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Abstract. In this paper, we are going to study the Mittag-Leffler-Hyers-Ulam stability
and Mittag-Leffler-Hyers-Ulam-Rassias stability of the general Linear Differential Equations
of Higher order with constant coefficients using Fourier Transforms method. Moreover, the
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Some examples are given to illustrate the main results.
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1. Introduction

A classical question in the theory of functional equation is the following : “when is it
true that a function which approximately satisfies a functional equation (g) must be close to
an exact solution of (g)?” If the problem accepts a solution, we say that the equation (g) is
stable.

A simulating and famous talk presented by Ulam [40] in 1940, motivated the study of
stability problems for various functional equations. He gave a wide range of talks before
a Mathematical Colloquium at the University of Wisconsin in which he presented a list of
unsolved problems. One of his question was that when is it true that a mapping that approx-
imately satisfies a functional equation must be close to an exact solution of the equation? If
the answer is affirmative, we say that the functional equation for homomorphisms is stable.
In 1941, Hyers [9] was the first Mathematician to present the result concerning the stability of
functional equations. He brilliantly answered the question of Ulam, the problem for the case of
approximately additive mappings on Banach spaces. In the course of time, the Theorem for-
mulated by Hyers was generalized by Rassias Th. [36], Aoki [4], Bourgin [6] and J.M.Rassias
[29] for additive mappings. Then a number of authors has studied the Ulam problem for
various functional equations by different methods in [2, 21, 30, 31, 32, 33, 34, 35].

A generalization of Ulam’s problem was recently proposed by replacing functional equa-
tions with differential equations: The differential equation

φ
(
f, x, x′, x′′, ...x(n)

)
= 0

1
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has the Hyers-Ulam stability if for a given ε > 0 and a function x such that∣∣∣φ(f, x, x′, x′′, ...x(n))∣∣∣ ≤ ε,
there exists a solution xa of the differential equation

φ
(
f, x, x′, x′′, ...x(n)

)
= 0

such that |x(t)− xa(t)| ≤ K(ε) and lim
ε→0

K(ε) = 0. If the preceding statement is also true when

we replace ε and K(ε) by φ(t) and ϕ(t), where φ, ϕ are appropriate functions not depending
on x and xa explicitly, then we say that the corresponding differential equation has the
generalized Hyers-Ulam stability. Obloza seems to be the first author who has investigated
the Hyers-Ulam stability of linear differential equations [25, 26]. Thereafter, In 1998, C.
Alsina and R. Ger [3] were the first authors who investigated the Hyers-Ulam stability of
differential equations. They proved in [3] the following Theorem.

Theorem 1.1. Assume that a differentiable function f : I → R is a solution of the
differential inequality ‖x′(t)− x(t)‖ ≤ ε, where I is an open sub interval of R. Then there
exists a solution g : I → R of the differential equation x′(t) = x(t) such that for any t ∈ I,
we have ‖f(t)− g(t)‖ ≤ 3ε.

This result of C. Alsina and R. Ger [3] has been generalized by Takahasi [39]. They proved
in [39] that the Hyers-Ulam stability holds true for the Banach Space valued differential
equation y′(t) = λy(t). Indeed, the Hyers-Ulam stability has been proved for the first order
linear differential equations in more general settings [11, 12, 13, 17, 18, 19, 20]. Using
the approach as in [40], Miura, Takahasi and Choda [19], Miura [20], Takahasi, Miura and
Miyajima [39] and Miura, Jung and Takahasi are [17] proved that the Hyers-Ulam stability
holds true for the differential equation x′ = λx, while Jung [11] proved a similar result for
the differential equation φ(t)x′(t) = x.

In 2006, S.M. Jung [14] investigated the Hyers-Ulam stability of a system of first or-
der linear differential equations with constant coefficients by using matrix method. In
2007, G. Wang, M. Zhou, L. Sun [42] studied the Hyers-Ulam stability of a class of
first-order linear differential equations. I. A. Rus [37] discussed four types of Ulam sta-
bility: Ulam-Hyers stability, Generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stabil-
ity and Generalized Ulam-Hyers-Rassias stability of the Ordinary Differential Equation
u′(t) = A(u(t)) + f(t, u(t)), t ∈ [a, b]. In 2014, Q. H. Alqifiary and S. M. Jung [5] proved
the Generalized Hyers-Ulam stability of linear differential equation by using the Laplace
Transforms. These days the Hyers-Ulam stability of differential equations are investigated
[1, 7, 8, 15, 16, 22, 24, 27, 28, 43] and the investigation is ongoing.

Recently, Vida Kalvandi, N. Eghbali and J.M. Rassias [41] studied the Mittag-Leffler-
Hyers-Ulam stability of a fractional differential equation of second order. In this paper, with
the help of Fourier Transforms, we investigate the Mittag-Leffler-Hyers-Ulam stability and
Mittag-Leffler-Hyers-Ulam-Rassias stability of the linear differential equation

x′(t) + l x(t) = 0 (1.1)

and the non-homogeneous linear differential equation

x′(t) + l x(t) = r(t) (1.2)
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where l is a scalar, x(t) and r(t) are the continuously differentiable functions. Also, by using
Fourier Transforms, we establish the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-
Hyers-Ulam-Rassias stability of the second order homogeneous linear differential equation

x′′(t) + l x′(t) +m x(t) = 0 (1.3)

and the non-homogeneous second order differential equation

x′′(t) + l x′(t) +m x(t) = r(t) (1.4)

where l and m are scalars, x(t) is a twice continuously differentiable function and r(t) is a
continuously differentiable function.

2. Preliminaries

In this section, we introduce some standard notations, Definitions and Theorems, it will
be very useful to prove our main results.

Throughout this paper, F denotes the real field R or the complex field C. A function
f : (0,∞) → F of exponential order if there exists a constants A,B ∈ R such that
|f(t)| ≤ AetB for all t > 0.

For each function f : (0,∞) → F of exponential order. Let g denote the Fourier
Transform of f so that

g(u) =

∞∫
−∞

f(t) e−itu dt.

Then, at points of continuity of f , we have

f(x) =
1

2π

∞∫
−∞

g(u) e−ixu du,

this is called the inverse Fourier transforms. The Fourier transform of f is denoted by F(ξ).
We also introduce a notion, the convolution of two functions.

Definition 2.1. (Convolution). Given two functions f and g, both Lebesgue integrable
on (−∞,+∞). Let S denote the set of x for which the Lebesgue integral

h(x) =

∞∫
−∞

f(t) g(x− t) dt

exists. This integral defines a function h on S called the convolution of f and g. We also
write h = f ∗ g to denote this function.

Theorem 2.2. The Fourier transform of the convolution of f(x) and g(x) is the product
of the Fourier transform of f(x) and g(x). That is,

F{f(x) ∗ g(x)} = F{f(x)} F{g(x)} = F (s) G(s)
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or

F


∞∫
−∞

f(t) g(x− t) dt

 = F (s) G(s),

where F (s) and G(s) are the Fourier transforms of f(x) and g(x), respectively.

Definition 2.3. [41] The Mittag-Leffler function of one parameter is denoted by Eα(z)
and defined as

Eα(z) =
∞∑
k=0

1

Γ(αk + 1)
zk

where z, α ∈ C and Re(α) > 0. If we put α = 1, then the above equation becomes

E1(z) =
∞∑
k=0

1

Γ(k + 1)
zk =

∞∑
k=0

zk

k
= ez.

Definition 2.4. [41] The generalization of Eα(z) is defined as a function

Eα,β(z) =
∞∑
k=0

1

Γ(αk + β)
zk

where z, α, β ∈ C, Re(α) > 0 and Re(β) > 0.

Now, we give the definition of Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-
Hyers-Ulam-Rassias stability of the differential equations (1.1), (1.2), (1.3) and (1.4).

Definition 2.5. The linear differential equation (1.1) is said to have the Mittag-Leffler-
Hyers-Ulam stability, if there exists a constant K > 0 with the following property: For every
ε > 0, let x(t) be a continuously differentiable function satisfies the inequality

|x′(t) + l x(t)| ≤ εEα(tα),

where Eα is a Mittag-Leffler function, then there exists some y : (0,∞) → F satisfies the
differential equation (1.1) such that |x(t)− y(t)| ≤ KεEα(tα), for any t > 0. We call such K
as the Mittag-Leffler-Hyers-Ulam stability constant for the differential equation (1.1).

Definition 2.6. The linear differential equation (1.2) is said to have the Mittag-Leffler-
Hyers-Ulam stability, if there exists a constant K > 0 with the following property: For every
ε > 0, let x(t) be a continuously differentiable function satisfies the inequality

|x′(t) + l x(t)− r(t)| ≤ εEα(tα),

where Eα is a Mittag-Leffler function, then there exists some y : (0,∞) → F satisfies the
differential equation (1.2) such that |x(t)− y(t)| ≤ KεEα(tα), for any t > 0. We call such K
as the Mittag-Leffler-Hyers-Ulam stability constant for the differential equation (1.2).

Definition 2.7. The linear differential equation (1.3) is said to have the Mittag-Leffler-
Hyers-Ulam stability, if there exists a constant K > 0 with the following property: For every
ε > 0, let x(t) be a twice continuously differentiable function satisfying

|x′′(t) + l x′(t) +m x(t)| ≤ εEα(tα),
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where Eα is a Mittag-Leffler function, then there exists some y : (0,∞) → F satisfies the
differential equation (1.3) such that |x(t)− y(t)| ≤ KεEα(tα), for any t > 0. We call such K
as the Mittag-Leffler-Hyers-Ulam stability constant for the differential equation (1.3).

Definition 2.8. The linear differential equation (1.4) is said to have the Mittag-Leffler-
Hyers-Ulam stability, if there exists a constant K > 0 with the following property: For every
ε > 0, let x(t) be a twice continuously differentiable function satisfying

|x′′(t) + l x′(t) +m x(t)− r(t)| ≤ εEα(tα),

where Eα is a Mittag-Leffler function, then there exists some y : (0,∞) → F satisfies the
differential equation (1.4) such that |x(t)− y(t)| ≤ KεEα(tα), for any t > 0. We call such K
as the Mittag-Leffler-Hyers-Ulam stability constant for the differential equation (1.4).

Definition 2.9. We say that the homogeneous linear differential equation (1.1) has the
Mittag-Leffler-Hyers-Ulam-Rassias stability, if there exists a constant K > 0 with the fol-
lowing property: For every ε > 0, let x(t) be a continuously differentiable function, if there
exists φ : (0,∞)→ (0,∞) satisfies the inequality

|x′(t) + l x(t)| ≤ φ(t)εEα(tα),

where Eα is a Mittag-Leffler function, then there exists some y : (0,∞) → F satisfies the
differential equation (1.1) such that |x(t)−y(t)| ≤ Kφ(t)εEα(tα), for any t > 0. We call such
K as the Mittag-Leffler-Hyers-Ulam-Rassias stability constant for the equation (1.1).

Definition 2.10. We say that the non-homogeneous linear differential equation (1.2) has
the Mittag-Leffler-Hyers-Ulam-Rassias stability, if there exists a constant K > 0 with the
following property: For every ε > 0, let x(t) be a continuously differentiable function, if there
exists φ : (0,∞)→ (0,∞) satisfies the inequality

|x′(t) + l x(t)− r(t)| ≤ φ(t)εEα(tα),

where Eα is a Mittag-Leffler function, then there exists some y : (0,∞) → F satisfies the
differential equation (1.2) such that |x(t)−y(t)| ≤ Kφ(t)εEα(tα), for any t > 0. We call such
K as the Mittag-Leffler-Hyers-Ulam-Rassias stability constant for the equation (1.2).

Definition 2.11. We say that the homogeneous linear differential equation (1.3) has
the Mittag-Leffler-Hyers-Ulam-Rassias stability, if there exists a constant K > 0 with the
following property: For every ε > 0, let x(t) be a twice continuously differentiable function,
if there exists φ : (0,∞)→ (0,∞) satisfies the inequality

|x′′(t) + l x′(t) +m x(t)| ≤ φ(t)εEα(tα),

where Eα is a Mittag-Leffler function, then there exists some y : (0,∞) → F satisfies the
differential equation (1.3) such that |x(t)−y(t)| ≤ Kφ(t)εEα(tα), for any t > 0. We call such
K as the Mittag-Leffler-Hyers-Ulam-Rassias stability constant for the equation (1.3).

Definition 2.12. We say that the non-homogeneous linear differential equation (1.4) has
the Mittag-Leffler-Hyers-Ulam-Rassias stability, if there exists a constant K > 0 with the
following property: For every ε > 0, let x(t) be a twice continuously differentiable function,
if there exists φ : (0,∞)→ (0,∞) satisfies the inequality

|x′′(t) + l x′(t) +m x(t)− r(t)| ≤ φ(t)εEα(tα),
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where Eα is a Mittag-Leffler function, then there exists some y : (0,∞) → F satisfies the
differential equation (1.4) such that |x(t)−y(t)| ≤ Kφ(t)εEα(tα), for any t > 0. We call such
K as the Mittag-Leffler-Hyers-Ulam-Rassias stability constant for the equation (1.4).

3. Mittag-Leffler-Hyers-Ulam Stability

In the following theorems, we prove the Mittag-Leffler-Hyers-Ulam stability of the ho-
mogeneous and non-homogeneous linear differential equations (1.1), (1.2), (1.3) and (1.4).
Firstly, we prove the Mittag-Leffler-Hyers-Ulam stability of first order homogeneous differen-
tial equation (1.1).

Theorem 3.1. The differential equation (1.1) has Mittag-Leffler-Hyers-Ulam stability.

Proof. Let l be a constant in F. For every ε > 0, there exists a positive constant K
such that x : (0,∞)→ F be a continuously differentiable function satisfies the inequality

|x′(t) + l x(t)| ≤ εEα(tα) (3.1)

for all t > 0. We will prove that, there exists a solution y : (0,∞) → F satisfying the
differential equation y′(t) + l y(t) = 0 such that

|x(t)− y(t)| ≤ KεEα(tα)

for any t > 0. Let us define a function p : (0,∞)→ F such that p(t) =: x′(t) + l x(t) for each
t > 0. In view of (3.1), we have |p(t)| ≤ εEα(tα). Now, taking Fourier transform to p(t), we
have

F{p(t)} = F{x′(t) + l x(t)}
P (ξ) = F{x′(t)}+ l F{x(t)} = −iξX(ξ) + l X(ξ) = (l − iξ)X(ξ)

X(ξ) =
P (ξ)

(l − iξ)
.

Thus

F{x(t)} = X(ξ) =
P (ξ) (l + iξ)

l2 − ξ2
. (3.2)

Taking Q(ξ) =
1

(l − iξ)
, then we have

F{q(t)} =
1

(l − iξ)
⇒ q(t) = F−1

{
1

(l − iξ)

}
.

Now, we set y(t) = e−lt and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =

∞∫
−∞

e−lt eist dt =

0∫
−∞

e−lt eist dt+

∞∫
0

e−lt eist dt = 0. (3.3)

Now,

F{y′(t) + l y(t)} = F{y′(t)}+ l F{y(t)} = −iξY (ξ) + l Y (ξ) = (l − iξ)Y (ξ).
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Then by using (3.3), we have F{y′(t) + l y(t)} = 0, since F is one-to-one operator, thus
y′(t) + l y(t) = 0, Hence y(t) is a solution of the differential equation (1.1). Then by using
(3.2) and (3.3) we can obtain

F{x(t)} − F{y(t)} = X(ξ)− Y (ξ) =
P (ξ) (l + iξ)

l2 − ξ2
= P (ξ) Q(ξ) = F{p(t)} F{q(t)}

⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}.

Since the operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t). Taking
modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣
∞∫
−∞

p(t) q(t− s) ds

∣∣∣∣∣∣ ≤ |p(t)|
∣∣∣∣∣∣
∞∫
−∞

q(t− s) ds

∣∣∣∣∣∣ ≤ KεEα(tα).

Where K =

∣∣∣∣∣ ∞∫−∞ q(t− s) ds

∣∣∣∣∣ exists for each value of t. Then by virtue of Definition 2.5 the

homogeneous linear differential equation (1.1) has the Mittag-Leffler-Hyers-Ulam stability.
�

Now, we are going prove the Mittag-Leffler-Hyers-Ulam stability of the non-homogeneous
linear differential equation (1.2) using Fourier transform method.

Theorem 3.2. The differential equation (1.2) has Mittag-Leffler-Hyers-Ulam stability.

Proof. Let l be a constant in F. For every ε > 0, there exists a positive constant K
such that x : (0,∞)→ F be a continuously differentiable function satisfies the inequality

|x′(t) + l x(t)− r(t)| ≤ εEα(tα) (3.4)

for all t > 0. We have to show that there exists a solution y : (0,∞)→ F satisfying the non-
homogeneous differential equation y′(t) + l y(t) = r(t) such that |x(t) − y(t)| ≤ KεEα(tα),
for any t > 0.

Let us define a function p : (0,∞) → F such that p(t) =: x′(t) + l x(t) − r(t) for each
t > 0. In view of (3.4), we have |p(t)| ≤ εEα(tα). Now, taking Fourier transform to p(t), we
have

F{p(t)} = F{x′(t) + l x(t)− r(t)}
P (ξ) = F{x′(t)}+ l F{x(t)} − F{r(t)}

= −iξX(ξ) + l X(ξ)−R(ξ) = (l − iξ)X(ξ)−R(ξ)

X(ξ) =
P (ξ) +R(ξ)

(l − iξ)
.

Thus

F{x(t)} = X(ξ) =
{P (ξ) +R(ξ)} (l + iξ)

l2 − ξ2
. (3.5)
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Let us choose Q(ξ) as
1

(l − iξ)
, then we have

F{q(t)} =
1

(l − iξ)
⇒ q(t) = F−1

{
1

(l − iξ)

}
.

Now, we set y(t) = e−lt + (r(t) ∗ q(t)) and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =

∞∫
−∞

e−lt eist dt+
R(ξ)

(l − iξ)
=

R(ξ)

(l − iξ)
(3.6)

Now, F{y′(t) + l y(t)} = −iξY (ξ) + l Y (ξ) = R(ξ). Then by using (3.6), we have

F{y′(t) + l y(t)} = F{r(t)},

since F is one-to-one operator, thus y′(t) + l y(t) = r(t), Hence y(t) is a solution of the
differential equation (1.2). Then by using (3.5) and (3.6) we have

F{x(t)} − F{y(t)} = X(ξ)− Y (ξ) =
{P (ξ) +R(ξ)} (l + iξ)

l2 − ξ2
− R(ξ)

(l − iξ)
= P (ξ) Q(ξ) = F{p(t)} F{q(t)}

⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}

Since the operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t). Taking
modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣
∞∫
−∞

p(t) q(t− s) ds

∣∣∣∣∣∣ ≤ |p(t)|
∣∣∣∣∣∣
∞∫
−∞

q(t− s) ds

∣∣∣∣∣∣ ≤ KεEα(tα).

Where K =

∣∣∣∣∣ ∞∫−∞ q(t− s) ds

∣∣∣∣∣, the integral exists for each value of t. Hence, by the virtue of

Definition 2.6 the non-homogeneous differential equation (1.2) has the Mittag-Leffler-Hyers-
Ulam stability. �

Now, we prove the Mittag-Leffler-Hyers-Ulam stability of the homogeneous and non-
homogeneous second order linear differential equations (1.3) and (1.4).

Theorem 3.3. The differential equation (1.3) has Mittag-Leffler-Hyers-Ulam stability.

Proof. Let l,m be constants in F such that there exist µ, ν ∈ F with µν = m, µ+ν = −l
and µ 6= ν. For every ε > 0, there exists a positive constant K such that x : (0,∞)→ F be a
twice continuously differentiable function satisfying the inequality

|x′′(t) + l x′(t) +m x(t)| ≤ εEα(tα) (3.7)

for all t > 0. We will show that there exists a solution y : (0,∞) → F satisfying the
homogeneous differential equation y′′(t) + l y′(t) +m y(t) = 0 such that

|x(t)− y(t)| ≤ KεEα(tα),
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for any t > 0. Let us define a function p : (0,∞)→ F such that p(t) =: x′′(t)+ l x′(t)+m x(t)
for each t > 0. In view of (3.7), we have |p(t)| ≤ εEα(tα). Now, taking Fourier transform to
p(t), we have

F{p(t)} = F{x′′(t) + l x′(t) +m x(t)}
P (ξ) = F{x′′(t)}+ l F{x′(t)}+m F{x(t)} = (ξ2 − iξl +m) X(ξ)

X(ξ) =
P (ξ)

ξ2 − iξl +m
.

Since l,m are constants in F such that there exist µ, ν ∈ F with µ + ν = −l, µν = m and
µ 6= ν, we have (ξ2 − iξl +m) = (iξ − µ) (iξ − ν). Thus

F{x(t)} = X(ξ) =
P (ξ)

(iξ − µ) (iξ − ν)
. (3.8)

Let Q(ξ) =
1

(iξ − µ) (iξ − ν)
, then we have

F{q(t)} =
1

(iξ − µ) (iξ − ν)
⇒ q(t) = F−1

{
1

(iξ − µ) (iξ − ν)

}
.

Now, setting y(t) as
µe−µt − νe−νt

µ− ν
and taking Fourier transform, we obtain

F{y(t)} = Y (ξ) =

∞∫
−∞

µe−µt − νe−νt

µ− ν
eist dt = 0. (3.9)

Now,

F{y′′(t) + l y′(t) +m y(t)} = (ξ2 − iξl +m) Y (ξ).

Then by using (3.9), we have F{y′′(t) + l y′(t) +m y(t)} = 0. Since F is one-to-one operator,
then y′′(t) + l y′(t) + m y(t) = 0, Hence y(t) is a solution of the differential equation (1.3).
Then by using (3.8) and (3.9) we can obtain

F{x(t)} − F{y(t)} = X(ξ)− Y (ξ) =
P (ξ)

ξ2 − iξl +m
= P (ξ) Q(ξ) = F{p(t)} F{q(t)}

⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}

Since the operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t). Taking
modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣
∞∫
−∞

p(t) q(t− s) ds

∣∣∣∣∣∣ ≤ |p(t)|
∣∣∣∣∣∣
∞∫
−∞

q(t− s) ds

∣∣∣∣∣∣ ≤ KεEα(tα).

Where K =

∣∣∣∣∣ ∞∫−∞ q(t− s) ds

∣∣∣∣∣, the integral exists for each value of t. Then by virtue of

Definition 2.7 the homogeneous linear differential equation (1.3) has the Mittag-Leffler-Hyers-
Ulam stability. �
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Theorem 3.4. The differential equation (1.4) has Mittag-Leffler-Hyers-Ulam stability.

Proof. Let l,m be constants in F such that there exist µ, ν ∈ F with µν = m, µ+ν = −l
and µ 6= ν. For every ε > 0, there exists a positive constant K such that x : (0,∞)→ F is a
twice continuously differentiable function satisfying the inequality

|x′′(t) + l x′(t) +m x(t)− r(t)| ≤ εEα(tα) (3.10)

for all t > 0. We have to prove that there exists a solution y : (0,∞) → F satisfying the
non-homogeneous differential equation y′′(t) + l y′(t) +m y(t) = r(t) such that

|x(t)− y(t)| ≤ KεEα(tα),

for any t > 0. Assume that x(t) is a continuously differentiable function satisfying the
inequality (3.10). Let us define a function p : (0,∞) → F such that p(t) =: x′′(t) + l x′(t) +
m x(t)− r(t) for each t > 0. In view of (3.10), we have |p(t)| ≤ εEα(tα). Now, taking Fourier
transform to p(t), we have

F{p(t)} = F{x′′(t) + l x′(t) +m x(t)− r(t)}
P (ξ) = F{x′′(t)}+ l F{x′(t)}+m F{x(t)} − F{r(t)} = (ξ2 − iξl +m) X(ξ)−R(ξ)

X(ξ) =
P (ξ) +R(ξ)

ξ2 − iξl +m
.

Since l,m are constants in F such that there exist µ, ν ∈ F with µ + ν = −l, µν = m and
µ 6= ν, we have (ξ2 − iξl +m) = (iξ − µ) (iξ − ν). Thus

F{x(t)} = X(ξ) =
P (ξ) +R(ξ)

(iξ − µ) (iξ − ν)
. (3.11)

Taking

Q(ξ) = F{q(t)} =
1

(iξ − µ) (iξ − ν)
,

setting

y(t) =
µe−µt − νe−νt

µ− ν
+ (r(t) ∗ q(t))

and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =

∞∫
−∞

µe−µt − νe−νt

µ− ν
eist dt+

R(ξ)

(iξ − µ) (iξ − ν)
=

R(ξ)

(iξ − µ) (iξ − ν)
. (3.12)

Now,

F{y′′(t) + l y′(t) +m y(t)} = F{y′′(t)}+ l F{y′(t)}+m F{y(t)}
= (ξ2 − iξl +m) Y (ξ) = R(ξ).

Then by using (3.12), we have F{y′′(t) + l y′(t) + m y(t)} = F{r(t)}, since F is one-to-one
operator, thus y′′(t) + l y′(t) + m y(t) = r(t), Hence y(t) is a solution of the differential
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equation (1.4). Then by using (3.11) and (3.12) we can obtain

F{x(t)} − F{y(t)} = X(ξ)− Y (ξ) =
P (ξ) +R(ξ)

(iξ − µ) (iξ − ν)
− R(ξ)

(iξ − µ) (iξ − ν)

= P (ξ) Q(ξ) = F{p(t)} F{q(t)}
⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}

Since the operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t). Taking
modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣
∞∫
−∞

p(t) q(t− s) ds

∣∣∣∣∣∣ ≤ |p(t)|
∣∣∣∣∣∣
∞∫
−∞

q(t− s) ds

∣∣∣∣∣∣ ≤ KεEα(tα).

Where K =

∣∣∣∣∣ ∞∫−∞ q(t− s) ds

∣∣∣∣∣, the integral exists for each value of t. Then by virtue of

Definition 2.8 the non-homogeneous linear differential equation (1.4) has the Mittag-Leffler-
Hyers-Ulam stability. �

4. Mittag-Leffler-Hyers-Ulam-Rassias Stability

In the following theorems, we are going to investigate the Mittag-Leffler-Hyers-Ulam-
Rassias stability of the differential equations (1.1), (1.2), (1.3) and (1.4).

Theorem 4.1. The differential equation (1.1) has Mittag-Leffler-Hyers-Ulam-Rassias sta-
bility.

Proof. Let l be a constant in F. For every ε > 0, there exists a positive constant K
such that x : (0,∞) → F be a continuously differentiable function and φ : (0,∞) → (0,∞)
be an integrable function satisfies

|x′(t) + l x(t)| ≤ φ(t)εEα(tα) (4.1)

for all t > 0. We will prove that, there exists a solution y : (0,∞) → F which satisfies the
differential equation y′(t) + l y(t) = 0 such that

|x(t)− y(t)| ≤ Kφ(t)εEα(tα)

for any t > 0. Let us define a function p : (0,∞)→ F such that p(t) =: x′(t) + l x(t) for each
t > 0. In view of (4.1), we have |p(t)| ≤ φ(t)εEα(tα). Now, taking Fourier transform to p(t),
we have

F{x(t)} = X(ξ) =
P (ξ) (l + iξ)

l2 − ξ2
. (4.2)

Choosing Q(ξ) =
1

(l − iξ)
, then we have q(t) = F−1

{
1

(l − iξ)

}
. Now, we set y(t) = e−lt and

taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =

∞∫
−∞

e−lt eist dt = 0. (4.3)
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Hence

F{y′(t) + l y(t)} = −iξY (ξ) + l Y (ξ) = (l − iξ)Y (ξ)

Then by using (4.3), we have F{y′(t) + l y(t)} = 0, since F is one-to-one operator, thus
y′(t) + l y(t) = 0, Hence y(t) is a solution of the differential equation (1.1). Then by using
(4.2) and (4.3) we can obtain

F{x(t)− y(t)} = F{p(t) ∗ q(t)}

Since the operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t). Taking
modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣
∞∫
−∞

p(t) q(t− s) ds

∣∣∣∣∣∣ ≤ |p(t)|
∣∣∣∣∣∣
∞∫
−∞

q(t− s) ds

∣∣∣∣∣∣ ≤ Kφ(t)εEα(tα).

Where K =

∣∣∣∣∣ ∞∫−∞ q(t− s) ds

∣∣∣∣∣, the integral exists for each value of t and φ(t) is an integrable

function. Then by virtue of Definition 2.9 the differential equation (1.1) has the Mittag-
Leffler-Hyers-Ulam-Rassias stability. �

Now, we prove the Mittag-Leffler-Hyers-Ulam-Rassias stability of the non-homogeneous
linear differential equation (1.2) with the help of Fourier Transforms.

Theorem 4.2. The differential equation (1.2) has Mittag-Leffler-Hyers-Ulam-Rassias sta-
bility.

Proof. Let l be a constant in F. For every ε > 0, there exists a positive constant K
such that x : (0,∞)→ F is a continuously differentiable function and φ : (0,∞)→ (0,∞) an
integrable function satisfying

|x′(t) + l x(t)− r(t)| ≤ φ(t)εEα(tα) (4.4)

for all t > 0. We will now prove that, there exist a solution y : (0,∞) → F, which satisfies
the differential equation y′(t) + l y(t) = r(t) such that

|x(t)− y(t)| ≤ Kφ(t)εEα(tα),

for any t > 0. Let us define a function p : (0,∞) → F such that p(t) =: x′(t) + l x(t) − r(t)
for each t > 0. In view of (4.4), we have |p(t)| ≤ φ(t)εEα(tα). Now, taking Fourier transform
to p(t), we have

F{x(t)} = X(ξ) =
{P (ξ) +R(ξ)} (l + iξ)

l2 − ξ2
. (4.5)

Now, let us take Q(ξ) as
1

(l − iξ)
; then we have

F{q(t)} =
1

(l − iξ)
⇒ q(t) = F−1

{
1

(l − iξ)

}
.
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We set y(t) = e−lt + (r(t) ∗ q(t)) and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =

∞∫
−∞

e−lt eist dt+
R(ξ)

(l − iξ)
=

R(ξ)

(l − iξ)
(4.6)

Now,

F{y′(t) + l y(t)} = F{y′(t)}+ l F{y(t)} = −iξY (ξ) + l Y (ξ) = R(ξ)

Then by using (4.6), we have F{y′(t) + l y(t)} = F{r(t)}, since F is one-to-one operator,
thus y′(t) + l y(t) = r(t). Hence y(t) is a solution of the differential equation (1.2). Then by
using (4.5) and (4.6) we can obtain

F{x(t)− y(t)} = F{p(t) ∗ q(t)}.

Since the operator F is one-to-one and linear, it gives x(t)−y(t) = p(t)∗q(t). Taking modulus
on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣
∞∫
−∞

p(t) q(t− s) ds

∣∣∣∣∣∣ ≤ |p(t)|
∣∣∣∣∣∣
∞∫
−∞

q(t− s) ds

∣∣∣∣∣∣ ≤ K φ(t)εEα(tα).

If K =

∣∣∣∣∣ ∞∫−∞ q(t− s) ds

∣∣∣∣∣ the integral exists for each value of t and φ(t) is an integrable function.

Hence by the virtue of Definition 2.10 the differential equation (1.2) has the Mittag-Leffler-
Hyers-Ulam-Rassias stability. �

Now, we are going to establish the Mittag-Leffler-Hyers-Ulam-Rassias stability of the
second order homogeneous differential equation (1.3).

Theorem 4.3. The second order linear differential equation (1.3) has Mittag-Leffler-
Hyers-Ulam-Rassias stability.

Proof. Let l,m are constants in F such that there exist µ, ν ∈ F with µν = m, µ+ν = −l
and µ 6= ν. For every ε > 0, there exists a positive constant K such that x : (0,∞) → F is
a twice continuously differentiable function and φ : (0,∞) → (0,∞) an integrable function
satisfying the inequality

|x′′(t) + l x′(t) +m x(t)| ≤ φ(t)εEα(tα) (4.7)

for all t > 0. We will now prove that there exists a solution y : (0,∞) → F satisfying the
homogeneous differential equation (1.3) such that

|x(t)− y(t)| ≤ Kφ(t)εEα(tα),

for any t > 0. Let us define a function p : (0,∞)→ F such that p(t) =: x′′(t)+ l x′(t)+m x(t)
for each t > 0. In view of (4.7), we have |p(t)| ≤ φ(t)εEα(tα). Now, taking Fourier transform
to p(t), we have

P (ξ) = F{x′′(t)}+ l F{x′(t)}+m F{x(t)} = (ξ2 − iξl +m) X(ξ)

X(ξ) =
P (ξ)

ξ2 − iξl +m
.

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.1, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

80 Rassias  68-85



14 J.M. RASSIAS, R. MURALI, AND A. PONMANA SELVAN

Since l,m be constants in F such that there exist µ, ν ∈ F with µ + ν = −l, µν = m and
µ 6= ν, we have (ξ2 − iξl +m) = (iξ − µ) (iξ − ν). Thus

F{x(t)} = X(ξ) =
P (ξ)

(iξ − µ) (iξ − ν)
. (4.8)

Choosing Q(ξ) as
1

(iξ − µ) (iξ − ν)
, then we have F{q(t)} =

1

(iξ − µ) (iξ − ν)
and we define

a function y(t) =
µe−µt − νe−νt

µ− ν
and taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =

∞∫
−∞

µe−µt − νe−νt

µ− ν
eist dt = 0. (4.9)

Now, F{y′′(t) + l y′(t) + m y(t)} = (ξ2 − iξl + m) Y (ξ). Then by using (4.9), we have
F{y′′(t)+l y′(t)+m y(t)} = 0, since F is one-to-one operator, thus y′′(t)+l y′(t)+m y(t) = 0,
Hence y(t) is a solution of the differential equation (1.3). Then by using (4.8) and (4.9) we
can obtain

F{x(t)} − F{y(t)} = X(ξ)− Y (ξ) =
P (ξ)

ξ2 − iξl +m

= P (ξ) Q(ξ) = F{p(t)} F{q(t)}
⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}

Since the operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t). Taking
modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)| =

∣∣∣∣∣∣
∞∫
−∞

p(t) q(t− s) ds

∣∣∣∣∣∣
≤ |p(t)|

∣∣∣∣∣∣
∞∫
−∞

q(t− s) ds

∣∣∣∣∣∣ ≤ Kφ(t)εEα(tα).

Where K =

∣∣∣∣∣ ∞∫−∞ q(t− s) ds

∣∣∣∣∣ exists for each value of t and φ(t) is an integrable function.

Then by the virtue of Definition 2.11 the homogeneous linear differential equation (1.3) has
the Mittag-Leffler-Hyers-Ulam-Rassias stability. �

Finally, we are going to investigate the Mittag-Leffler-Hyers-Ulam-Rassias stability of the
second order non-homogeneous differential equation (1.4).

Theorem 4.4. The second order linear differential equation (1.4) has the Mittag-Leffler-
Hyers-Ulam-Rassias stability.

Proof. Let l,m be constants in F such that there exist µ, ν ∈ F with µν = m, µ+ν = −l
and µ 6= ν. For every ε > 0, there exists a positive constant K such that x : (0,∞) → F is
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a twice continuously differentiable function and φ : (0,∞) → (0,∞) an integrable function
satisfying the inequality

|x′′(t) + l x′(t) +m x(t)− r(t)| ≤ φ(t)εEα(tα) (4.10)

for all t > 0. We have to prove that there exists a solution y : (0,∞) → F satisfying the
non-homogeneous differential equation (1.4) such that |x(t)− y(t)| ≤ Kφ(t)εEα(tα), for any
t > 0.

Let us define a function p : (0,∞) → F such that p(t) =: x′′(t) + l x′(t) + m x(t) − r(t)
for each t > 0. In view of (4.10), we have |p(t)| ≤ φ(t)εEα(tα). Now, taking the Fourier
transform to p(t), we have

P (ξ) = F{x′′(t)}+ l F{x′(t)}+m F{x(t)} − F{r(t)}
= (ξ2 − iξl +m) X(ξ)−R(ξ)

X(ξ) =
P (ξ) +R(ξ)

ξ2 − iξl +m
.

Since l,m be constants in F such that there exist µ, ν ∈ F with µ + ν = −l, µν = m and
µ 6= ν, we have (ξ2 − iξl +m) = (iξ − µ) (iξ − ν). Thus

F{x(t)} = X(ξ) =
P (ξ) +R(ξ)

(iξ − µ) (iξ − ν)
. (4.11)

Assuming Q(ξ) = F{q(t)} =
1

(iξ − µ) (iξ − ν)
and defining a function

y(t) =
µe−µt − νe−νt

µ− ν
+ (r(t) ∗ q(t))

and also taking Fourier transform on both sides, we get

F{y(t)} = Y (ξ) =

∞∫
−∞

µe−µt − νe−νt

µ− ν
eist dt+

R(ξ)

(iξ − µ) (iξ − ν)
=

R(ξ)

(iξ − µ) (iξ − ν)
. (4.12)

Now, F{y′′(t) + l y′(t) + m y(t)} = (ξ2 − iξl + m) Y (ξ) = R(ξ). Then by using (4.12), we
have F{y′′(t) + l y′(t) +m y(t)} = F{r(t)}, since F is one-to-one operator; thus

y′′(t) + l y′(t) +m y(t) = r(t).

Hence y(t) is a solution of the differential equation (1.4). Then by using (4.11) and (4.12) we
can obtain

F{x(t)} − F{y(t)} =
P (ξ) +R(ξ)

(iξ − µ) (iξ − ν)
− R(ξ)

(iξ − µ) (iξ − ν)

= P (ξ) Q(ξ) = F{p(t)} F{q(t)}
⇒ F{x(t)− y(t)} = F{p(t) ∗ q(t)}
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Since the operator F is one-to-one and linear, which gives x(t) − y(t) = p(t) ∗ q(t). Taking
modulus on both sides, we have

|x(t)− y(t)| = |p(t) ∗ q(t)|

=

∣∣∣∣∣∣
∞∫
−∞

p(t) q(t− s) ds

∣∣∣∣∣∣
≤ |p(t)|

∣∣∣∣∣∣
∞∫
−∞

q(t− s) ds

∣∣∣∣∣∣ ≤ Kφ(t)εEα(tα).

Where K =

∣∣∣∣∣ ∞∫−∞ q(t− s) ds

∣∣∣∣∣, the integral exists for each value of t. Then by the virtue of

Definition 2.12 the non-homogeneous linear differential equation (1.4) has the Mittag-Leffler-
Hyers-Ulam-Rassias stability. �

Conclusion: We have proved the Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-
Hyers-Ulam-Rassias stability of the linear differential equations of first order and second or-
der with constant co-efficients using the Fourier Transforms method. That is, we established
the sufficient criteria for Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-
Rassias stability of the linear differential equation of first order and second order with con-
stant co-efficients using Fourier Transforms method. Additionally, this paper also provides
another method to study the Mittag-Leffler-Hyers-Ulam stability of differential equations.
Also, this paper shows that the Fourier Transform method is more convenient to study the
Mittag-Leffler-Hyers-Ulam stability and Mittag-Leffler-Hyers-Ulam-Rassias stability of the
linear differential equation with constant co-efficients.
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