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ABSTRACT  
Let G = (V, E) be a graph. Let 𝒞 =  {𝒞1, 𝒞2, 𝒞3 ………𝒞x } be a proper coloring of G. 𝒞 is called dominator 
color class dominating set if each vertex v in G is dominated by a color class 𝒞i ∈ 𝒞and each  𝒞i ∈ 𝒞  is 
dominated by  a vertex v in G. The dominator color class domination number is the minimum cardinality 

taken over all dominator color class dominating sets in G is denoted by γ

d (G). In this paper, we obtain 

γ

d (G) for Grid graph. 

Keywords: Chromatic number, Domination number, Color Class Dominating set,  Domination Color Class 
Dominating set, Color Class Domination number, Dominator ColorClass Domination number 

 
1. INTRODUCTION 
All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of 
graph theory as found in [3]. Let G = (V, E)  be a graph of order P. The open neighborhood N(v)of vertex 
v ∈ V(G) consists of the set of all vertices adjacent to v. The closed neighborhood of v is N v = N v ⋃{v}. 
For a setS ⊆ V, the open neighborhood N S is defined to be UvϵSN(v), and the closed neighborhood of S 
isN S = N S ⋃S. A subset S of  V is called a dominating set if every vertex in V − S is adjacent to some 
vertex in S. A dominating set is a minimal dominating set if no proper subset of S is a dominating set of G. 
The domination number γ(G)is the minimum cardinality taken over all minimal dominating sets of G. A - 
set is any minimal dominating set with cardinality  . A proper coloring of G is an assignment of colors to 
the vertices of G, such that adjacent vertices have different colors. The smallest number of colors for 
which there exists a proper coloring of G is called chromatic number of G is denoted by χ(G). A total 
dominator coloring (td-coloring) of G is a proper coloring of G with the extra property that every vertex in 
G properly dominates a color class. The total dominator chromatic number is denoted by χtd (G) and is 

defined by the minimum number of colors needed in a total dominator coloring of G.This concept was 
denoted by A.Vijayalekshmi [1].  
The dominator coloring of G is a proper coloring of G dominates atleast one color class. The dominator 
chromatic number is denoted by γd (G) and it is defined by the minimum number of colors needed in a 

dominator coloring of G. 
A dominator color class dominating set of G is a proper coloring of G with the extra property that each 
vertex v in G is dominated by a color class 𝒞i ∈ 𝒞  and every color class 𝒞i ∈ 𝒞  is dominated by a vertex in 
G. A dominator color class dominating set is said to be a minimal dominator color class dominating set if 
no proper subset of𝒞  is a dominator color class dominating set of G. The dominator color class 
domination number of G is the minimum cardinality taken over all minimal dominator color class 

dominating set of G is denoted by γ

d (G). This notion was introduced by Vijayalekshmi et. al in 2021 [4]. 

A Cartesian product of two subgraphs G1 and G2 is the graph G1 × G2  such that its vertex set is 

V G1 × G2 = { x, y  / x ∈ V G1 , yV G2 }  and the edge set isE G1 × G2 = { x1, x2 ,  y1,y2 / x1 = y1 

and x2 × y2 E G2   or  x2 = y2 and  x1,y1 E (G1)}, where Pnis the path graph with n vertices. A two 

dimensional grid graph is the Cartesian product of path graphs Pm and Pn. 
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2. Main Results 
Theorem 2.1 
The grid graph Gm

n = Pm × Pn  has 

γ

d (Gm

n ) =
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Proof  
Let Gm

n = Pm × Pn  andV(Gm
n ) = vj

i(i = 1 tomandj = 1 ton) 

We consider 4 cases 

Case (i) Let m, n ≡ 0 (mod2) Decompose Gm
n  in to 

mn

4
copies of  G2

2 for 1 ≤ i ≤
m

2
and1 ≤ j ≤

n

2
. 

LetG2
2 = P2 × P2 . Assign two distinct colors, say (2r-1)and 2r(1 ≤ r ≤

mn

4
)  to the vertices say,  v2i−1
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, v2i
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and  v2i−1
2j
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  respectively, we have obtain  γ

d  of Gm.

n Soγ
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Figure 1 
 
γ

d (G10

6 ) = 30 

Case (ii)m ≡ 1  mod2 andn ≡ 0(mod2) 
Since m − 1 ≡ 0 mod2 andn ≡ 0(mod2)Gm

n is obtained by Gm−1
n followedbyG1

n  

As in case (i) γ

d Gm

n  = γ

d Gm−1

n  + γ

d G1

n =
 m−1 n

2
+   

2n

3
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Figure 2 

 
γ

d (G9

6) = 28 

Case (iii)m ≡ 0  mod2 and n ≡ 1(mod2) 
By case (ii), interchanging m and n, we obtain the required results. 
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Figure 3 
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Case (iv)m ≡ 1(mod2)    and   n ≡ 1(mod2)  
Since m − 1 ≡ 1(mod2)    and   n − 1 ≡ 1(mod2)  Gm

n   is obtained by  Gm−1
n−1   followed by  G1

n  and 
 Gm

1  .So by previous cases 

γ
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Figure 4 

 
γ

d (G11

7 ) = 42 
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