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ABSTRACT
Let G = (V(G),E(G))be a graph with p vertices and q edges. A hilbert mean labeling is an injective

function u:V(G) - {0, 1,2, ...,Hq}where Hq is the gthilbert number anqu =4(q —1)+ 1,q = 1that

. — i M(qu& if u(u) + u(v) is odd
induces a bijectionu™: E(G) - {Ijl_ljz, ...,Ijq}deflned by u*(uv) = ) £ a0+ n(0)
— if p(u) + p(v) is even

for all uv € E(G). A graph which admits such labeling is called a hilbert mean graph. In this paper, the
hilbert mean labeling of some special graphs are studied.
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1.INTRODUCTION

The paper deals with finite, undirected graphs that lack loops or multiple edges. Let G = (V, E)represent
a graph with p vertices and g edges, where terms follow Harary's [5] definitions. Unspecified terms
adhere to [1] for number theoretic terminology. A graph labeling involves assigning integers to the
vertices, edges or both under specific conditions. Vertex, edge or total labeling is determined by the
domain of the mapping. Gallian [2] maintains a dynamic survey of graph labeling regularly updated and
published by the Electronic Journal of Combinatorics. The notation of mean labeling for graphs was
introduced by S. Somasundaram and R. Ponraj [7]. The concept of hilbert mean labeling was introduced
in [8]. Also, we have referred [3],[4],[6] and [9] for my results.

2.Preliminaries
Definition 2.1:The n'” hilbert number Y, is given by the formula 4(n — 1) + 1 for n > 1. The first few
hilbert numbers arel,5,9,13,17, 21, 25, 29, 33, 37,41,45,49,53,57 etc.
Definition 2.2:Let G be a graph with p vertices and q edges. A hilbert mean labeling is an injective
function w:V(G) - {0, 1,2, ...,Hq}where Hq is the gthhilbert number anqu =4(q—1)+1,q = 1that

p@+u(@)+1
induces a bijection u*: E(G) - {Ijl, g, ..., Ijq} defined by u*(uv) = ,u(u)+/12(v)

2

for all uv € E(G). A graph which admits such labeling is called a hilbert mean graph.

if u(uw) +u(v) is odd
if u(u) + u(v) is even

3. Main Results

Theorem 3.1:M(B,,) is a hilbert mean graph where m is odd and m > 3.
Proof: Let G = M(B,),V(G) = {Wil, vrl<si < m}and

E@G) ={wyv:1<iy Smwyw;, vV, 1< i <m—1}.

We observe that G has 2m vertices and 3m — 2 edges.

Define u : V(G) - {0,1, 2, ..., H3,,,_,} as follows.

4(i; — 1) if i; is odd

<i < )=
For1 < iy < mu(w,) {4(1'1 —2)+1 if iy is even
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4(2m+i;—3)+1 ifi;isodd
ﬂ(vil) - {4(2m +i;—2) ifi; is even
Clearly,u is an injective functionand the induced bijectiveedge labelingu™ : E(G) — {Hl,ljz, ...,H3m_2}is
defined as follows.

#*(Wi1Wi1+1) = H;, 1<ip<m-1
1 (Wi viy) = Homerig 1) l1<ipsm
1 (v, viy+1) = Hameig-1) l<sip=sm-1

Thus, we get the induced edge labels as HHy s By o
Hence M (P,,) is a hilbert mean graph where m is odd and m > 3.

Example 3.2: The hilbert mean labeling ofM (P;) is given in figure 1.

Figure 1: Hilbert mean labeling of M (P;)

Theorem 3.3: VD (PB,,)is a hilbert mean graph where m is even and m > 4.
Proof:Let G = VD(B,), V(G) = {Will 1<i;<m-1,w,_4 } and
E(G) = {Wilwl-1+1: 1<i;<m-1, Wm—2W1;1—1;WmWr;1-1 }
We observe that G has m + 1 vertices and m + 1 edges.Also,N(w,,,_1) = N(W,;l_l).
Define u : V(G) - {0, 1, 2, ..., H,, 1 } as follows.
. 4(i; —1) ifi; is odd
Forlsiysm=2p(w,)= {4(1'11— D41 ifiy is even
ﬂ(Wm—l) = Hm+1 -1, .u'(Wm) = Hm+1' .U'(Wr,n—l) =Hp_4
Clearly,uis an injective function and the induced bijective edge labelingu® : E(G) — {Ijl,ljz, ...,Ijm+1}is
defined as follows.
,u*(wl-lwilﬂ) =H; 1<i;<m-3
”*(Wm—zwm—l) = Hm—luu*(wm—lwm) = Hm+1
M*(mer,n—l ) = Hm , #*(Wm—ZWr,n—l ) = Hm—Z
Thus, we get the induced edge labels as H,H, ol
Hence VD(B,,) is a hilbert mean graph where m is even and m > 4.

Example 3.4:The hilbert mean labeling of VD (P,) is given in figure 2.

ot
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(1)} 17 g o (] 1
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Figure 2: Hilbert mean labeling of VD (P,)
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Theorem 3.5: G = B,,(Qs;)where mis even is a hilbert mean graph.

Proof: LetV(G) = {Wil: 1<iismx 1< <2my:1<i < m} and

E(G) = {Wilwi1+1: 1< =m—1Y;, %1, Yiy X2ip Wiy X211, Wiy X4, 1 S g < m}.
We observe that G has 4m vertices and 5m — 1 edges.

Define u : V(G) - {0,1,2, ..., Hg,, _1 } as follows.

) 200, — 1)+ 16 if i;is odd
<i < )=
Forl <i; < m,ﬂ(Wll) {20(11 _ 2) +17 if i; is even
(x ) _ {20(1‘1 -D+1 if iy is odd
HO20-1) = 1200, —2) +25  if iy is even
M X2i ) = 20(i; —2) + 33 if i; is even
(200, —1) if iy is odd
”(yil) - {ZO(il —-2)+32 if iy is even
Clearly,u is an injective function and the induced bijectiveedge labeling is defined as follows.
1 (Wi, Wiy 41) = Hsiy—1)4s 1<ip=sm-1
For1<i; <m,
. HS(i1—1)+3 lf il iS Odd
u (Wi1x2i1—1) = {HS(i1—2)+6 if i; is even
. Hs (i, —1)+4 if i; is odd
U (W2i1x2i1) - {HS(i1—2)+7 if i; is even
. Hs(i,—1)+1 if i; is odd
u (yi1X2i1—1) - {HS(i1—2)+8 if i; is even
. Hs (i —1)42 if i; is odd
W (V2i X21,) = Hsy-2)49 if i; is even

Thus, we get the induced edge labels as H,H, ey
Hence G = B, (Qs;)where m is even is a hilbert mean graph.

Theorem 3.6: G = P,(Qs,,) where m > lis a hilbert mean graph.

Proof: Let G = P,(Qs,,),V(G) = {yil: 1<ip<2m+2,x,;:1<i; < 4m} and

E(G) = {xpi,-1¥i, 1 1S iy SmMxp; ¥ 1S iy SmXp Y41 0 1S SmL X ¥y 1< <

M, Xomig+1Ym+ig+10 L Sl S M, X 4 Vmaig42t L S U S M Xy 11 Ymaig+2: 1 S i S M, Y1 Vma2)
We observe that G has 6m + 2 vertices and 8m + 1 edges.

Define u : V(G) - {0, 1, 2, ..., Hg, 41} as follows.

u(yiy,) = 163 — 1), 1<i<m+1
E(Vmtiir1) = 16(m+ i — 1) +1, 1< <m+1
) 8(i; —1) +1 if i, is odd
<i < )=
For1<iy < 2mpu(x, ) {8(1’1 -2)+9 if iy is even
(x ) _{8(2m+i1)+1 if iy is odd
HXam+in) = 1g(2m + i) if ijis even

Clearly,u is an injective function and the inducedbijective edge labelingis defined as follows.
Forl <i; <m,

ll*(x2i1—1)’i1) = H4(i1—1)+1: Ii*(le'l)’il) = H4(i1—1)+2

1 (20, 21Y141) = Haqiy—y+30 1 (%20, i,401) = Hagig—1)+4

:u*(x2m+i1ym+i1+1) = Hym+ij-1)+20 M*(x2m+i1+1ym+i1+1) = Hytm+i;—1)+3

:u*(x2m+i1ym+i1+2) = Hym+ij—1)+4» M*(x2m+i1+1ym+i1+2) = Hym+ip+1

I Om+1Ym+2) = Hamsq
Thus, we get the induced edge labels as H,Hy o Hgp i

Hence G = P,(Qs,,)where m > 1 is a hilbert mean graph.

Example 3.7: The hilbert mean labeling ofP, (Q's;) is given in figure 3.
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Figure 3: Hilbert mean labeling ofP, (Qs,)

Theorem 3.8: Alternate Quadrilateral Snake graph G = A(C})is a hilbert mean graph where n is even.
Proof: Let G = A(C}),V(G) = {w;,,x;,:1 <i; <n}and

E(G) = {xi1Wi11x2i1W2i1—1v xi1 Wi1+1’ x2i1W2i1: 1< il < n}
We observe that G has 2n vertices and 2n + 1edges.Define u : V(G) — {0, 1,2, ..., Hy, 1} as follows.

' 20(i; — 1) +1 ifijis odd
< < . =

For1<i < n'll(qu—l) {ZO(il —-2)+25 if iy is even
_(20(i; -1 +9 ifi; is odd
#(Wzil) = {ZO(il —-2)+32 ifi; is even
() = {20(1‘1 -1 +16 ifi; is odd
H\X2i, ) = 20(i; —2)+ 33 ifi; is even
_(20(i; - 1) ifi; is odd
ﬂ(x2i1—1) - {20(1‘1 -2)+17 ifi; is even

Clearly,u is an injective function and the inducedbijective edge labeling u* : E(G) = {Hl,ljz, ...,H2n+1}is
defined as follows.

1 (i, Wiy ) = Hs iy —1y+1 1<i=n
W (%20, Wai,—1) = Hs(iy-1)43 1<i<n
1 (x2i,-1 Wiy ) = Hs(y—1y42 1<ip<n
W (%20, Wi, ) = Hs(iy—1)+4 1<i<n

Thus, we get the induced edge labels as §,, i, ..., H,,, ;-
Hence Alternate Quadrilateral Snake graph G = A(C})is a hilbert mean graph where n is even.

Example 3.9:The hilbert mean labelling of A(C2)is given in figure 4.

Figure 4: Hilbert mean labelling of A(C#)
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Theorem 3.10: The Bull graph is a Hilbert mean graph.
Proof: Let us denote Bull graph by BG.Let V(BG) = {wy,w,, -, ws} and
E(BG) = {wilwl-lﬂ: 1<i; <4 wzwn_l}. We observe that BG has 5 vertices and 5 edges.
Define u : V(BG) - {0, 1,2, ..., Hs } as follows.
ulwy) = H — 1, u(wy) = Hy

] Hy, ifi; is odd
For3 < iy < 5u(w;,) = {Hl-lﬂ -1 if i; is even
Clearly,u is an injective function and the induced bijective edge labeling u* : E(BG) — {Hl'HZ‘ ...,Hs}is
defined as follows.

(Wi Wigr1) = Hyolp = 12 (Wi poWiy43) = Higarin = 1.2 0 (wpwy) = Hs

Thus, we get the induced edge labels as Hl, Hz, . Hs-
Hence the Bull graph is a hilbert mean graph.

Example 3.11: The hilbert mean labeling of BGis given in figure 5.

Figure 5: Hilbert mean labeling of BG

Theorem 3.12: The splitting graph Spl(B,,)is a hilbert mean graph, where m = 4 and m is even.
Proof: Let G = Spl(B,),V(G) = {Wil,xl-l: 1<i; <m}and
E(G) = {xil xi1+llWi1 xi1+llxi1 Wi1+l i1 < il =m- 1}
We observe that G has 2m vertices and 3m — 3 edges.
Define u : V(G) - {0, 1, 2, ..., H3,,_3} as follows.

. 123, — 1) if iy is odd
< < . =
Forl <t < mu(w,) {12(1'1 —2)+9 if i; is even
(x,) = {12(1‘1 ~1)+8 if iy is odd
M) = 1120, - 2) +1 if i, is even

Clearly,u is an injective function and the induced bijective edge labelingu* : E(G) — {Hl,ljz, ...,Ij3m_3}is
defined as follows.
H3(i1—1)+3 if i1 is odd

For1<i; <m-— LM*(xi1 Wi1+1) = {H3(l.1_2)+4 if iy is even

X Hs i —1)+1 ifi; is odd
W (wy x41) = {H3(i1_2)+6 if iy is even
i H3(,—1)42 ifi; is odd
ACEE {Hg(i1_2)+5 ifi; is even

Thus, we get the induced edge labels as H,H, o Hypy s
Hence the splitting graph Spl(P,,)is a hilbert mean graph, where m > 4 andm is even.

Theorem 3.13: An alternate trianglular snake graph ATS(P,)is a hilbert mean graph, where n > 4 and
nis even.

Proof: Let G = ATS(R,)V(G) = {x,: 1 < iy Sny,:1<i; <2 and
n—2
E(G) = {xilxi1+1 01 < l]_ <n- 1,x2i1yi1 U x2i1+1yi1: 1 < ll < T}

We observe that G has 37;—_2 vertices and 2n — 3 edges.
Define u : V(G) — {0,1,2, ..., H,,_3}as follows.
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8(i1—1) ifiy is odd
8(i;—2)+1 ifi;iseven
. . n—2
ply,) =16 -D+9 1< <——

Clearly,u is an injective function and the induced bijective edge labelingu” is defined as follows.

FOI‘ 1 S il S n, 'u'(xil) = {

”*(xi1xi1+1) = Hy4,-1)+1 1<ii4<n-1
* . )

K (x2i1 yil) = Hyy-1)42 1<i < "T
* , -2

W (20, 4191) = Hagiy-14a l<sh=——

Thus, we get the induced edge labels as H,Hy s Hyp g
Hence the alternate trianglular snake graph ATS(P,)is a hilbert mean graph, where n > 4and n is even.

Example 3.14: The hilbert mean labeling of ATS (Py) is given in figure 6.

e 1=
—_

Figure 6: Hilbert mean labeling ofATS (Pg)

Theorem 3.15: A double alternate triangular snake graph DATS(P,) is a hilbert mean graph, where n >
4and nis even.
n—2

Proof: Let G = DATS(B,),V(G) = {xil: 1< sny;1<i< 0 Zi 1<i; < nz;z}andE(G) =

{xilxilﬂ < Ssn—1U x5y, VU X1 +1Yiy U X1y Ziy U Xoiy 41 2y 1<i < T} We observe that G
has2n — 2vertices and 3n — 5 edges.
Define u : V(G) - {0, 1, 2, ..., H;,,_s }as follows.
12 (i, — 1) ifiyis odd
12(i, —2)+1 if i; is even
For1<i; < "Z;Z.M(yil) =240, — 1D +9, pu(z,) =240, - 1) + 17
Clearly,u is an injective function and the induced bijective edge labelingu* is defined as follows.
(i, Xy 41 ) = Hagy—1)41 1<ip=sn-1

. -2 X
Forl<i < nT,# (x26,9i,) = Hoqiy—1y+20 B (X2i,+15i,) = Ho(iy-1)+5

1 (x20,21,) = Hoy—1y43 K" (X21,41 21, ) = Hogi,—1)+6

Thus, we get the induced edge labels as H,H, -l s

Hence the double alternate triangular snake graph DATS(B,) is ahilbert mean graph,where n > 4and n is
even.

Forl1<i < n,u(xil) = {

Example 3.16: The hilbert mean labeling of DATS(P,) is given in figure 7.

n

48 49
T5 49

Z1 Za

Figure 7: Hilbert mean labeling of DATS (Ps)
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4. CONCLUSION
In this paper, we have investigated the hilbert mean labelling of certain special graphs. This work
contributes several new results to the theory of graph labeling.
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