.852005 

100 96.15801 94.77999 95.896 96.26601 95.93 

 
Table 4: Precision (UNSW-NB15 dataset) 

Precision(%) [UNSW-NB15] 
Data RF DT SVM KNN K-Means 
10 92.60799 91.21999 92.468 93.18 92.491997 
20 92.388 91.09599 93.08801 93.006 92.774002 
30 92.426 91.034 92.472 93.11 92.348007 
40 92.67201 91.14 92.626 92.818 92.573997 
50 92.788 90.744 92.65601 92.98399 92.496002 
60 92.754 91.264 92.594 93.062 92.339996 
70 92.732 91.332 92.788 92.898 92.477997 
80 92.438 91.316 92.65199 93.084 92.552002 
90 92.584 91.43199 92.536 92.98 92.584 
100 92.838 91.308 92.746 92.90199 92.603996 

 
Based on precision-based rank-wise performance on the KDD-Cup dataset, KNN ranks first, achieving the 
highest precision values between 96.162% and 96.37199%, demonstrating its strong capability in 
accurately identifying true positives. RFfollows closely in second place, with precision ranging from 
96.07% to 96.196%, also showing high reliability in minimizing false positives. In third place is SVM, with 
precision values between 95.718% and 95.918%, maintaining solid performance but slightly lower than 
KNN and RF. K-Means ranks fourth, with precision between 95.841995% and 96.036003%, consistently 
lower than the top three models. DT ranks last, with precision ranging from 94.556% to 94.992%, making 
it the least reliable model for minimizing false positives in this dataset. 
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Based on precision-based rank-wise performance on the UNSW-NB15 dataset, KNN ranks first, achieving 
the highest precision values between 92.60799% and 93.18%, showcasing its effectiveness in accurately 
identifying true positives. RF follows closely in second place, with precision ranging from 92.388% to 
92.838%, demonstrating strong reliability in minimizing false positives.The comparison graphs of 
precision scores for KDD-Cup, and UNSW-NB15 datasets are plotted in Figure 9, and 10 in order.  
 

 
Figure 9: Precision (KDD-Cup dataset) 

 

 
Figure 10: Precision (UNSW-NB15 dataset) 

 
4.3. Sensitivity 
Sensitivity, also known as recall or True Positive Rate, is crucial in cloud anomaly detection because it 
measures the ability of the system to correctly identify true positive cases among all actual anomalies. 
High sensitivity ensures that most genuine threats are detected, which is vital for maintaining security 
and performance in cloud environments. Missing out on actual anomalies can lead to severe 
consequences, including data breaches, service disruptions, or operational inefficiencies.In a cloud 
setting, where resources are shared and can be vulnerable to various attacks or faults, timely detection of 
anomalies is essential to mitigate risks. If a detection system has low sensitivity, it may overlook 
significant security threats or performance issues, allowing them to escalate and potentially cause 
extensive damage. Therefore, ensuring high sensitivity helps organizations maintain a robust security and 
a reliable infrastructure, safeguarding both data and user trust. Sensitivity is calculated using the formula 

Sensitivity =
TP

TP +FN
 . 

The sensitivity scores of the compared methods for KDD-Cup, and UNSW-NB15 datasets are given in 
Table 5, and 6 in sequence.  
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Table 5: Sensitivity (KDD-Cup dataset) 
Sensitivity (%) [KDDCup] 
Data RF DT SVM KNN K-Means 
10 96.49328 93.62907 95.68647 96.59345 94.955734 
20 96.44968 93.71376 95.82646 96.64582 94.953079 
30 96.48663 93.51475 95.68687 96.6114 94.874252 
40 96.54201 93.48601 95.81899 96.62405 94.871445 
50 96.4931 93.70354 95.77749 96.58931 94.968895 
60 96.47837 93.70207 95.87975 96.57666 94.996315 
70 96.47564 93.61726 95.85158 96.59581 94.819748 
80 96.47258 93.65509 95.82142 96.58907 95.034378 
90 96.50028 93.47191 95.77269 96.54839 95.039566 
100 96.49973 93.65746 95.8293 96.57977 94.847717 

 
Table 6: Sensitivity (UNSWW-NB115 dataset) 

Sensitivity(%) [UNSW-NB15] 
Data RF DT SVM KNN K-Means 
10 93.59672 90.64452 92.56963 92.66118 92.1521 
20 93.17195 90.1296 92.70126 92.77561 92.043839 
30 93.36218 90.59098 92.3245 92.7622 92.110489 
40 93.61725 90.76654 92.35832 92.81828 92.224243 
50 93.31329 90.39233 92.26644 92.62978 91.999939 
60 93.40718 90.47714 92.20454 93.01881 92.455292 
70 93.35405 90.60658 92.21738 92.71344 92.264832 
80 93.28636 90.8062 92.56751 92.86305 92.295319 
90 93.45223 90.7253 92.25655 92.98363 92.103645 
100 93.36708 90.68548 92.25791 92.83181 92.140121 

The corresponding comparison graphs are provided in Figure 11, and 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Sensitivity (KDD-Cup dataset) 
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Figure 12: Sensitivity (UNSW-NB15 dataset) 
 
Based on rank-wise performance for sensitivity on the KDD-Cup dataset, KNN ranks first, achieving the 
highest sensitivity values ranging from 96.59345% to 96.64582%, indicating its exceptional ability to 
identify true positive cases. RF follows closely in second place, with sensitivity ranging from 96.4931% to 
96.54201%, showcasing strong performance in anomaly detection. SVM ranks third, with sensitivity 
values between 95.68647% and 95.87975%, demonstrating solid capability but slightly lower than KNN 
and RF. K-Means comes in fourth, achieving sensitivity between 94.874252% and 95.034378%, 
consistently lower than the top three models.  
In the sensitivity evaluation of the UNSW-NB15 dataset, RF leads the rankings with sensitivity scores 
between 93.17195% and 93.61725%, highlighting its strong capability to accurately detect true positives. 
Following closely in second place is KNN, which achieves sensitivity values from 92.66118% to 
93.01881%, reflecting its reliable performance in identifying anomalies. SVM is in the third rank with 
sensitivity figures ranging from 92.20454% to 92.70126%, showing decent performance, though it falls 
slightly short compared to RF and KNN. K-Means occupies the fourth position, obtaining sensitivity values 
between 91.999939% and 92.455292%, consistently lower than the top three models. 
 
4.4. Specificity 
Specificity is important in cloud anomaly detection since it helps the system to correctly identify normal 
behavior and avoid mistakenly flagging regular activities as anomalies. High specificity reduces false 
positives, which are unnecessary alerts, and prevents cloud administrators from being overwhelmed by 
irrelevant notifications. In a busy cloud environment, frequent false alarms can lead to wasted resources, 
increased costs, and service disruptions. By improving specificity, the detection system becomes more 
reliable and efficient, allowing administrators to focus on real threats and keeping the cloud environment 

running smoothly. Specificity is computed using the formula. Specificity =  
TN

FP +TN
. The Specificity scores of 

compared methods for KDD-Cup, and UNSW-NB15 datasetsare provided in Table 7, and in Table 8. 
Similarly associated graphs are provided in Figure 13 and 14.  
 

Table 7: Specificity (KDD-Cup dataset) 
Specificity (%) [KDD-Cup] 
Data RF DT SVM KNN K-Means 
10 96.0848 94.7047 95.88738 96.34187 95.814713 
20 96.2052 94.58022 95.79604 96.30622 95.9897 
30 96.12161 94.49641 95.81886 96.17766 95.797592 
40 96.15457 94.67403 95.88677 96.35432 95.868301 
50 96.17471 94.80737 95.90694 96.261 95.911263 
60 96.18754 94.91976 95.91731 96.37685 95.907318 
70 96.16451 94.79823 95.9899 96.29392 95.811874 
80 96.18461 94.86934 95.83278 96.22204 95.902878 
90 96.18361 94.59116 95.72444 96.30788 95.815231 
100 96.17199 94.7206 95.8953 96.27605 95.882385 
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Table 8: specificity (UNSW-NB15 dataset) 
Specificity(%) [UNSW-NB15] 
Data RF DT SVM KNN K-Means 
10 92.68544 91.1611 92.4701 93.14094 92.474915 
20 92.45404 91.00446 93.05644 92.98769 92.719887 
30 92.50581 91.00219 92.45847 93.08264 92.330307 
40 92.74544 91.097 92.60484 92.81691 92.551071 
50 92.83453 90.70573 92.6181 92.95046 92.464874 
60 92.80314 91.18588 92.56584 93.05381 92.350174 
70 92.78529 91.26647 92.7499 92.87705 92.467758 
80 92.50872 91.28252 92.64398 93.06797 92.539795 
90 92.66332 91.37217 92.5154 92.97701 92.550667 
100 92.8773 91.23849 92.71478 92.89405 92.572495 

 

 
Figure 13: Specificity (KDD-Cup dataset) 

 
In terms of specificity for the KDD-Cup dataset, KNN performs the best, with values ranging from 96.18% 
to 96.38%, showing its strong ability to accurately identify normal behavior. RF follows closely in second 
place, with specificity values between 96.08% and 96.21%, reflecting its reliable performance in 
distinguishing normal operations from anomalies. K-Means ranks third, with values between 95.80% and 
95.99%, slightly lower but still effective. SVM comes in fourth, with specificity values ranging from 
95.72% to 95.92%, indicating good performance but lower than the top three models. DT demonstrates 
specificity values between 94.50% and 94.92%, suggesting that it may be slightly less effective at 
distinguishing normal cases compared to some of the other models in this dataset. 
 

 
Figure 14: Specificity (UNSW-NB15 dataset) 
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While using UNSW-NB15 dataset, KNN demonstrates the highest specificity, ranging from 92.82% to 
93.14%, reflecting its strong ability to correctly identify normal behavior. RF also performs reliably, with 
values between 92.45% and 92.88%, showcasing its consistent effectiveness. SVM shows solid 
performance, with specificity values ranging from 92.46% to 93.06%. K-Means follows closely, 
maintaining good results with values from 92.33% to 92.72%. DT method managed to get the specificity 
score values between 90.70% and 91.28%.  
In both the KDD-Cup and UNSW-NB15 datasets, K-Nearest Neighbors (KNN) regularly attains the highest 
specificity, which shows its strong ability to accurately identify normal behavior in various situations. 
Random Forest (RF) also shows solid performance in both datasets, coming in second place. This 
indicates that RF is dependable when it comes to telling the difference between normal data and 
anomalies. 
 
4.5. F-Score 
The F-Score, which combines precision and recall into a single metric, is crucial in cloud anomaly 
detection for several reasons. First, it provides a balanced view of a model's performance by considering 
both false positives and false negatives. This balance is particularly important in cloud environments, 
where misclassifying normal activities as anomalies (false positives) can lead to unnecessary alerts and 
wasted resources, while failing to detect actual anomalies (false negatives) can result in security breaches 

or system failures. F-Score is computed using the formula FScore = 2 ×
(Recall ×Precision )

(Recall +Precision )
 . Calculated F-

Score values based on the observations for KDD-Cup, and UNS-NB15 datasets are provided in Table 9 and 
10, as well as the graphs are presented as Figure 15 and 16 proportionally. 
 

Table 9: F-Score (KDD-Cup dataset) 
F-Score (%) [KDD-Cup] 
Data RF DT SVM KNN K-Means 
10 96.2811 94.19342 95.78975 96.46338 95.402664 
20 96.32262 94.16923 95.8101 96.47038 95.491226 
30 96.29572 94.03089 95.75398 96.3859 95.355553 
40 96.34033 94.10878 95.85304 96.48441 95.391647 
50 96.32808 94.28382 95.84364 96.41904 95.458809 
60 96.32768 94.34234 95.89861 96.47394 95.470642 
70 96.31326 94.23949 95.92241 96.43945 95.336845 
80 96.32298 94.29567 95.82666 96.39873 95.484795 
90 96.33666 94.06049 95.74504 96.42461 95.444 
100 96.32842 94.21454 95.8625 96.42241 95.385719 

 
Table 10: F-Score (UNSWW-NB15) 

F-Score(%) [UNSW-NB15] 
Data RF DT SVM KNN K-Means 
10 93.09959 90.93071 92.51835 92.91948 92.320732 
20 92.77778 90.60897 92.89417 92.88991 92.40686 
30 92.89079 90.80946 92.39799 92.93534 92.229027 
40 93.14171 90.95227 92.49184 92.81676 92.398239 
50 93.04906 90.56759 92.45998 92.80574 92.246162 
60 93.07941 90.86863 92.39864 93.03971 92.39724 
70 93.04101 90.96578 92.5013 92.8045 92.370728 
80 92.85913 91.05819 92.60935 92.97324 92.422829 
90 93.01438 91.07661 92.39575 92.9811 92.342667 
100 93.10135 90.99451 92.50069 92.86481 92.370834 

 
Based on the F-Score performance for the KDD-Cup dataset, RF consistently outperforms the other 
algorithms, achieving the highest F-Score values that range from 96.2811% to 96.34033%. This indicates 
its strong ability to balance precision and recall effectively. Following RF, KNN ranks second, with F-
Scores between 96.3859% and 96.46338%, demonstrating solid performance in accurately detecting 
anomalies while maintaining a good rate of correct normal behavior identification.SVM comes in third 
place, with F-Scores ranging from 95.75398% to 95.89861%, showing its effectiveness but slightly 
trailing behind RF and KNN. K-Means has consistent performance as well, with F-Scores between 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024 

 

                                                                              1409                             K. Vani et al 1396-1413 

95.355553% and 95.491226%, though it falls short compared to the top three methods. Overall, the 
results highlight Random Forest as the most reliable choice for anomaly detection in this dataset, with 
KNN as a strong alternative. 
 

 
Figure 15: F-Score (KDD-Cup dataset) 

 

 
Figure 16: F-Score (UNSW-NB15 dataset) 

 
In the F-Score performance evaluation for the UNSW-NB15 dataset, RF demonstrates the highest 
effectiveness, with F-Scores ranging from 92.77778% to 93.14171%. This shows its strong ability to 
balance precision and recall in identifying anomalies. Following closely is KNN, which achieves F-Scores 
between 92.8045% and 92.97324%, highlighting its solid performance in correctly detecting both 
anomalies and normal behavior.SVM ranks third, with F-Scores ranging from 92.39799% to 92.89417%, 
indicating its competence in anomaly detection, although it falls slightly behind RF and KNN. K-Means 
presents a consistent but lower performance with F-Scores between 92.229027% and 92.40686%, 
suggesting that while it is functional, it does not perform as effectively as the top three methods. Overall, 
Random Forest emerges as the leading choice for anomaly detection in the UNSW-NB15 dataset, closely 
followed by KNN. 
 
4.6. Average Anomaly Detection Time 
Average anomaly detection time one of the very important factors in cloud anomaly detection since it 
enables real-time responses to potential disruptions or attacks, ensuring the reliability and availability of 
cloud services. Efficient detection minimizes delays, maintaining optimal system performance and 
enhancing user satisfaction. Additionally, lower detection times facilitate better resource management 
and scalability while reducing costs associated with service downtime, data loss, or security breaches. By 
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prioritizing quicker detection, organizations can adopt a proactive approach to addressing threats, 
ultimately enhancing security and operational resilience. Overall, minimizing detection time is essential 
for maintaining efficient and secure cloud environments. Average anomaly detection time is calculated 
using the formula  

Average anomaly detection time =
Total  time  for  anomaly  detection

Num ber  of  Anomalies  detected  
.  

Measured anomaly detection times for KDD-Cup, and UNSW-NB15 datasets are listed in Table 11 and in 
Table 12, as well as the comparison graphs for the same are providedin Figure 17, and Figure 18 
respectively.  

 
Table 11: Average Detection Time (KDD-Cup dataset) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 12: Average Detection Time (UNSW-NB15dataset) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on the average detection time in milliseconds (mS) for the KDD-Cup dataset, KNN demonstrates the 
fastest performance overall, with values consistently around 568 to 600 mS across various data points. 
DT follows closely behind, maintaining a competitive average detection time ranging from 566 to 580 mS, 
indicating its efficiency in detecting anomalies. RF has an average detection time between 660 to 697 mS, 
showcasing its reliability but with slightly longer processing times than KNN and DT. SVM exhibits 
average times from 620 to 646 mS, showing good performance but still slower than the top-performing 
methods. Lastly, K-Means has the longest detection times, ranging from 712 to 742 mS, indicating it may 
require more time to identify anomalies compared to the other methods. This analysis highlights the 
varying detection times across different algorithms, emphasizing the trade-off between speed and 
detection capability in cloud anomaly detection. 
For the UNSW-NB15 dataset, the average detection time in milliseconds (mS) reveals that DT has the best 
performance, with detection times ranging from 797 mS to 827 mS, making it the fastest algorithm for 
detecting anomalies in this dataset. Following closely is the KNN algorithm, with average times from 816 
mS to 844 mS, indicating its efficiency as well. RF has slightly longer detection times, averaging between 
919 mS and 938 mS, but still performs adequately. The SVM method shows average detection times 
ranging from 874 mS to 914 mS, suggesting a good performance but at a slower pace compared to DT and 
KNN. Lastly, K-Means consistently records the longest detection times, ranging from 966 mS to 998 mS, 
indicating that it may be less optimal for real-time anomaly detection scenarios. This summary illustrates 

Average Detection Time(mS) [KDD-Cup] 

Data RF DT SVM KNN K-Means 

10 678 571 636 568 725 

20 660 574 646 593 742 

30 673 573 641 577 712 

40 681 574 631 584 722 

50 697 566 635 596 734 

60 672 580 631 593 737 

70 690 576 640 595 719 

80 694 572 650 595 727 

90 688 567 620 600 718 

100 669 570 649 587 721 

Average Detection Time (mS) [UNSW-NB15] 

Data RF DT SVM KNN K-Means 

10 935 797 894 838 983 

20 932 827 890 840 992 

30 922 824 906 844 998 

40 919 822 874 819 978 

50 924 819 902 848 995 

60 927 821 901 816 983 

70 936 826 904 827 980 

80 929 806 896 838 994 

90 932 829 894 821 993 

100 938 810 914 821 966 
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the trade-offs in detection speed among various algorithms used for anomaly detection in cloud 
environments. 
In summary, the performance of various anomaly detection algorithms in terms of average detection time 
reveals distinct strengths across the KDD-Cup and UNSW-NB15 datasets. In the KDD-Cup dataset, KNN 
emerges as the fastest method, followed closely by RF and SVM, indicating that these algorithms can 
effectively balance speed and accuracy. Conversely, in the UNSW-NB15 dataset, DT demonstrates the 
quickest detection times, making it the most efficient choice for real-time applications, while K-Means 
shows the longest detection times, which may limit its practical use in time-sensitive scenarios. Overall, 
the choice of algorithm for cloud anomaly detection should consider not only accuracy and precision but 
also the average detection time, which is crucial for timely responses to potential threats. 
 
5. CONCLUSION 
The performance of nominated anomaly detection methods across the key parameters such as accuracy, 
precision, sensitivity, specificity, F-Score, and average detection time—offers a comprehensive view of 
their effectiveness in both the KDD-Cup and UNSW-NB15 datasets. Random Forest (RF) consistently 
outperformed other methods, achieving the highest accuracy in both datasets, underscoring its 
robustness in identifying both normal and anomalous instances. K-Nearest Neighbors (KNN) also 
demonstrated strong accuracy, closely following RF, indicating its reliability. In terms of precision, both 
RF and KNN led the pack, showcasing their effectiveness in minimizing false positives, which is crucial in 
cloud environments to avoid unnecessary resource consumption. KNN excelled in sensitivity, effectively 
identifying true positives across both datasets, while RF also performed well, ensuring critical issues are 
recognized promptly. KNN consistently achieved the highest specificity, proving its strength in accurately 
identifying normal behavior, with RF following closely. The F-Score metrics revealed that both RF and 
KNN maintain a strong balance between precision and recall, achieving top scores that reflect their ability 
to detect anomalies while minimizing false positives. When it comes to average detection time, KNN was 
the fastest in the KDD-Cup dataset, indicating its efficiency in processing data, while Decision Tree (DT) 
showed the quickest detection times in the UNSW-NB15 dataset. But the advantage of using DT is 
diminished due to the subpar performance in all other benchmark parameters excluding average 
detection time. Thus it is understood that RF and KNN exhibited superior performance across most 
parameters, the choice of an anomaly detection method should consider the specific application 
requirements, including the trade-off between speed and accuracy in real-time environments. 
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