
Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1396 K. Vani et al 1396-1413

Viability Assessment about Applicability of Machine Learning
in Cloud Anomaly Detection

K. Vani1, Dr.S. Britto Ramesh Kumar2

1Research Scholar, Department of Computer Science, St. Joseph’s College (Autonomous),Affiliated to
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, Email: dr.vanikarthikeyan@gmail.com

2Assistant Professor, Department of Computer Science, St. Joseph’s College (Autonomous), Affiliated to
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, Email: brittork@gmail.com

 Received: 14.07.2024 Revised: 20.08.2024 Accepted: 25.09.2024

ABSTRACT
The rapid growth of cloud computing has introduced more opportunities as well as significant challenges
in ensuring the reliability and performance of cloud-based systems.Detecting unusual activities such as
performance drops, unexpected high resource usage, or security threats, is crucial to avoid disruptions.
This work named as “Viability Assessment about Applicability of Machine Learning in Cloud Anomaly
Detection (VAAMLCAD)” looks into whether machine learning methods can help to identify and predict
anomalies in cloud environment. Different machine learning models in particular Random Forest (RF),
Decision Tree (DT), Support Vector Machine (SVM) K-Nearest Neighbor, and K-Means method to see how
well aforementioned methods work in identifying anomalies in dynamic cloud environments. A dedicated
testbed is constructed with state-of-the-art development frameworks and evaluation tools to measure the
performance such as Accuracy Precision, Sensitivity, Specificity, F-Score, and Average Processing Time for
the benchmark datasets KDD-Cup and UNSW-NB15. Rank wise discussions based on the performance of
the compared methods are vividly elucidated in this work.

Keywords: Anomaly detection, Cloud computing environment, Machine Learning, Random Forest,
Decision Tree, Support Vector Machine, K-Nearest Neighbor, K-Means

1. INTRODUCTION
Cloud computing environment is a system where users can access computing resources such as storage,
servers, and applications over the internet. Instead of owning physical hardware, consumers can rent and
use these ready-to-use resources, and can benefit through pay-per-use concept [1]. This makes the cloud
computing environment into flexible and cost-effective one.There are different types of cloud
environments in practice in particular,Public clouds [2], which are shared by multiple organizations and
are available over the internet, Private clouds [3], which are dedicated to one organization, offering more
control and security, and Hybrid clouds those combine both public and private clouds, allowing data and
applications to be shared between them [4]. Multi-cloud environments [5] use multiple cloud services
from different providers.Cloud computing environments are widely used for data storage, application
development and deployment, huge dataset interpretations, and for running machine learning models.
They help businesses and individuals to use the latest technology without investing much in physical
infrastructures [6].Cloud computing also enhances collaboration between the teams to work on shared
projects and access resources Globally. In addition, it offers automatic software updates and maintenance,
that reduces the burden of the users significantly to manage and secure their systems [7].
An anomaly in a cloud computing environment refers to any unusual or unexpected behavior in the cloud
environment that deviates from usual patterns. This can include sudden spikes in resource usage, such as
CPU or memory, performance slowdowns, security threats like unauthorized access, or chaotic
configuration changes. These anomalies can disrupt cloud services severely [8], thus it is essential to
detect and confront them in a proper way to ensure the reliability, performance, and security of cloud
systems. There are severaltechniques, including machine learning,and statistical analysis, are employed
to monitor and identify irregularities in data accessing patterns [9]. These methods analyze large datasets
to detect anomalies that deviate from the expected regular behavior, which may indicate potential issues
or security threats. Machine learning modelscan learn from historical data and continuously adapt to new
patterns, making them highly effective in identifying subtle and evolving anomalies. By automating the
detection process, these technologies enhance the accuracy and efficiency of monitoring systems [10],

mailto:dr.vanikarthikeyan@gmail.com
mailto:brittork@gmail.com

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1397 K. Vani et al 1396-1413

The VAAMLCAD work is intended to analyze the performance metrics of RF, DT, SVM, KNN, and K-Means
algorithms in detecting cloud environment anomalies and classifying them into major attack categories,
such as DoS, Probe, U2R, R2L, as well as non-attack anomalies, which are labeled as Unclassified Cloud
Anomaly (UCA).

2. Existing Method
There are five renowned machine learning techniques specifically RF, DT, SVM, KNN, and K-Means are
explored here for the relevance in cloud environment anomaly detection.

2.1. Random Forest (RF)
Random Forest is a powerful machine learning algorithm that belongs to the family of ensemble methods.
It is primarily used for classification and regression tasks, making it one of the most preferred algorithms
in the data science constellation. The fundamental principle of Random Forest is to create a 'forest' of
several decision trees, each trained on anarbitrary subset of the data. This technique promotes to mitigate
the risk of overfitting [11], which is a pervasive problem in traditional decision tree models. By
aggregating the predictions from multiple trees, Random Forest improves the accuracy and robustness,
making it suitable for various applications, including finance, healthcare, marketing, and anomaly
detection in this case [12].
The construction of a Random Forest encompasses two main processes namely bootstrap sampling and
feature selection. First, the algorithm uses bootstrap sampling, where it arbitrarily selects subsets of the
training data with replacement to build individual decision trees [13]. This means some data points may
be included in multiple trees, while others may not be included at all. Then, for each split in a decision
tree, a random subset of features is selected. This randomness helps ensure that the trees in the forest are
in a diversified manner, which is crucial for improving the performance of the model. During the
prediction phase, the Random Forest aggregates the outputs of all treestypically using majority voting for
classification or averaging for regressionto generate a final prediction [14].
One of the significant advantages of Random Forest is its robustness to overfitting, especially when
dealing with larger datasets. While individual decision trees can easily overfit the training data, the
ensemble approach of Random Forest helps reduce these inaccuracies. Additionally, Random Forest can
handle both categorical and numerical data, making it highly adaptable to various types of datasets. It also
provides an inherent measure of feature importance, allowing users to interpret which features
significantly influence predictions. This feature is particularly beneficial for exploratory data analysis and
feature selection.Its ability to handle complex datasets with high dimensionality makes it a valuable tool
in any data scientist's toolkit.
While comparing Decision Trees, Random Forest models can become computationally intensive,
especially with large datasets and numerous trees, that leads to longer training times [15]. The algorithm
also tends to be less effective when the dataset has a high number of irrelevant features, as it can
introduce noise into the model.
The architecture of random forest is illustrated in Figure 1.

Figure 1: Random Forest Architecture

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1398 K. Vani et al 1396-1413

2.2. Decision Tree (DT)
A Decision Tree is one of the most prominent machine learning algorithms used for classification and
regression tasks. DT works by splitting a dataset into smaller subsets based on the values of the features.
The structure is like a flowchart, with internal nodes representing decisions branches representing the
possible outcomes of those decisions, and leaf nodes representing the final prediction or classification
[16]. Decision Trees help in making systematic progressive decisions by breaking down complex
problems into simpler and manageable segments.
The tree starts with a root node that represents the whole dataset. This root node splits the data into
subsets based on the feature that best dissects the data, optimizing for criteria like Gini impurity or
information gain. The process of splitting and branching continues recursively until the algorithm reaches
a break point, such as when all data points in a subset belong to the same class, or when further splits
don't refinement of the model [17].One of the main advantages of Decision Trees is their modesty and
interpretability. They replicate human decision-making processes, making them easy to understand. In
addition, Decision Trees can handle both numerical and categorical data devoid of the need for
normalization or scaling. Though decision trees can be vulnerable to overfitting, in particular when they
grow excessively complex by splitting too deeply. Techniques like pruning or setting depth limits are used
to prevent the overfitting problem of decision trees [18].
Decision Trees are also sensitive to small changes in the data, which can result in utterly different tree
structures. Regardless of these limitations, Decision Trees remain a foundational tool in machine learning
and serve as the building blocks for more sophisticated aggregation ofdifferent methods such as Random
Forests and Gradient Boosting Machines, to improve stability and accuracy.
A typical Decision Tree model representation is provided in Figure 2.

Figure 2: Decision Tree Model

2.3. Support Vector Machine (SVM)
Support Vector Machine is a supervised machine learning algorithm which is widely used for
classification and regression purposes. The primary strength of SVM is its ability to find the optimal
hyperplane to separates different classes within a dataset. A hyperplane serves as the decision threshold,
while support vectors are the data points proximate to the hyperplane [19]. These support vectors are
essential for defining the position and orientation of the hyperplane, and they directly impact the
decision-making process of the model.
The margin in SVM is the distance intervening the hyperplane and the nearest support vectors from
either class, and the goal of the method is to maximize this margin to enhance the generalization
capabilities of the model. SVM utilizes the kernel trick to handle non-linear relationships in the data, that
transforms the original feature space into a higher-dimensional space using multiple kernel functions.
There are several common kernels such as linear, polynomial, and radial basis function (RBF), each
allowing SVM to tackle both linear and non-linear classification challenges in an effective manner.
SVM offers several advantages, including effectiveness in high-dimensional spaces and robustness against
overfitting, particularly when the appropriate kernel and proper regularization techniques are employed.
However, there are some limitations such as increased training time with large datasets and the
complexity of selecting the appropriate kernel and tuning parameters. Moreover, SVM also struggles with
noisy data where class overlap is pivotal[20].
Collectively, Support Vector Machines are powerful tools in machine learning, making them suitable for
several applications, including finance, bioinformatics, and image recognition. Their ability to handle
complex datasets and deliver accurate results has established them as a prominent choice in the field.
Thus, SVM is included in this work to detect anomalies in cloud computing environments.
A typical SVM Architecture is portrayed in Figure 3.

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1399 K. Vani et al 1396-1413

Figure 3: Support Vector Machine

2.4. K-Nearest Neighbor (KNN)
KNN is a supervised machine learning algorithm which is used for both classification and regression
purposes. It works by classifying new data points according to their similarity with existing data in the
training set. The algorithm quantifies the distance between new data point with all other points, to select
the k nearest neighbors [21]. For classification tasks, KNN assigns the data point to the most common
class among its neighbors, while in regression, it predicts the value by calculating the average of the
values of the nearest neighbors.
KNN is a lazy learner, that means it doesnot create an explicit model during training phase. Instead, it
preserves the entire dataset and performs calculations exclusivelyduring the prediction process. KNN is a
non-parametric, so it refrains from assuming any specific distribution for the data, which allows flexibility
when dealing with different types of datasets with various features sets.While KNN is simple and easy to
understand, it has some limitations. It can be computationally expensive, especially with large datasets,
since it must compute distances for every individual prediction [22]. In addition, KNN algorithm is
sensitive to irrelevant features, and performance can vary based on the value of k. KNN is effective for
smaller datasets and is widely used in applications such as image recognition, recommendation systems,
and other tasks where data proximity plays a crucial role in decision-making.
KNN serves as a powerful tool for anomaly detection in cloud environments, leveraging its simplicity and
effectiveness to monitor and maintain system integrity. KNN offers various advantages, including
simplified implementation and interpretability.Thus, KNN is nominated in this work to explore the
performance of cloud environment anomaly detection [23].The diagrammatic representation of KNN
algorithm is displayed in Figure 4.

Figure 4: KNN Model

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1400 K. Vani et al 1396-1413

2.5. K-Means
K-Means is a commonly used unsupervised machine learning algorithm designed for clustering tasks. The
primary objective of K-Means is to segment a dataset into k distinct clusters, with each data point
assigned to the cluster represented by the nearest mean – represented as centroid in classification
context. It is widely used in market segmentation to tailor marketing strategies based on customer
behavior and demographics [24]. KNN also clusters similar documents in natural language processing,
enhancing search and retrieval systems. In anomaly detection, K-Means identifies outliers, which is
valuable for fraud detection in finance and performance monitoring in IT. Additionally, it improves
recommendation systems by analyzing user-item interactions and providing personalized suggestions. In
social network analysis, it identifies communities based on user interactions, while in healthcare, it
clusters patient data for personalized medicine.
The algorithm begins by randomly selecting k initial centroids from the dataset. In the assignment step,
each data point is assigned to the nearest centroid based on a distance metric, typically Euclidean
distance to form k clusters. As a subsequent update step, the centroids are recalculated by computing the
average of the data points within each cluster, and the process iterates until convergence, where
centroids stabilize and assignments are no longer changing significantly.K-Means is characterized by its
simplicity and efficiency, making it easy to implement and suitable for large datasets [25]. K-Means has
some limitations such as sensitivity to the initial choice of centroids and the assumption that clusters are
spherical and equally sized. In addition, users must specify the number of clusters k in advance, which can
be challenging if the optimal number is ambiguous.
K-Means is effective for various applications, such as segmenting customers based on behavior, reducing
the number of colors in images, and clustering similar documents. Overall, K-Means remains a powerful
tool in unsupervised learning, offering valuable insights through its clustering capabilities. A
diagrammatic representation is provided in Figure 5.

Figure 5: K-Means Clusters

3. Experimental Setup
A unified testbed is essential to compare different machine learning algorithms in anomaly detection for a
handful of reasons such as Standardization, Reproducibility, Benchmarking, Variable configurability,
Evaluation efficiency, and to maintain Equality among the compared methods.
A unified testbed ensures that all ML algorithms are evaluated using the same data, metrics, and
experimental conditions. This standardization eliminates inconsistencies that could arise from
differences in datasets or evaluation criteria, providing a fair and consistent basis for comparison. It will
be easier to attribute performance differences to the algorithms themselves rather than external factors
while using a standard experimental setup. It will be also easier to maintain reproducibility in anomaly
detection research, as it allows experiments to be replicated with identical conditions, ensuring the
reliability of performance outcomes. It also serves as a benchmarking platform where various ML models
can be evaluated and ranked based on consistent metrics, offering a clear comparison of their strengths.
Additionally, it controls important variables, such as noise or class imbalance, to ensure that the
comparison focuses on the algorithms themselves rather than external factors. This streamlined setup
enables efficient evaluation and helps test models under realistic conditions, simulating the challenges
they would face in real-world scenarios.

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1401 K. Vani et al 1396-1413

A computer with i7 8th generation processor backed by 16GB memory, and 1TB NVMe M2 storage is used
to write the source codes and to evaluate the performance of the compared methods. A dedicated User
Interface (UI) is designed to load the datasets, communicate with a simulator, execute the compared
methods sequentially, collect the experimental log results from the simulator, and to generate the graphs.
Visual Studio IDE is used to develop the UI and C+ 20.0 is used to code the compared algorithms.
Benchmark datasets in specific KDD-Cup and UNSW-NB15 are used in the evaluation process. The
industrial standard simulator OPNET is used to evaluate the performance of the discussed methods. The
experimental setup structural diagram is provided in Figure 6.

Figure 6: Experimental Setup

4. RESULTS AND DISCUSSIONS
During the evaluation process, elementary parameters such as True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) are measured for different anomaly classes for every 10% of
data of KDD-Cup, and UNSW-NB15 dataset individually. Based on the readings, the benchmark anomaly
detection performance metrics such as Accuracy, Precision, Sensitivity, Specificity, and F-Score values are
computed. Average anomaly detection time is also measured during the entire evaluation process for the
nominated methods. The observed readings are tabulated in this section along with the comparison
graphs.

4.1. Accuracy
Anomaly detection accuracy in cloud computing is crucial for ensuring security, performance, and cost-
efficiency. It minimizes false positives and false negatives, preventing unnecessary interventions and
undetected issues that could lead to service disruptions or security breaches. By optimizing resource
usage and detecting performance bottlenecks early, it helps maintain high availability and improved user

experience. Accuracy is calculated by the formula Accuracy =
TP +TN

TP +TN +FP +FN

Measured Accuracy of the methods for KDD-Cup, and UNSW-NB15 datasets are listed in Table 1 and
Table 2 Respectively.

Table 1: Accuracy (KDD-Cup Dataset)
Accuracy (%) [KDD-Cup]
Data RF DT SVM KNN K-Means
10 96.28799 94.159 95.786 96.467 95.380997
20 96.327 94.14 95.811 96.475 95.464989
30 96.30299 93.99699 95.752 96.393 95.331009
40 96.347 94.06999 95.85201 96.48799 95.363998
50 96.33299 94.246 95.842 96.424 95.434998
60 96.332 94.302 95.898 96.476 95.447006
70 96.319 94.19801 95.92 96.44401 95.310005
80 96.328 94.25301 95.827 96.40399 95.463997
90 96.341 94.023 95.748 96.427 95.423996
100 96.33501 94.18099 95.862 96.42701 95.358994

Based on the observed results, the rank-wise performance on the KDD-Cup dataset, KNNemerges as the
top-performing model, with accuracy ranging from 96.393% to 96.48799%, slightly outperforming
Random Forest. RF follows closely in second place, maintaining strong and stable accuracy between
96.28799% and 96.347% across all data percentages. SVM ranks third, with accuracy ranging from
95.748% to 95.920%, showing solid performance but slightly below KNN and RF. In fourth place is K-
Means, which achieves accuracy between 95.310005% and 95.464989%, consistently lower than the top

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1402 K. Vani et al 1396-1413

two models. DT ranks last, with accuracy ranging from 93.99699% to 94.302%, making it the weakest
performer among the models tested.

Table 2: Accuracy (UNSW-NB15 DATASET)
Accuracy(%) [UNSW-NB15]
Data RF DT SVM KNN K-Means
10 93.136 90.9 92.519 92.899 92.310997
20 92.80901 90.56 92.878 92.88001 92.378006
30 92.92799 90.791 92.39101 92.92101 92.219994
40 93.176 90.92999 92.481 92.815 92.385994
50 93.071 90.548 92.44 92.788 92.228989
60 93.103 90.828 92.384 93.035 92.402
70 93.06599 90.93001 92.481 92.79299 92.365005
80 92.89201 91.039 92.605 92.965 92.416
90 93.051 91.045 92.385 92.979 92.324997
100 93.12 90.95799 92.484 92.85899 92.353996

As per the observed results, the rank-wise performance on the UNSW-NB15 dataset, RF ranks first,
consistently achieving the highest accuracy, ranging from 92.80901% to 93.176%.KNNfollows in second
place, with accuracy between 92.788% and 93.035%, closely trailing RF. In third place is SVM, with
accuracy ranging from 92.384% to 92.878%, performing well but slightly below KNN and RF. K-Means
ranks fourth, with accuracy between 92.219994% and 92.416%, maintaining lower but consistent
accuracy. DT ranks last, with accuracy from 90.548% to 91.045%, making it the weakest model in the
comparison.
The comparison graphs of Accuracy score for KDD-Cup, and UNSW-NB15 datasets are given in Figure 7
and 8 respectively.

Figure 7: Accuracy (KDD-Cup Dataset)

Figure 8: Accuracy (UNSW-NB15 dataset)

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1403 K. Vani et al 1396-1413

In both the KDD-Cup and UNSW-NB15 datasets, RF and KNN consistently outperformed the other models,
achieving the highest accuracy rates. SVM followed closely, showing competitive but slightly lower
performance, while K-Means and DT followed behind. Overall, RF and KNN proved to be the most reliable
models across both datasets for accurate anomaly detection.

4.2.Precision
Precision is one of the crucial factors in cloud anomaly detection because it directly impacts the efficiency
of the system, resource management, and security. High precision ensures that detected anomalies are
actually significant issues, minimizing false positives. False positives in cloud environments can lead to
unnecessary interventions, such as triggering costly recovery processes or reallocating resources when
no real threat exists. This wastes computational power and increases operational costs. In addition,
precision is critical for maintaining trust in automated anomaly detection systems. If a system constantly
flags benign activities as anomalies, administrators may begin to ignore alerts, potentially missing actual
critical issues. This can compromise the security and performance of cloud systems. Therefore, high
precision allows cloud services to respond only to genuine threats or irregularities, optimizing resource
use, reducing downtime, and improving overall system reliability. Precision is calculated using the

formula Precision =
TP

TP +FP
.. Observed precision values for KDD-Cup and UNSW-NB15 datasets are

provided in Table 3, and 4 respectively.

Table 3: Precision (KDD-Cup dataset)
Precision (%) [KDD-Cup]
Data RF DT SVM KNN K-Means

10 96.07 94.76601 95.894 96.334 95.853996

20 96.196 94.632 95.794 96.29601 96.036003

30 96.106 94.556 95.82201 96.162 95.841995

40 96.14 94.74199 95.888 96.34599 95.917999

50 96.164 94.87399 95.91 96.25 95.954002

60 96.17799 94.992 95.918 96.37199 95.949997

70 96.15199 94.872 95.994 96.284 95.860001

80 96.174 94.946 95.83199 96.21 95.939995

90 96.174 94.658 95.718 96.302 95.852005

100 96.15801 94.77999 95.896 96.26601 95.93

Table 4: Precision (UNSW-NB15 dataset)

Precision(%) [UNSW-NB15]
Data RF DT SVM KNN K-Means
10 92.60799 91.21999 92.468 93.18 92.491997
20 92.388 91.09599 93.08801 93.006 92.774002
30 92.426 91.034 92.472 93.11 92.348007
40 92.67201 91.14 92.626 92.818 92.573997
50 92.788 90.744 92.65601 92.98399 92.496002
60 92.754 91.264 92.594 93.062 92.339996
70 92.732 91.332 92.788 92.898 92.477997
80 92.438 91.316 92.65199 93.084 92.552002
90 92.584 91.43199 92.536 92.98 92.584
100 92.838 91.308 92.746 92.90199 92.603996

Based on precision-based rank-wise performance on the KDD-Cup dataset, KNN ranks first, achieving the
highest precision values between 96.162% and 96.37199%, demonstrating its strong capability in
accurately identifying true positives. RFfollows closely in second place, with precision ranging from
96.07% to 96.196%, also showing high reliability in minimizing false positives. In third place is SVM, with
precision values between 95.718% and 95.918%, maintaining solid performance but slightly lower than
KNN and RF. K-Means ranks fourth, with precision between 95.841995% and 96.036003%, consistently
lower than the top three models. DT ranks last, with precision ranging from 94.556% to 94.992%, making
it the least reliable model for minimizing false positives in this dataset.

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1404 K. Vani et al 1396-1413

Based on precision-based rank-wise performance on the UNSW-NB15 dataset, KNN ranks first, achieving
the highest precision values between 92.60799% and 93.18%, showcasing its effectiveness in accurately
identifying true positives. RF follows closely in second place, with precision ranging from 92.388% to
92.838%, demonstrating strong reliability in minimizing false positives.The comparison graphs of
precision scores for KDD-Cup, and UNSW-NB15 datasets are plotted in Figure 9, and 10 in order.

Figure 9: Precision (KDD-Cup dataset)

Figure 10: Precision (UNSW-NB15 dataset)

4.3. Sensitivity
Sensitivity, also known as recall or True Positive Rate, is crucial in cloud anomaly detection because it
measures the ability of the system to correctly identify true positive cases among all actual anomalies.
High sensitivity ensures that most genuine threats are detected, which is vital for maintaining security
and performance in cloud environments. Missing out on actual anomalies can lead to severe
consequences, including data breaches, service disruptions, or operational inefficiencies.In a cloud
setting, where resources are shared and can be vulnerable to various attacks or faults, timely detection of
anomalies is essential to mitigate risks. If a detection system has low sensitivity, it may overlook
significant security threats or performance issues, allowing them to escalate and potentially cause
extensive damage. Therefore, ensuring high sensitivity helps organizations maintain a robust security and
a reliable infrastructure, safeguarding both data and user trust. Sensitivity is calculated using the formula

Sensitivity =
TP

TP +FN
 .

The sensitivity scores of the compared methods for KDD-Cup, and UNSW-NB15 datasets are given in
Table 5, and 6 in sequence.

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1405 K. Vani et al 1396-1413

Table 5: Sensitivity (KDD-Cup dataset)
Sensitivity (%) [KDDCup]
Data RF DT SVM KNN K-Means
10 96.49328 93.62907 95.68647 96.59345 94.955734
20 96.44968 93.71376 95.82646 96.64582 94.953079
30 96.48663 93.51475 95.68687 96.6114 94.874252
40 96.54201 93.48601 95.81899 96.62405 94.871445
50 96.4931 93.70354 95.77749 96.58931 94.968895
60 96.47837 93.70207 95.87975 96.57666 94.996315
70 96.47564 93.61726 95.85158 96.59581 94.819748
80 96.47258 93.65509 95.82142 96.58907 95.034378
90 96.50028 93.47191 95.77269 96.54839 95.039566
100 96.49973 93.65746 95.8293 96.57977 94.847717

Table 6: Sensitivity (UNSWW-NB115 dataset)

Sensitivity(%) [UNSW-NB15]
Data RF DT SVM KNN K-Means
10 93.59672 90.64452 92.56963 92.66118 92.1521
20 93.17195 90.1296 92.70126 92.77561 92.043839
30 93.36218 90.59098 92.3245 92.7622 92.110489
40 93.61725 90.76654 92.35832 92.81828 92.224243
50 93.31329 90.39233 92.26644 92.62978 91.999939
60 93.40718 90.47714 92.20454 93.01881 92.455292
70 93.35405 90.60658 92.21738 92.71344 92.264832
80 93.28636 90.8062 92.56751 92.86305 92.295319
90 93.45223 90.7253 92.25655 92.98363 92.103645
100 93.36708 90.68548 92.25791 92.83181 92.140121

The corresponding comparison graphs are provided in Figure 11, and 12.

Figure 11: Sensitivity (KDD-Cup dataset)

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1406 K. Vani et al 1396-1413

Figure 12: Sensitivity (UNSW-NB15 dataset)

Based on rank-wise performance for sensitivity on the KDD-Cup dataset, KNN ranks first, achieving the
highest sensitivity values ranging from 96.59345% to 96.64582%, indicating its exceptional ability to
identify true positive cases. RF follows closely in second place, with sensitivity ranging from 96.4931% to
96.54201%, showcasing strong performance in anomaly detection. SVM ranks third, with sensitivity
values between 95.68647% and 95.87975%, demonstrating solid capability but slightly lower than KNN
and RF. K-Means comes in fourth, achieving sensitivity between 94.874252% and 95.034378%,
consistently lower than the top three models.
In the sensitivity evaluation of the UNSW-NB15 dataset, RF leads the rankings with sensitivity scores
between 93.17195% and 93.61725%, highlighting its strong capability to accurately detect true positives.
Following closely in second place is KNN, which achieves sensitivity values from 92.66118% to
93.01881%, reflecting its reliable performance in identifying anomalies. SVM is in the third rank with
sensitivity figures ranging from 92.20454% to 92.70126%, showing decent performance, though it falls
slightly short compared to RF and KNN. K-Means occupies the fourth position, obtaining sensitivity values
between 91.999939% and 92.455292%, consistently lower than the top three models.

4.4. Specificity
Specificity is important in cloud anomaly detection since it helps the system to correctly identify normal
behavior and avoid mistakenly flagging regular activities as anomalies. High specificity reduces false
positives, which are unnecessary alerts, and prevents cloud administrators from being overwhelmed by
irrelevant notifications. In a busy cloud environment, frequent false alarms can lead to wasted resources,
increased costs, and service disruptions. By improving specificity, the detection system becomes more
reliable and efficient, allowing administrators to focus on real threats and keeping the cloud environment

running smoothly. Specificity is computed using the formula. Specificity =
TN

FP +TN
. The Specificity scores of

compared methods for KDD-Cup, and UNSW-NB15 datasetsare provided in Table 7, and in Table 8.
Similarly associated graphs are provided in Figure 13 and 14.

Table 7: Specificity (KDD-Cup dataset)
Specificity (%) [KDD-Cup]
Data RF DT SVM KNN K-Means
10 96.0848 94.7047 95.88738 96.34187 95.814713
20 96.2052 94.58022 95.79604 96.30622 95.9897
30 96.12161 94.49641 95.81886 96.17766 95.797592
40 96.15457 94.67403 95.88677 96.35432 95.868301
50 96.17471 94.80737 95.90694 96.261 95.911263
60 96.18754 94.91976 95.91731 96.37685 95.907318
70 96.16451 94.79823 95.9899 96.29392 95.811874
80 96.18461 94.86934 95.83278 96.22204 95.902878
90 96.18361 94.59116 95.72444 96.30788 95.815231
100 96.17199 94.7206 95.8953 96.27605 95.882385

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1407 K. Vani et al 1396-1413

Table 8: specificity (UNSW-NB15 dataset)
Specificity(%) [UNSW-NB15]
Data RF DT SVM KNN K-Means
10 92.68544 91.1611 92.4701 93.14094 92.474915
20 92.45404 91.00446 93.05644 92.98769 92.719887
30 92.50581 91.00219 92.45847 93.08264 92.330307
40 92.74544 91.097 92.60484 92.81691 92.551071
50 92.83453 90.70573 92.6181 92.95046 92.464874
60 92.80314 91.18588 92.56584 93.05381 92.350174
70 92.78529 91.26647 92.7499 92.87705 92.467758
80 92.50872 91.28252 92.64398 93.06797 92.539795
90 92.66332 91.37217 92.5154 92.97701 92.550667
100 92.8773 91.23849 92.71478 92.89405 92.572495

Figure 13: Specificity (KDD-Cup dataset)

In terms of specificity for the KDD-Cup dataset, KNN performs the best, with values ranging from 96.18%
to 96.38%, showing its strong ability to accurately identify normal behavior. RF follows closely in second
place, with specificity values between 96.08% and 96.21%, reflecting its reliable performance in
distinguishing normal operations from anomalies. K-Means ranks third, with values between 95.80% and
95.99%, slightly lower but still effective. SVM comes in fourth, with specificity values ranging from
95.72% to 95.92%, indicating good performance but lower than the top three models. DT demonstrates
specificity values between 94.50% and 94.92%, suggesting that it may be slightly less effective at
distinguishing normal cases compared to some of the other models in this dataset.

Figure 14: Specificity (UNSW-NB15 dataset)

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1408 K. Vani et al 1396-1413

While using UNSW-NB15 dataset, KNN demonstrates the highest specificity, ranging from 92.82% to
93.14%, reflecting its strong ability to correctly identify normal behavior. RF also performs reliably, with
values between 92.45% and 92.88%, showcasing its consistent effectiveness. SVM shows solid
performance, with specificity values ranging from 92.46% to 93.06%. K-Means follows closely,
maintaining good results with values from 92.33% to 92.72%. DT method managed to get the specificity
score values between 90.70% and 91.28%.
In both the KDD-Cup and UNSW-NB15 datasets, K-Nearest Neighbors (KNN) regularly attains the highest
specificity, which shows its strong ability to accurately identify normal behavior in various situations.
Random Forest (RF) also shows solid performance in both datasets, coming in second place. This
indicates that RF is dependable when it comes to telling the difference between normal data and
anomalies.

4.5. F-Score
The F-Score, which combines precision and recall into a single metric, is crucial in cloud anomaly
detection for several reasons. First, it provides a balanced view of a model's performance by considering
both false positives and false negatives. This balance is particularly important in cloud environments,
where misclassifying normal activities as anomalies (false positives) can lead to unnecessary alerts and
wasted resources, while failing to detect actual anomalies (false negatives) can result in security breaches

or system failures. F-Score is computed using the formula FScore = 2 ×
(Recall ×Precision)

(Recall +Precision)
 . Calculated F-

Score values based on the observations for KDD-Cup, and UNS-NB15 datasets are provided in Table 9 and
10, as well as the graphs are presented as Figure 15 and 16 proportionally.

Table 9: F-Score (KDD-Cup dataset)
F-Score (%) [KDD-Cup]
Data RF DT SVM KNN K-Means
10 96.2811 94.19342 95.78975 96.46338 95.402664
20 96.32262 94.16923 95.8101 96.47038 95.491226
30 96.29572 94.03089 95.75398 96.3859 95.355553
40 96.34033 94.10878 95.85304 96.48441 95.391647
50 96.32808 94.28382 95.84364 96.41904 95.458809
60 96.32768 94.34234 95.89861 96.47394 95.470642
70 96.31326 94.23949 95.92241 96.43945 95.336845
80 96.32298 94.29567 95.82666 96.39873 95.484795
90 96.33666 94.06049 95.74504 96.42461 95.444
100 96.32842 94.21454 95.8625 96.42241 95.385719

Table 10: F-Score (UNSWW-NB15)

F-Score(%) [UNSW-NB15]
Data RF DT SVM KNN K-Means
10 93.09959 90.93071 92.51835 92.91948 92.320732
20 92.77778 90.60897 92.89417 92.88991 92.40686
30 92.89079 90.80946 92.39799 92.93534 92.229027
40 93.14171 90.95227 92.49184 92.81676 92.398239
50 93.04906 90.56759 92.45998 92.80574 92.246162
60 93.07941 90.86863 92.39864 93.03971 92.39724
70 93.04101 90.96578 92.5013 92.8045 92.370728
80 92.85913 91.05819 92.60935 92.97324 92.422829
90 93.01438 91.07661 92.39575 92.9811 92.342667
100 93.10135 90.99451 92.50069 92.86481 92.370834

Based on the F-Score performance for the KDD-Cup dataset, RF consistently outperforms the other
algorithms, achieving the highest F-Score values that range from 96.2811% to 96.34033%. This indicates
its strong ability to balance precision and recall effectively. Following RF, KNN ranks second, with F-
Scores between 96.3859% and 96.46338%, demonstrating solid performance in accurately detecting
anomalies while maintaining a good rate of correct normal behavior identification.SVM comes in third
place, with F-Scores ranging from 95.75398% to 95.89861%, showing its effectiveness but slightly
trailing behind RF and KNN. K-Means has consistent performance as well, with F-Scores between

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1409 K. Vani et al 1396-1413

95.355553% and 95.491226%, though it falls short compared to the top three methods. Overall, the
results highlight Random Forest as the most reliable choice for anomaly detection in this dataset, with
KNN as a strong alternative.

Figure 15: F-Score (KDD-Cup dataset)

Figure 16: F-Score (UNSW-NB15 dataset)

In the F-Score performance evaluation for the UNSW-NB15 dataset, RF demonstrates the highest
effectiveness, with F-Scores ranging from 92.77778% to 93.14171%. This shows its strong ability to
balance precision and recall in identifying anomalies. Following closely is KNN, which achieves F-Scores
between 92.8045% and 92.97324%, highlighting its solid performance in correctly detecting both
anomalies and normal behavior.SVM ranks third, with F-Scores ranging from 92.39799% to 92.89417%,
indicating its competence in anomaly detection, although it falls slightly behind RF and KNN. K-Means
presents a consistent but lower performance with F-Scores between 92.229027% and 92.40686%,
suggesting that while it is functional, it does not perform as effectively as the top three methods. Overall,
Random Forest emerges as the leading choice for anomaly detection in the UNSW-NB15 dataset, closely
followed by KNN.

4.6. Average Anomaly Detection Time
Average anomaly detection time one of the very important factors in cloud anomaly detection since it
enables real-time responses to potential disruptions or attacks, ensuring the reliability and availability of
cloud services. Efficient detection minimizes delays, maintaining optimal system performance and
enhancing user satisfaction. Additionally, lower detection times facilitate better resource management
and scalability while reducing costs associated with service downtime, data loss, or security breaches. By

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1410 K. Vani et al 1396-1413

prioritizing quicker detection, organizations can adopt a proactive approach to addressing threats,
ultimately enhancing security and operational resilience. Overall, minimizing detection time is essential
for maintaining efficient and secure cloud environments. Average anomaly detection time is calculated
using the formula

Average anomaly detection time =
Total time for anomaly detection

Num ber of Anomalies detected
.

Measured anomaly detection times for KDD-Cup, and UNSW-NB15 datasets are listed in Table 11 and in
Table 12, as well as the comparison graphs for the same are providedin Figure 17, and Figure 18
respectively.

Table 11: Average Detection Time (KDD-Cup dataset)

Table 12: Average Detection Time (UNSW-NB15dataset)

Based on the average detection time in milliseconds (mS) for the KDD-Cup dataset, KNN demonstrates the
fastest performance overall, with values consistently around 568 to 600 mS across various data points.
DT follows closely behind, maintaining a competitive average detection time ranging from 566 to 580 mS,
indicating its efficiency in detecting anomalies. RF has an average detection time between 660 to 697 mS,
showcasing its reliability but with slightly longer processing times than KNN and DT. SVM exhibits
average times from 620 to 646 mS, showing good performance but still slower than the top-performing
methods. Lastly, K-Means has the longest detection times, ranging from 712 to 742 mS, indicating it may
require more time to identify anomalies compared to the other methods. This analysis highlights the
varying detection times across different algorithms, emphasizing the trade-off between speed and
detection capability in cloud anomaly detection.
For the UNSW-NB15 dataset, the average detection time in milliseconds (mS) reveals that DT has the best
performance, with detection times ranging from 797 mS to 827 mS, making it the fastest algorithm for
detecting anomalies in this dataset. Following closely is the KNN algorithm, with average times from 816
mS to 844 mS, indicating its efficiency as well. RF has slightly longer detection times, averaging between
919 mS and 938 mS, but still performs adequately. The SVM method shows average detection times
ranging from 874 mS to 914 mS, suggesting a good performance but at a slower pace compared to DT and
KNN. Lastly, K-Means consistently records the longest detection times, ranging from 966 mS to 998 mS,
indicating that it may be less optimal for real-time anomaly detection scenarios. This summary illustrates

Average Detection Time(mS) [KDD-Cup]

Data RF DT SVM KNN K-Means

10 678 571 636 568 725

20 660 574 646 593 742

30 673 573 641 577 712

40 681 574 631 584 722

50 697 566 635 596 734

60 672 580 631 593 737

70 690 576 640 595 719

80 694 572 650 595 727

90 688 567 620 600 718

100 669 570 649 587 721

Average Detection Time (mS) [UNSW-NB15]

Data RF DT SVM KNN K-Means

10 935 797 894 838 983

20 932 827 890 840 992

30 922 824 906 844 998

40 919 822 874 819 978

50 924 819 902 848 995

60 927 821 901 816 983

70 936 826 904 827 980

80 929 806 896 838 994

90 932 829 894 821 993

100 938 810 914 821 966

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1411 K. Vani et al 1396-1413

the trade-offs in detection speed among various algorithms used for anomaly detection in cloud
environments.
In summary, the performance of various anomaly detection algorithms in terms of average detection time
reveals distinct strengths across the KDD-Cup and UNSW-NB15 datasets. In the KDD-Cup dataset, KNN
emerges as the fastest method, followed closely by RF and SVM, indicating that these algorithms can
effectively balance speed and accuracy. Conversely, in the UNSW-NB15 dataset, DT demonstrates the
quickest detection times, making it the most efficient choice for real-time applications, while K-Means
shows the longest detection times, which may limit its practical use in time-sensitive scenarios. Overall,
the choice of algorithm for cloud anomaly detection should consider not only accuracy and precision but
also the average detection time, which is crucial for timely responses to potential threats.

5. CONCLUSION
The performance of nominated anomaly detection methods across the key parameters such as accuracy,
precision, sensitivity, specificity, F-Score, and average detection time—offers a comprehensive view of
their effectiveness in both the KDD-Cup and UNSW-NB15 datasets. Random Forest (RF) consistently
outperformed other methods, achieving the highest accuracy in both datasets, underscoring its
robustness in identifying both normal and anomalous instances. K-Nearest Neighbors (KNN) also
demonstrated strong accuracy, closely following RF, indicating its reliability. In terms of precision, both
RF and KNN led the pack, showcasing their effectiveness in minimizing false positives, which is crucial in
cloud environments to avoid unnecessary resource consumption. KNN excelled in sensitivity, effectively
identifying true positives across both datasets, while RF also performed well, ensuring critical issues are
recognized promptly. KNN consistently achieved the highest specificity, proving its strength in accurately
identifying normal behavior, with RF following closely. The F-Score metrics revealed that both RF and
KNN maintain a strong balance between precision and recall, achieving top scores that reflect their ability
to detect anomalies while minimizing false positives. When it comes to average detection time, KNN was
the fastest in the KDD-Cup dataset, indicating its efficiency in processing data, while Decision Tree (DT)
showed the quickest detection times in the UNSW-NB15 dataset. But the advantage of using DT is
diminished due to the subpar performance in all other benchmark parameters excluding average
detection time. Thus it is understood that RF and KNN exhibited superior performance across most
parameters, the choice of an anomaly detection method should consider the specific application
requirements, including the trade-off between speed and accuracy in real-time environments.

Conflict of Interest
There is no conflict of interest between the authors in terms of conducted evaluations and conclusions.

Code availability
Complete source code are available online, and download link will be provided based on E-Mail request to
the authors.

REFERENCES
[1] Liagkou, V., Fragiadakis, G., Filiopoulou, E. et al. Assessing the Complexity of Cloud Pricing Policies: A

Comparative Market Analysis. J Grid Computing 22, 65 (2024). https://doi.org/10.1007/s10723-
024-09780-4

[2] N. Santos, B. Ghita and G. L. Masala, "Medical Systems Data Security and Biometric Authentication in
Public Cloud Servers," in IEEE Transactions on Emerging Topics in Computing, vol. 12, no. 2, pp. 572-
582, April-June 2024, https://doi.org/10.1109/TETC.2023.3271957

[3] Vassilev, V. et al. (2023). Data Platform and Urban Data Services on Private Cloud. In: Senjyu, T., So-
In, C., Joshi, A. (eds) Smart Trends in Computing and Communications. SmartCom 2023. Lecture
Notes in Networks and Systems, vol 650. Springer, Singapore. https://doi.org/10.1007/978-981-99-
0838-7_23

[4] Rahim, Robbi. "Quantum Computing in Communication Engineering: Potential and Practical
Implementation." Progress in Electronics and Communication Engineering 1.1 (2024): 26-31.

[5] Zaixing Sun, Hejiao Huang, Zhikai Li, ChonglinGu, RuitaoXie, Bin Qian, Efficient, economical and
energy-saving multi-workflow scheduling in hybrid cloud, Expert Systems with Applications, Volume
228, 2023, 120401, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2023.120401

[6] Alonso, J., Orue-Echevarria, L., Casola, V. et al. Understanding the challenges and novel architectural
models of multi-cloud native applications – a systematic literature review. J Cloud Comp 12, 6
(2023). https://doi.org/10.1186/s13677-022-00367-6

https://doi.org/10.1007/s10723-024-09780-4
https://doi.org/10.1007/s10723-024-09780-4
https://doi.org/10.1109/TETC.2023.3271957
https://doi.org/10.1007/978-981-99-0838-7_23
https://doi.org/10.1007/978-981-99-0838-7_23
https://doi.org/10.1016/j.eswa.2023.120401
https://doi.org/10.1186/s13677-022-00367-6

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1412 K. Vani et al 1396-1413

[7] BhavanaGodavarthi, NirmalajyothiNarisetty, KalpanaGudikandhula, R. Muthukumaran, Dhiraj Kapila,
J.V.N. Ramesh, Cloud computing enabled business model innovation, The Journal of High Technology
Management Research, Volume 34, Issue 2, 2023, 100469, ISSN 1047-8310,
https://doi.org/10.1016/j.hitech.2023.100469

[8] Zähl, P.M., Theis, S., Wolf, M.R., Köhler, K. (2023). Teamwork in Software Development and What
Personality Has to Do with It - An Overview. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented
and Mixed Reality. HCII 2023. Lecture Notes in Computer Science, vol 14027. Springer, Cham.
https://doi.org/10.1007/978-3-031-35634-6_10

[9] Mitropoulou, K., Kokkinos, P., Soumplis, P. et al. Anomaly Detection in Cloud Computing using
Knowledge Graph Embedding and Machine Learning Mechanisms. J Grid Computing 22, 6 (2024).
https://doi.org/10.1007/s10723-023-09727-1

[10] Yunkang Cao, Xiaohao Xu, Weiming Shen, Complementary pseudo multimodal feature for point cloud
anomaly detection, Pattern Recognition, Volume 156, 2024, 110761, ISSN 0031-3203,
https://doi.org/10.1016/j.patcog.2024.110761

[11] Xu, H., Sun, Z., Cao, Y. et al. A data-driven approach for intrusion and anomaly detection using
automated machine learning for the Internet of Things. Soft Comput 27, 14469–14481 (2023).
https://doi.org/10.1007/s00500-023-09037-4

[12] Arthur Hoarau, Arnaud Martin, Jean-Christophe Dubois, Yolande Le Gall, Evidential Random Forests,
Expert Systems with Applications, Volume 230, 2023, 120652, ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2023.120652

[13] Jajarmi, Amin, Samaneh Sadat Sajjadi, and Ahamad Hajipour. "Steam generator identification using

piecewise affine model." Results in Nonlinear Analysis 2.4 (2019): 149-159.

[14] Mohsen Bayat Pour, Jonas Niklewski, Amir Naghibi, Eva Frühwald Hansson, Robust probabilistic
modelling of mould growth in building envelopes using random forests machine learning algorithm,
Building and Environment, Volume 243, 2023, 110703, ISSN 0360-1323,
https://doi.org/10.1016/j.buildenv.2023.110703

[15] Daniel Borup, Bent Jesper Christensen, Nicolaj Søndergaard Mühlbach, Mikkel Slot Nielsen, Targeting
predictors in random forest regression, International Journal of Forecasting, Volume 39, Issue 2,
2023, Pages 841-868, ISSN 0169-2070, https://doi.org/10.1016/j.ijforecast.2022.02.010

[16] Mafarja, M., Thaher, T., Al-Betar, M.A. et al. Classification framework for faulty-software using
enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble
learning. ApplIntell 53, 18715–18757 (2023). https://doi.org/10.1007/s10489-022-04427-x

[17] Ali YA, Awwad EM, Al-Razgan M, Maarouf A. Hyperparameter Search for Machine Learning
Algorithms for Optimizing the Computational Complexity. Processes. 2023; 11(2):349.
https://doi.org/10.3390/pr11020349

[18] James, G., Witten, D., Hastie, T., Tibshirani, R., Taylor, J. (2023). Tree-Based Methods. In: An
Introduction to Statistical Learning. Springer Texts in Statistics. Springer, Cham.
https://doi.org/10.1007/978-3-031-38747-0_8

[19] Z. Azam, M. M. Islam and M. N. Huda, "Comparative Analysis of Intrusion Detection Systems and
Machine Learning-Based Model Analysis Through Decision Tree," in IEEE Access, vol. 11, pp. 80348-
80391, 2023, https://doi.org/10.1109/ACCESS.2023.3296444

[20] Arifuzzaman M, Hasan MR, Toma TJ, Hassan SB, Paul AK. An Advanced Decision Tree-Based Deep
Neural Network in Nonlinear Data Classification. Technologies. 2023; 11(1):24.
https://doi.org/10.3390/technologies11010024

[21] Atin Roy, Subrata Chakraborty, Support vector machine in structural reliability analysis: A review,
Reliability Engineering & System Safety, Volume 233, 2023, 109126, ISSN 0951-8320,
https://doi.org/10.1016/j.ress.2023.109126

[22] Quan, Z., Pu, L. An improved accurate classification method for online education resources based on
support vector machine (SVM): Algorithm and experiment. Educ Inf Technol 28, 8097–8111 (2023).
https://doi.org/10.1007/s10639-022-11514-6

[23] Ukey N, Yang Z, Li B, Zhang G, Hu Y, Zhang W. Survey on Exact kNN Queries over High-Dimensional
Data Space. Sensors. 2023; 23(2):629. https://doi.org/10.3390/s23020629

[24] SubhrangshuAdhikary, Saikat Banerjee, Introduction to Distributed Nearest Hash: On Further
Optimizing Cloud Based Distributed kNN Variant, Procedia Computer Science, Volume 218, 2023,
Pages 1571-1580, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2023.01.135

[25] Xin, R., Liu, H., Chen, P. et al. Robust and accurate performance anomaly detection and prediction for
cloud applications: a novel ensemble learning-based framework. J Cloud Comp 12, 7 (2023).
https://doi.org/10.1186/s13677-022-00383-6

https://doi.org/10.1016/j.hitech.2023.100469
https://doi.org/10.1007/978-3-031-35634-6_10
https://doi.org/10.1007/s10723-023-09727-1
https://doi.org/10.1016/j.patcog.2024.110761
https://doi.org/10.1007/s00500-023-09037-4
https://doi.org/10.1016/j.eswa.2023.120652
https://doi.org/10.1016/j.buildenv.2023.110703
https://doi.org/10.1016/j.ijforecast.2022.02.010
https://doi.org/10.1007/s10489-022-04427-x
https://doi.org/10.3390/pr11020349
https://doi.org/10.1007/978-3-031-38747-0_8
https://doi.org/10.1109/ACCESS.2023.3296444
https://doi.org/10.3390/technologies11010024
https://doi.org/10.1016/j.ress.2023.109126
https://doi.org/10.1007/s10639-022-11514-6
https://doi.org/10.3390/s23020629
https://doi.org/10.1016/j.procs.2023.01.135
https://doi.org/10.1186/s13677-022-00383-6

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024

 1413 K. Vani et al 1396-1413

[26] S. M. Miraftabzadeh, C. G. Colombo, M. Longo and F. Foiadelli, "K-Means and Alternative Clustering
Methods in Modern Power Systems," in IEEE Access, vol. 11, pp. 119596-119633, 2023,
https://doi.org/10.1109/ACCESS.2023.3327640

[27] Li, M., Frank, E. &Pfahringer, B. Large scale K-means clustering using GPUs. Data Min Knowl Disc 37,
67–109 (2023). https://doi.org/10.1007/s10618-022-00869-6

https://doi.org/10.1109/ACCESS.2023.3327640
https://doi.org/10.1007/s10618-022-00869-6

