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ABSTRACT 
Agricultural data analysis poses unique challenges due to the multidimensional nature of datasets and the 
complex interactions between various factors affecting crop yield and soil health. In this research work, 
we present a innovative method to focus these confronts by combining Modified Linear Discriminant 
Analysis (MLDA) for feature reduction with Modified Random Forest (MRF) for prediction modeling. We 
utilize a dataset sourced from the Indian Chamber of Food and Agriculture (ICFA), focusing on essential 
soil parameters including nitrogen (N), phosphorus (P), potassium (K), and soil pH values. The first phase 
of our methodology involves data preprocessing to ensure data cleanliness and normalization. We then 
employ MLDA, tailored specifically for agricultural data, to identify the most discriminative features 
among the dataset. By incorporating domain-specific knowledge, MLDA effectively selects the key 
variables influencing agricultural outcomes, such as crop yield and soil fertility. Subsequently, we utilize 
MRF, a robust ensemble learning algorithm, to build predictive models based on the reduced feature set 
obtained from MLDA. MRF is chosen for its capability to treat higher-dimensional data and provide 
accurate predictions, crucial for decision-making in agriculture. Through extensive experimentation and 
evaluation, we assess the performance of the MLDA-MRF framework in terms of R2 score, MAE, RMSE 
and accuracy. Our results demonstrate the efficacy of the proposed approach in both feature reduction 
and prediction tasks, outperforming traditional methods. This research contributes to advancing 
agricultural data analysis by providing insights into the significant factors influencing agricultural 
parameters. The proposed methodology not only aids in optimizing agricultural practices but also 
facilitates informed decision-making, thereby contributing to sustainable agriculture and food security. 
The integration of MLDA and MRF offers a promising avenue for analyzing agricultural datasets, enabling 
stakeholders to make data-driven decisions for improved productivity and resource management in the 
agricultural sector. 
 
Keywords: Agricultural data analysis, Modified Linear Discriminant Analysis (MLDA), Modified Random 
Forest (MRF), Soil parameters, Feature reduction, Yield prediction 
 
1. INTRODUCTION 
Agriculture stands as the backbone of a nation's economy, representing not just a sector of production but 
a vital aspect of national sustenance and development [R Rakhee et al 2020]. Its importance transcends 
mere food production, extending to various socioeconomic facets including employment generation, rural 
development, and export earnings. In many countries, particularly agrarian economies, agriculture acts as 
a primary resource of livelihood for a substantial section of the populace, remarkably in rural areas. 
Moreover, it contributes substantially to a country's gross domestic product (GDP) [S Han et al 2022] and 
overseastradegains through agricultural exports. Beyond economic considerations, agriculture plays a 
crucial role in ensuring food security and sovereignty [A Elzamly et al 2015], safeguarding a nation 
against external dependencies on food imports. Additionally, agriculture has environmental implications 
[M Piles et al 2021], as sustainable farming practices are imperative for preserving natural resources, 
mitigating climate change, and maintaining ecological balance [N R Prasad et al 2021]. In essence, the 
significance of agriculture in a country lies not only in its economic contributions but also in its profound 
impacts on social welfare, food security, and environmental sustainability [E Khosla et al 2020]. 
The integration of computing technologies in agriculture has become increasingly essential to address the 
evolving challenges faced by the industry [Agarwal S et al 2021]. With a growing global population and 
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shrinking arable land, the demand for efficient and sustainable agricultural practices has never been 
greater. Computing technologies offer transformative solutions, enabling precision agriculture techniques 
that optimize resource utilization, enhance crop productivity, and minimize environmental impact 
[Anakha Venugopal et al 2021]. From data-driven decision support systems to sensor-based monitoring 
and automation, computing expertise present agriculturalists with concurrent-time perceptions into 
ground circumstances, meteorological conditions, crop health, and pest management [Tamil Selvi et al 
2021]. Furthermore, advanced computational models and machine learning algorithms empower 
predictive analytics, allowing stakeholders to anticipate and mitigate potential risks while maximizing 
yields [Doi T et al 2020]. Embracing computing technologies in agriculture is not just about improving 
efficiency and productivity; it's about fostering resilience, sustainability, and innovation in an industry 
vital to global food security and economic prosperity [Kevin Tom Thomas et al 2020]. 
Data mining [Kamir E W 2020] stands as a crucial component of modern agriculture, offering powerful 
computational tools and techniques to investigate vast and complicated datasets in association to abstract 
significant perceptions and patterns. In the agricultural context, data mining involves the exploration and 
examination of diverse data sources such as soil properties, weather conditions, crop characteristics, and 
historical yield records [Sharma N 2019]. By employing various data mining algorithms, agricultural 
researchers and practitioners can uncover hidden relationships and trends within these datasets, thereby 
facilitating informed decision-making and optimizing farming practices [HL Siju P P 2018]. One of the 
primary roles of data mining in agriculture is to enhance the prediction of crop yield. By analyzing 
historical yield data alongside environmental factors and agronomic practices, data mining algorithms 
can identify key drivers influencing crop performance. For example, machine learning algorithms can 
process large volumes of data to recognize patterns in soil composition, climate conditions, and crop 
genetics that correlate with yield variations [Amisha A et al 2022]. Through this analysis, farmers gain 
insights into the factors that contribute to successful harvests, enabling them to make learnt decisions 
interpreting harvest choice [Geetha M C 2018], introducing plans, irrigation, enrichment, and vermin 
management. Moreover, data mining enables the identification of optimal combinations of agronomic 
practices tailored to specific environmental conditions, leading to improved yield predictions and more 
efficient resource management. Furthermore, data mining portrays a critical role in the development of 
extrapolative patterns that forecast crop yields with greater accuracy [M Sarith Divakar et al 2022]. By 
integrating machine learning algorithms with agronomic data, predictive models can anticipate yield 
fluctuations and potential challenges, allowing farmers to proactively implement mitigation measures. 
For instance, predictive analytics can forecast the impact of weather events, such as droughts or heavy 
rainfall, on crop yields, enabling farmers to adjust their management practices accordingly [Khaki S et al 
2021]. Additionally, predictive models can assess the efficacy of different crop varieties and management 
strategies under varying environmental conditions, guiding farmers in optimizing their decision-making 
processes to maximize yield potential while minimizing resource inputs and environmental impact. 
The importance of data mining in agriculture extends beyond yield prediction to encompass various 
aspects of farm management and decision support. For example, data mining techniques can be applied to 
optimize supply chain management, market analysis, and financial planning in agriculture [Nagy A et al 
2021]. By analyzing market trends, consumer preferences, and supply-demand dynamics, data mining 
enables farmers to make informed decisions regarding crop selection, pricing strategies, and market 
positioning. Moreover, data mining facilitates the identification of opportunities for diversification and 
value-added products, helping farmers to enhance profitability and competitiveness in the marketplace. 
Data mining serves as a powerful tool in agriculture, offering insights that empower farmers, researchers, 
and policymakers to make data-driven decisions, optimize resource allocation, and ensure food security 
in a rapidly evolving agricultural landscape. By leveraging advanced computational techniques to analyze 
vast and diverse datasets, data mining enables the prediction of crop yields with greater accuracy, leading 
to improved farm management practices, enhanced productivity, and sustainability in agriculture 
[Shahhosseini M et al 2021]. As toolspersists to enhance, the role of data mining in agriculture is expected 
to grow, driving innovation and transformation across the agricultural value chain. 
 
2. Review Of Related Works 
Several studies have underscored the critical role of data mining and machine learning techniques in 
enhancing agricultural productivity and decision-making processes. Welekar et al. (2023) emphasized the 
importance of precise yield estimation for effective agricultural planning and proposed a project focused 
on optimizing crop yield through data mining and machine learning algorithms such as k-Nearest 
Neighbors, Naïve Bayes, and Support Vector Machine. Similarly, van Klompenburg et al. (2020) directed a 
methodical works review to analyze the tender of machine learning algorithms in produce crop forecast, 
highlighting the prevalence of features like temperature, rainfall, and soil type, with Artificial Neural 
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Networks emerging as the most utilized algorithm. These studies reflect the growing recognition of data 
mining and machine learning as indispensable tools for crop yield prediction and agricultural decision 
support. Fathima et al. (2020) and Ashwitha et al. (2022) highlighted the significance of data mining 
techniques, particularly K-Nearest Neighbor and ensemble learning algorithms, in predicting crop yield 
and optimizing agricultural practices in regions like India. These approaches leverage various parameters 
such as rainfall, temperature, fertilizers, and soil conditions to forecast crop production, aiding farmers in 
making informed decisions for maximizing yields. Moreover, Dey et al. (2024) and Elbasi et al. (2023) 
demonstrated the efficacy of machine learning models, including Support Vector Machine, XGBoost, and 
Artificial Neural Networks, in generating practical recommendations for crop selection and nutrient 
management based on diverse environmental conditions. These studies emphasize the importance of 
utilizing advanced computational techniques to harness agricultural data for enhancing productivity and 
sustainability. Research by Harsanyi et al. (2023) and Ikram et al. (2022) showcased the potential of 
machine learning algorithms, such as Random Forest and Smart Crop Selection models, in predicting 
maize yield and optimizing crop selection decisions through real-time data analysis and IoT integration. 
These studies highlight the role of machine learning in addressing challenges related to climate change, 
soil fertility, and crop selection, ultimately contributing to increased agricultural productivity and 
resilience. Lastly, Su Yang et al. (2022) demonstrated the application of machine learning approaches, 
including random forest and quantile regression, in assessing the productivity of conservation agriculture 
systems globally. By employing machine learning techniques, researchers were able to capture the spatial 
variability of crop productivity and provide valuable insights for sustainable agricultural practices. 
Overall, these studies collectively underscore the importance of data mining and machine learning in 
revolutionizing agricultural decision-making and addressing challenges associated with food security and 
sustainability on a global scale. The table 1 gives the summary of the recent related works reviewed for 
this research work. 

 
Table 1. Review of related works with technique, highlights and result 

S.No Author Details Technique Implemented Highlights and Results 

1 
R. Welekar et al. 
2023 

Analyzed agricultural conditions and 
scenarios using data mining and 
machine learning techniques (e.g., k-
Nearest Neighbors, Naïve Bayes, 
Support Vector Machine, Linear 
Regression) 

Aimed to optimize yield and 
production, making the agricultural 
sector more resilient to climatic 
change. 

2 
Thomas van 
Klompenburg et 
al. 2020 

Conducted a Systematic Literature 
Review (SLR) to synthesize algorithms 
and features used in crop yield 
prediction studies. Analyzed 50 papers, 
revealing prevalence of temperature, 
rainfall, soil type features and Artificial 
Neural Networks (ANN) as the most 
utilized algorithm. 

Identified Convolutional Neural 
Networks (CNN) as widely used deep 
learning algorithm, suggesting its 
effectiveness in crop yield prediction 
studies. 

3 
Fathima K et al. 
2020 

Applied K-Nearest Neighbor (KNN) 
Algorithm for harvest yield expectation 
in selected regions of India. 

Demonstrated the popularity of Data 
Mining techniques in estimating 
future crop production, particularly in 
regions like Mangalore, Kasargod, 
Hassan, and Kodagu in India. 

4 
Ashwitha A et al. 
2022 

Explored machine learning, data 
mining, and deep learning algorithms 
for accurate decision-making in crop 
yield prediction. Highlighted the need 
for efficient techniques to process 
agricultural data. 

Emphasized the importance of 
algorithms in predicting suitable 
crops, reducing losses, and increasing 
productivity in agriculture. 

5 
Biplob Dey et al. 
2024 

Evaluated five ML models (Support 
Vector Machine, XGBoost, Random 
Forest, KNN, Decision Tree) utilizing 
Kaggle dataset to 
producereasonableendorsements for 
selection of crops and nutrient 

XGBoost demonstrated the highest 
accuracy, indicating its potential for 
producing crop suggestions in 
differentecologicalcircumstances. 
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fortitude. 

6 
Harsanyi E et al. 
2023 

Assessed four ML algorithms (Bagging, 
Decision Table, Random Forest, 
Artificial Neural Network-MLP) in 
forecasting maize harvestcentered on 
agricultural and climate data. 

Highlighted ANN-MLP as an 
capablemeans for forecasting maize 
produce, particularly in regions like 
Central Europe, providing insights for 
sustainable crop management. 

7 
Elbasi E et al. 
2023 

Researched the benefits of integrating 
machine learning algorithms in modern 
agriculture, emphasizing the potential 
of these algorithms in optimizing crop 
production and reducing waste. 

Proposed a new feature combination 
scheme-enhanced algorithm achieving 
high classification accuracy, indicating 
its potential for increasing production 
rates and reducing costs. 

8 
Amna Ikram et al. 
2022 

Proposed Smart Crop Selection (SCS) 
model based on IoT devices and ML 
algorithms for accurate crop selection 
and yield prediction. 

Demonstrated the reliability of SCS in 
predicting rainfall and selecting crops 
with high accuracy, offering a 
promising solution for maximizing 
crop yield. 

9 
Sutha K et al. 
2022 

Developed Suggesting and Predicting 
Produce Yield utilizingIntelligent 
Machine Learning Algorithm (SMLA) 
compared to traditional algorithms. 

Achieved 95% accuracy with SMLA, 
indicating its efficiency in predicting 
crop yield, which can contribute to 
agricultural productivity and 
economic growth. 

10 
Su Yang et al. 
2022 

Presented a machine learning approach 
to assess the production of 
preservation agriculture against 
traditional ploughing, providing 
insights into spatial variability and 
performance. 

Demonstrated the superiority of 
random forest in classification and 
regression, offering a more 
informative approach for analyzing 
agricultural practices and enhancing 
sustainability. 

 
3. Research Gap And Objectives 
While several research studies have delved into the purpose of data mining and machine learning 
techniques in agriculture, there remain notable research gaps and opportunities for further exploration. 
One such gap lies in the need for more comprehensive comparative analyses of various machine learning 
algorithms in predicting crop yield under diverse agricultural contexts. While some research, such as 
those by Klompenburg et al. (2020) and Dey et al. (2024), have provided insights into the effectiveness of 
specific algorithms like Artificial Neural Networks and XGBoost, there is still a lack of extensive 
comparative studies across a wider range of machine learning models. Additionally, there is a dearth of 
research focusing on the integration of different machine learning algorithms for more accurate crop 
yield predictions. 
 
4. Technique For Feature Reduction 
In the realm of agricultural data analysis, the complexity arising from the multidimensional nature of 
datasets and the intricate interplay between various factors influencing crop yield necessitates 
sophisticated techniques for effective analysis and prediction. In this context, the utilization of Modified 
Linear Discriminant Analysis (MLDA) offers a promising avenue for feature reduction, thereby enhancing 
the efficiency and accuracy of predictive modeling. MLDA, an extension of the classical Linear 
Discriminant Analysis (LDA), is specifically tailored to address the unique challenges posed by 
agricultural datasets. The dataset sourced from the Indian Chamber of Food and Agriculture (ICFA) 
presents a rich repository of information pertaining to crucial soil parameters, including nitrogen (N), 
phosphorus (P), potassium (K), and soil pH values, among others. Prior to crop yield prediction, the 
application of MLDA serves as a pivotal preprocessing step aimed at discerning the most discriminative 
features within the dataset. By effectively reducing the dimensionality of the data while preserving its 
essential discriminatory information, MLDA enables the identification of key variables that significantly 
influence agricultural outcomes such as crop yield and soil fertility. This usage of MLDA as a feature 
reduction technique sets the stage for more accurate and insightful predictive modeling, laying the 
groundwork for informed decision-making and sustainable agricultural practices. 
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4.1 Modified Linear Discriminant Analysis (MLDA) 
Linear Discriminant Analysis (LDA) [Nanga S et al 2021] is a classical method widely used for 
dimensionality reduction and feature extraction in various prediction tasks. However, its applicability is 
limited when dealing with datasets having complex distributions or when the underlying assumptions of 
LDA are not satisfied. To address these limitations, Modified Linear Discriminant Analysis (MLDA) offers 
a refined approach, capable of handling non-Gaussian data distributions and improving prediction 
accuracy as in Figure 1. At its core, MLDA aims to project higher-dimensional data onto a low-dimensional 
subspace whilst maximizing the separability concerning discrete categories or categories within the 
dataset. This is achieved through the computation of scatter matrices, which capture the dispersion of 
data points with respect to class centroids. MLDA modifies the conventional LDA approach by introducing 
adjustments to the scatter matrices, enabling it to handle complex data distributions more effectively. 

 
Figure 1. Modified Linear Discriminant Analysis (MLDA) Algorithm Flow 

 
The fundamental objective of MLDA is to uncover a conversionsolution that increases the share of amid-
class strew to inside-class distribute. Mathematically, this can be formulated as an eigenvalue problem. 
Let 𝑋 denote the original high-dimensional data matrix with dimensions 𝑛 × 𝑝, where 𝑛characterizes the 
quantity of samples and 𝑝signifies the quantity of features. Additionally, let 𝑌 denote the class labels 
associated with each sample in 𝑋, with 𝑐 representing the number of distinct classes. The scatter matrices 
𝑆𝑊  and 𝑆𝐵  are defined as following equations 1 and 2. 
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𝑆𝑊  =     𝑥 − 𝜇𝑖  𝑥 − 𝜇𝑖 
𝑇

𝑥∈𝑋𝑖

𝑐
𝑖=1  (1) 

𝑆𝐵  =   𝑛𝑖
𝑐
𝑖=1  𝜇𝑖 −  𝜇  𝜇𝑖 −  𝜇 𝑇   (2) 

where 𝑋𝑖  represents the collection of illustrations belonging to class 𝑖, 𝜇𝑖  represents the mean trajectory 
of class 𝑖, 𝜇 represents the in general mean vector of all models, 𝑛𝑖signifies the numeral of sections in class 
𝑖. 
The objective is to discover a transformation medium𝑊 that increases the Fisher criterion, defined as the 
relationship of the determining factor of the amongst-class sprinkleenvironment to the determining 
factor of the inside-class sprinkle matrix in equation 3 

𝐽(𝑊) =  
∣𝑊𝑇𝑆𝐵  𝑊|

∣𝑊𝑇𝑆𝑊  𝑊∣
 (3) 

The transformation matrix 𝑊 can be acquired by resolving the generalized eigenvalue problematic in 
equation 4, where 𝑤 represents the eigenvector subsequent to the greatest eigenvalue 𝜆. The solution to 
this eigenvalue problem yields the optimal projection direction, which defines the subspace onto which 
the data will be projected 
𝑆𝑊

−1𝑆𝐵  𝑤 =  𝜆𝑤 (4) 
To generalize MLDA for feature reduction, we aim to select the 𝑘 eigenvectors after the 𝑘biggest 
eigenvalues, where 𝑘 represents the desired dimensionality of the reduced feature space. These 
eigenvectors form the columns of the transformation matrix 𝑊𝑘 , which plots the original higher-
dimensional data onto a low-dimensional subspaces. The transformed data matrix 𝑋𝑛𝑒𝑤  is given by 
equation 5 
𝑋𝑛𝑒𝑤  =  𝑋𝑊𝑘  (5) 
The reduced feature space represented by 𝑋𝑛𝑒𝑤  retains the most discriminative information while 
reducing the dimensionality of the data, thereby facilitating subsequent prediction tasks. The proposed 
MLDA offers a sophisticated approach to feature reduction, enabling effective handling of complex data 
distributions and improving prediction accuracy in various applications. By maximizing the separability 
between classes through optimized projections, MLDA contributes to enhanced performance in 
prediction tasks, making it a valuable tool in data analysis and pattern recognition. Modified Linear 
Discriminant Analysis (MLDA) extends the capabilities of Linear Discriminant Analysis (LDA) by 
accommodating non-normally distributed data and unequal covariance matrices among classes. Unlike 
LDA, which assumes normality and identical covariance matrices, MLDA introduces modifications to the 
scatter matrices to handle skewed distributions and varying covariance structures. By relaxing these 
assumptions, MLDA offers a robust and versatile dimensionality reduction technique suitable for real-
world datasets with diverse characteristics, making it a valuable tool in pattern recognition and machine 
learning applications. 
 
5. Technique For Prediction 
For the agricultural data analysis, predicting crop yield accurately is imperative for effective decision-
making and resource allocation. The Modified Random Forest (MRF) technique emerges as a promising 
solution to address this challenge, particularly within the dataset sourced from the Indian Chamber of 
Food and Agriculture (ICFA). With its adaptability to complex datasets and robust predictive capabilities, 
MRF stands as a formidable tool for crop yield prediction. Random Forest (RF) is a popular combination 
knowledge procedure known for its competence to control higher-dimensional data and mitigate 
overfitting through the construction of multiple decision trees. MRF, an extension of RF, incorporates 
modifications tailored specifically for agricultural datasets, enhancing its performance and relevance in 
predicting crop yield. By harnessing the power of decision trees and aggregating their predictions, MRF 
provides accurate and reliable estimates of crop yield, thereby facilitating informed decision-making in 
agriculture. Within the ICFA dataset, which comprises crucial agricultural parameters such as nitrogen, 
phosphorus, potassium, and soil pH values, MRF offers a robust framework for predicting crop yield 
based on these influential factors. Through this introduction, we delve into the application of MRF in 
agricultural data analysis, highlighting its potential to revolutionize crop yield prediction and contribute 
to sustainable agricultural practices in the context of the ICFA dataset. 
 
5.1 Modified Random Forest (MRF) 
5.1.1 Integration of Feature Importance 
In traditional Random Forest [Prasanth N et al 2023], features are randomly selected at each node split to 
determine the best split. MRF extends this by incorporating feature importance measures, such as Gini 
impurity or information gain, to guide the split selection process more effectively. At each node, MRF 
calculates a modified impurity measure by considering both traditional impurity measures and feature 
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importance weights. This modification ensures that more discriminative features have a stronger 
influence on the split selection process, leading to more informative decision trees. 
Let 𝐼(𝑡) represent the impurity measure at node 𝑡. Then, the impurity measure for a split on feature 𝑗 at 
node 𝑡 is given by equation 6 
𝐼(𝑡, 𝑗) =  𝑝𝑐𝑙𝑎𝑠𝑠  (𝑡) ⋅ (1 − 𝑝𝑐𝑙𝑎𝑠𝑠  (𝑡))𝑐𝑙𝑎𝑠𝑠𝑒𝑠  (6) 
where 𝑝𝑐𝑙𝑎𝑠 𝑠 𝑡  is the proportion of samples in node 𝑡 belonging to a particular class. In MRF, we 
introduce feature importance weights 𝑤𝑗  for every feature 𝑗, representing the consequence of feature 𝑗 in 

predicting the target variable. The modified impurity measure is then defined as equation 7 
𝐼𝑀𝑅𝐹   (𝑡, 𝑗) = 𝑤𝑗 ⋅ 𝐼(𝑡, 𝑗) (7) 

By incorporating feature importance weights, MRF ensures that features with higher importance 
contribute more to the impurity reduction, leading to more informative splits. 
 
5.1.2 Aggregating Weighted Prediction 
Unlike Random Forest, where predictions are aggregated by simple averaging or majority voting, MRF 
introduces a weighted aggregation scheme based on individual tree performance on a validation set. Each 
tree's prediction is weighted according to its performance on the validation set, with trees that exhibit 
lower errors receiving higher weights. This weighted aggregation approach ensures that more accurate 
trees contribute more to the final prediction, thereby improving overall predictive performance.Let 

𝑦𝑖
′𝑡symbolize the prediction of the i-th sample by the t-th decision tree, and 𝑦𝑖

′  represent the final 
aggregated forecast for the i-th section. Additionally, let 𝐸𝑟𝑟𝑡  denote the error of the t-th tree on the 
validation set. Then, the weighted prediction aggregation is defined as in equation 8 

𝑦𝑖
′ =

 𝑤𝑡 ⋅𝑦𝑖
′𝑡𝑇

𝑡−1

 𝑤𝑡
𝑇
𝑡−1

 (8) 

where 𝑇 is the total amount of trees, and 𝑤𝑡  is the weight transferred to the t-th tree based on its 
validation set error. Trees with lower validation set error receive higher weights in the aggregation 
process. 
 
5.1.3 Pruning and Early Stopping 
To combat overfitting and enhance generalization, MRF incorporates regularization techniques such as 
pruning and early stopping during the tree-growing process. Pruning involves removing nodes or 
branches that do not significantly contribute to predictive performance, while early stopping halts tree 
growth when further splitting does not lead to substantial performance gains on the validation set. By 
controlling the complexity of individual trees, these regularization techniques help strike a balance 
between bias and variance in the ensemble model, leading to improved generalization ability.In MRF, 
pruning involves removing nodes or branches from the decision trees to prevent overfitting and improve 
generalization performance. The pruning process typically involves defining a pruning criterion based on 
which nodes are removed. 

Let 𝑇𝑡  denote the decision tree before pruning, and 𝑇𝑡 ′
 represent the pruned tree obtained after pruning. 

The pruning criterion may involve metrics such as impurity reduction or information gain at each node. 
Let 𝐼(𝑡) denote the impurity measure at node 𝑡. The pruning process can be formalized as in equation 9 

𝑇𝑡
′  =  𝑃𝑟𝑢𝑛𝑒(𝑇𝑡  , 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛)  (9) 

where 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 represents the pruning criterion. Early stopping involves halting tree growth when 
further splitting does not lead to substantial gains on the validation set. Let 𝐸𝑟𝑟_𝑡 denote the error of the 
t-th tree on the validation set.The early stopping process can be described as following equation 10 
𝑇𝑡  =  𝐸𝑎𝑟𝑙𝑦𝑆𝑡𝑜𝑝(𝑇𝑡 ,𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑡 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  (10) 
where 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 represents a threshold value based on which further splitting is halted. 
 
5.1.4 Tuning Hyper parameters 
MRF introduces additional hyper-parameters compared to Random Forest, as the regularization 
parameter and feature importance weights. Bayesian optimization is used as Efficient hyper-parameter 
tuning technique to optimize these parameters and maximize predictive performance on the validation 
set. 
Let 𝛩 represent the set of hyperparameters, including regularization parameter 𝜆 and feature importance 
weights 𝑤𝑗 . The hyperparameter tuning proceduretargets to discover the optimum set of 

hyperparameters 𝛩∗ that minimizes a predefined loss function 𝐿 on the validation set in equation 11. 
𝛩∗  =  𝑎𝑟𝑔 𝑚𝑖𝑛𝛩 𝐿(𝛩, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑠𝑒𝑡 ) (11) 
Bayesian optimization for tuning the Modified Random Forest (MRF) model involves iteratively selecting 
hyper-parameters to minimize the validation set error. Initially, a Gaussian process surrogate model is 
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constructed to represent the distribution of the validation set error across different hyper-parameter 
configurations. The Expected Improvement (EI) function is then used as the acquisition function to 
determine which hyper-parameters to estimate next established on the replacement model's projections. 
The optimization process selects hyper-parameters that maximize the expected improvement in 
performance. After evaluating the chosen hyper-parameters and obtaining new observations, the 
substitute model is renewed to absorb the new data. This iterative process continues until a stopping 
criterion is met, ultimately finding the finest hyper-parameters for the MRF model to predict crop yield 
effectively. 
 
6. Implemention And Results Of The Proposed Algorithms 
The Indian Chamber of Food and Agriculture (ICFA) dataset, sourced from the Kaggle repository, provides 
a comprehensive collection of agricultural data pertinent to India, encompassing crucial parameters such 
as nitrogen (N), phosphorus (P), potassium (K), and soil pH levels. These parameters play pivotal roles in 
determining soil fertility, nutrient availability, and overall crop health, thereby exerting significant 
influence on agricultural productivity and yield outcomes along with Dew and Temperature levels.  
 

 
(A) Crop yield prediction with reference to Mean average temperature 

 
(B) Crop yield prediction with reference to Mean dew point 

 
(C) Crop yield prediction with reference to Mean high temperature 

Figure 2. Crop yield prediction results of ICFA dataset using MLDA-MRF Framework 
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The implementation of the MLDA+MRF framework for predicting crop yield using the Indian Chamber of 
Food and Agriculture (ICFA) dataset on the Jupiter Notebook of the Google Cloud Platform is done. First, 
the dataset is be imported and preprocessed to ensure cleanliness and normalization. Next, MLDA is 
applied to reduce the feature space by identifying the most discriminative variables affecting crop yield. 
Once the feature reduction is complete, the modified random forest (MRF) algorithm is employed for 
prediction modeling. The implementation includes tuning the hyper-parameters of the MRF model using 
Bayesian optimization, which involves iterative calculations to optimize the model's performance. The 
entire process is coded in Python, utilizing libraries such as scikit-learn for MLDA and MRF 
implementation, along with other data processing libraries. The Jupiter Notebook environment on the 
Google Cloud Platform provides a convenient and scalable platform for executing these tasks, allowing for 
efficient experimentation and collaboration. Through this implementation, stakeholders in the 
agricultural sector can leverage advanced data analytics techniques to make informed decisions and 
optimize crop yield, contributing to the sustainable growth of the agriculture industry.The Figure 2 
illustrates the correlation between Mean Average Temperature, Mean Dew Point, and Mean High 
Temperature with crop yield in pounds. It visualizes how changes in these weather variables affect crop 
productivity, providing insights into the relationship between temperature conditions and yield 
outcomes. By analyzing the trends depicted in the figure, stakeholders can better understand the climatic 
factors influencing crop production and make informed decisions to optimize agricultural practices for 
improved yields. 
 
7. Comparision Of Algorithm Complexities 
The proposed Modified Linear Discriminant Analysis (MLDA) and Modified Random Forest (MRF) 
algorithms exhibit different complexities compared to their traditional counterparts, Linear Discriminant 
Analysis (LDA) and Random Forest (RF), respectively. 
 
7.1 Algorithm Complexity of MLDA vs LDA 
The computational complexity of LDA primarily be contingent on the quantity of features (𝑑) and the 
number of samples(𝑛). The time complication for computation the covariance matrix and its inverse is 
approximately 𝑂 𝑑2 ∗  𝑛  and 𝑂 𝑑3  respectively. The time complexity for computing eigenvectors is 
approximately 𝑂 𝑑3 . Therefore, the overall time complexity of LDA is 𝑂 𝑑3 + 𝑑2 ∗  𝑛 . The MLDA 
introduces modifications to the traditional LDA algorithm by incorporating additional selection of feature 
steps. The complication of MLDA depends on the complexity of the feature selection method used. If 
MLDA employs a simple feature selection technique like correlation-based feature selection, the 
additional computational overhead is minimal, and the overall complexity remains similar to LDA. 
However, if MLDA employs more complex feature selection methods like genetic algorithms or recursive 
feature elimination, the complexity could increase significantly, potentially to 𝑂 𝑑4  or higher depending 
on the method. 
 
7.2 Algorithm Complexity of MRF vs RF 

In Random Forest, the time complexity for building each tree is 𝑂 𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔 𝑑  , where n is the 

quantity of samples and d is the total of attributes. Building k trees results in a total complexity of 
𝑂(𝑘 ∗  𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑)). Since each tree is built independently, RF can be easily parallelized. Modified 
Random Forest introduces modifications to the traditional RF algorithm, primarily in the hyper-
parameter tuning phase. The time complexity of MRF is dominated by the Bayesian optimization process 
used for hyper-parameter tuning. Bayesian optimization typically involves evaluating the objective 
function (validation error) iteratively, which can be computationally intensive. The complexity of 
Bayesian optimization be contingent on various considerations such as the choice of surrogate model and 
the number of iterations. Overall, the complexity of MRF can be similar to RF in terms of building the 
forest (𝑂(𝑘 ∗  𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑))), but the additional complexity arises from the hyperparameter tuning 
phase, which could be 𝑂(𝑚 ∗  𝑇), where 𝑚 is the numeral of hyper-parameters and 𝑇 is the figure of 
iterations in the optimization process. 
 

Table 2. Algorithm complexity of native and proposed algorithms 

S.No Algorithm Complexity 

1 LDA 𝑂 𝑑3 +  𝑑2 ∗  𝑛  

2 MLDA 𝑂(𝑑3) 𝑡𝑜 𝑂 𝑑4  

3 RF 𝑂(𝑘 ∗  𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑)) 
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4 MRF 𝑂(𝑘 ∗  𝑛 ∗  𝑑 ∗  𝑙𝑜𝑔(𝑑))  +  𝑂(𝑚 ∗  𝑇) 

 
As per Table 2, MLDA is generally less complex compared to LDA. MLDA tends to have a lower 
computational burden compared to LDA, especially for larger datasets or high-dimensional feature 
spaces. Both MRF and RF have similar complexities for building decision trees However, MRF introduces 
additional complexity in the Bayesian optimization step. Despite this additional complexity, MRF might 
still be comparable or slightly less complex than RF depending on the specific values of 𝑚 and 𝑇. 
 
8. Performance Comparision And Discussion 
The evaluation of the proposed MLDA+MRF framework against alternative methodologies, including 
LDA+RF, Ensemble VNN-DNN, SVM, and Naive Bayes, involves comprehensive assessment metrics such as 
R2 score, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and accuracy. R2 score quantifies 
the proportion of variance explained by the model, providing insights into its predictive power and 
goodness-of-fit. Meanwhile, MAE measures the common significance of faults amongst anticipated and 
genuine significances, offering a direct assessment of prediction accurateness. RMSE complements MAE 
by penalizing larger prediction errors more heavily, thereby capturing the model's performance across 
the entire dataset. Additionally, accuracy evaluates the model's classification performance, particularly 
relevant for categorical outcomes. By systematically comparing these metrics across different 
methodologies, we gain a nuanced understanding of their respective strengths and weaknesses in 
predicting crop yield based on the ICFA dataset. This comprehensive evaluation serves to inform 
stakeholders and decision-makers in selecting the most suitable approach for agricultural data analysis, 
ensuring optimal resource allocation and informed decision-making in agricultural practices. 
 

Table 3. Performance results of proposed framework with existing techniques 

S.No Methodology R2 Score MAE RMSE Accuracy 

1 MLDA+MRF 0.85 2.7 4.1 92% 

2 LDA+RF 0.78 3.2 4.9 88% 

3 Ensemble VNN-DNN 0.82 2.9 4.5 90% 

4 SVM 0.79 3.1 4.8 89% 

5 Naive Bayes 0.72 3.6 5.2 85% 
 

 
Figure 3. MAE, RMSE and R2 Score Comparison 

 
The table 3 presents a comprehensive performance evaluation of various methodologies for predicting 
crop yield using the Indian Chamber of Food and Agriculture (ICFA) dataset. Each methodology is 
assessed based on key metrics including R2 Score, Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE), and Accuracy. The MLDA+MRF framework achieves the highest R2 Score of 0.85, indicating that 
it explains 85% of the variance in crop yield, showcasing its superior ability to capture the underlying 
relationships in the data. Additionally, it demonstrates the lowest MAE and RMSE values of 2.7 and 4.1, 
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respectively, implying minimal prediction errors and high precision in estimating crop yield. The 
framework also achieves an impressive accuracy rate of 92%, indicating its effectiveness in correctly 
classifying crop yield outcomes. Comparatively, by Figure 3 the LDA+RF methodology yields an R2 Score 
of 0.78, with slightly higher MAE, RMSE, and lower accuracy compared to the MLDA+MRF framework. 
Ensemble VNN-DNN and SVM methodologies also exhibit strong performance with R2 Scores of 0.82 and 
0.79, respectively, along with competitive MAE, RMSE, and accuracy values. However, Naive Bayes lags 
behind with the lowest R2 Score of 0.72 and relatively higher MAE, RMSE, and lower accuracy, suggesting 
its limited effectiveness in predicting crop yield compared to the other methodologies. Overall, the 
evaluation underscores the efficacy of the MLDA+MRF framework in agricultural data analysis, offering 
promising insights for optimizing crop yield prediction and decision-making in the agricultural sector. 
 
9. CONCLUSION 
The proposed Modified Linear Discriminant Analysis (MLDA) combined with Modified Random Forest 
(MRF) framework emerges as a potent tool for predicting crop yield, particularly with the Indian 
Chamber of Food and Agriculture (ICFA) dataset. The framework achieves an impressive accuracy rate of 
92%, indicative of its robustness in estimating crop yield with high precision. This level of accuracy 
underscores the framework's efficacy in minimizing prediction errors and facilitating well-informed 
decision-making in agriculture, critical for maximizing productivity and ensuring food security. MLDA 
plays a crucial role in the framework by effectively reducing the dimensionality of the dataset and 
identifying the most influential features, while MRF harnesses the power of ensemble learning to 
construct predictive models based on the refined feature set. The seamless integration of MLDA and MRF 
enhances the framework's ability to capture intricate relationships within the data, leading to superior 
performance compared to conventional methodologies. This framework holds immense promise in 
revolutionizing agricultural data analysis, providing valuable insights for optimizing crop yield prediction, 
and contributing to the advancement of sustainable agricultural practices on a global scale. 
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