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ABSTRACT 
Let 𝐺 = (𝑉 𝐺 , 𝐸 𝐺 )be a graph with 𝑝 vertices and 𝑞 edges.  A hilbert mean labeling is an injective 

function 𝜇: 𝑉 𝐺 →  0, 1, 2, … , Ӈ
𝑞
 where Ӈ

𝑞 
is the 𝑞thhilbert number andӇ

𝑞
= 4 𝑞 − 1 + 1,𝑞 ≥ 1that 

induces a bijection𝜇∗: 𝐸 𝐺 →  Ӈ1 , Ӈ2, … , Ӈ𝑞 defined by 𝜇∗ 𝑢𝑣 =   

𝜇 𝑢 +𝜇 𝑣 +1

2
   if  𝜇 𝑢 + 𝜇 𝑣  𝑖𝑠 𝑜𝑑𝑑 

𝜇 𝑢 +𝜇 𝑣 

2
         if  𝜇 𝑢 + 𝜇 𝑣  𝑖𝑠 𝑒𝑣𝑒𝑛

  

for all 𝑢𝑣 ∈ 𝐸 𝐺 .  A graph which admits such labeling is called a hilbert mean graph.  In this paper, the 
hilbert mean labeling of some special graphs are studied.   
 
Keywords: Hilbert numbers, Hilbert mean labeling, Hilbert mean graph.  
 
1.INTRODUCTION 
The paper deals with finite, undirected graphs that lack loops or multiple edges. Let 𝐺 =  𝑉, 𝐸 represent 
a graph with 𝑝 vertices and 𝑞 edges, where terms follow Harary's [5] definitions. Unspecified terms 
adhere to [1] for number theoretic terminology. A graph labeling involves assigning integers to the 
vertices, edges or both under specific conditions. Vertex, edge or total labeling is determined by the 
domain of the mapping. Gallian [2] maintains a dynamic survey of graph labeling regularly updated and 
published by the Electronic Journal of Combinatorics. The notation of mean labeling for graphs was 
introduced by S. Somasundaram and R. Ponraj [7].  The concept of hilbert mean labeling was introduced 
in [8].  Also, we have referred [3],[4],[6] and [9] for my results. 
 
2.Preliminaries 
Definition 2.1:The 𝑛𝑡ℎ  hilbert number Ӈ𝑛  is given by the formula 4 𝑛 − 1 + 1 for 𝑛 ≥ 1. The first few 

hilbert numbers are1,5,9,13,17, 21, 25, 29, 33, 37,41,45,49,53,57 etc. 
Definition 2.2:Let 𝐺 be a graph with 𝑝 vertices and 𝑞 edges.  A hilbert mean labeling is an injective 

function 𝜇: 𝑉 𝐺 →  0, 1, 2, … , Ӈ𝑞 where Ӈ𝑞  is the 𝑞thhilbert number andӇ𝑞 = 4 𝑞 − 1 + 1, 𝑞 ≥ 1that 

induces a bijection 𝜇∗: 𝐸 𝐺 →  Ӈ
1

, Ӈ
2

, … , Ӈ
𝑞
  defined by 𝜇∗ 𝑢𝑣 =   

𝜇 𝑢 +𝜇 𝑣 +1

2
   if  𝜇 𝑢 + 𝜇 𝑣  𝑖𝑠 𝑜𝑑𝑑 

𝜇 𝑢 +𝜇 𝑣 

2
         if  𝜇 𝑢 + 𝜇 𝑣  𝑖𝑠 𝑒𝑣𝑒𝑛

  

for all 𝑢𝑣 ∈ 𝐸 𝐺 .  A graph which admits such labeling is called a hilbert mean graph. 
 
3. Main Results 
Theorem 3.1:𝑀(𝑃𝑚 ) is a hilbert mean graph where 𝑚 is odd and 𝑚 ≥ 3. 

Proof: Let 𝐺 = 𝑀 𝑃𝑚  ,𝑉 𝐺 =  𝑤𝑖1 , 𝑣𝑖1 : 1 ≤ 𝑖1 ≤ 𝑚 and  

𝐸 𝐺 =  𝑤𝑖1𝑣𝑖1 : 1 ≤ 𝑖1 ≤ 𝑚,𝑤𝑖1𝑤𝑖1+1
, 𝑣𝑖1𝑣𝑖1+1

: 1 ≤ 𝑖1 ≤ 𝑚 − 1 .  

We observe that 𝐺 has 2𝑚 vertices and 3𝑚 − 2 edges. 
Define 𝜇 ∶ 𝑉 𝐺 →  0, 1, 2, … , 𝐻3𝑚−2  as follows. 

For 1 ≤ 𝑖1 ≤ 𝑚,𝜇 𝑤𝑖1 =   
4  𝑖1 − 1                             if 𝑖1 𝑖𝑠 𝑜𝑑𝑑 

4 𝑖1 − 2 + 1                     if 𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
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𝜇 𝑣𝑖1 =   
4  2𝑚 + 𝑖1 − 3 + 1       if 𝑖1  𝑖𝑠 𝑜𝑑𝑑 

4 2𝑚 + 𝑖1 − 2                  if 𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

Clearly,𝜇 is an injective functionand the induced bijectiveedge labeling𝜇∗ ∶ 𝐸 𝐺 →  Ӈ1, Ӈ2, … , Ӈ3𝑚−2 is 

defined as follows.  

𝜇∗ 𝑤𝑖1𝑤𝑖1+1 = 𝐻𝑖1                                      1 ≤ 𝑖1 ≤ 𝑚 − 1 

𝜇∗ 𝑤𝑖1
𝑣𝑖1 = 𝐻 𝑚+𝑖1−1                              1 ≤ 𝑖1 ≤ 𝑚 

𝜇∗ 𝑣𝑖1𝑣𝑖1+1 = 𝐻 2𝑚+𝑖1−1                         1 ≤ 𝑖1 ≤ 𝑚 − 1 

Thus, we get the induced edge labels as Ӈ
1

, Ӈ
2

, … , Ӈ
3𝑚−2

. 

Hence 𝑀(𝑃𝑚 ) is a hilbert mean graph where 𝑚 is odd and 𝑚 ≥ 3. 
 
Example 3.2:  The hilbert mean labeling of𝑀(𝑃3) is given in figure 1. 
 

 
Figure 1: Hilbert mean labeling of𝑀(𝑃3) 

 
Theorem 3.3: 𝑉𝐷(𝑃𝑚 )is a hilbert mean graph where 𝑚 is even and 𝑚 ≥ 4. 

Proof:Let 𝐺 = 𝑉𝐷 𝑃𝑚  , 𝑉 𝐺 =  𝑤𝑖1 : 1 ≤ 𝑖1 ≤ 𝑚 − 1,𝑤𝑚−1 
′   and  

𝐸 𝐺 =  𝑤𝑖1𝑤𝑖1+1: 1 ≤ 𝑖1 ≤ 𝑚 − 1,𝑤𝑚−2𝑤𝑚−1 
′ , 𝑤𝑚𝑤𝑚−1 

′  .  

We observe that 𝐺 has 𝑚 + 1 vertices and 𝑚 + 1 edges.Also,𝑁 𝑤𝑚−1 = 𝑁 𝑤𝑚−1
′  .  

Define 𝜇 ∶ 𝑉 𝐺 →  0, 1, 2, … , 𝐻𝑚+1  as follows. 

For 1 ≤ 𝑖1 ≤ 𝑚 − 2,𝜇 𝑤𝑖1 =   
4  𝑖1 − 1                if 𝑖1  𝑖𝑠 𝑜𝑑𝑑 

4 𝑖1 − 2 + 1         if 𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇 𝑤𝑚−1 = 𝐻𝑚+1 − 1, 𝜇 𝑤𝑚  = 𝐻𝑚+1 , 𝜇 𝑤𝑚−1 
′  = 𝐻𝑚−1 

Clearly,𝜇is an injective function and the induced bijective edge labeling𝜇∗ ∶ 𝐸 𝐺 →  Ӈ
1

, Ӈ
2

, … , Ӈ
𝑚+1

 is 

defined as follows. 

𝜇∗ 𝑤𝑖1𝑤𝑖1+1 = 𝐻𝑖1                          1 ≤ 𝑖1 ≤ 𝑚 − 3 

𝜇∗ 𝑤𝑚−2𝑤𝑚−1 = 𝐻𝑚−1,𝜇∗ 𝑤𝑚−1𝑤𝑚  = 𝐻𝑚+1 

𝜇∗ 𝑤𝑚𝑤𝑚−1 
′  = 𝐻𝑚 , 𝜇

∗ 𝑤𝑚−2𝑤𝑚−1 
′  = 𝐻𝑚−2  

Thus, we get the induced edge labels as Ӈ
1

, Ӈ
2

, … , Ӈ
𝑚+1

. 

Hence 𝑉𝐷 𝑃𝑚   is a hilbert mean graph where 𝑚 is even and 𝑚 ≥ 4. 
 
Example 3.4:The hilbert mean labeling of𝑉𝐷(𝑃4) is given in figure 2. 
 

 
Figure 2: Hilbert mean labeling of𝑉𝐷(𝑃4) 
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Theorem 3.5: 𝐺 = 𝑃𝑚 (𝑄𝑠1)where 𝑚is even is a hilbert mean graph. 

Proof:  Let 𝑉 𝐺 =  𝑤𝑖1 : 1 ≤ 𝑖1 ≤ 𝑚, 𝑥𝑖1 : 1 ≤ 𝑖1 ≤ 2𝑚, 𝑦𝑖1 : 1 ≤ 𝑖1 ≤ 𝑚  and  

𝐸 𝐺 =  𝑤𝑖1
𝑤𝑖1+1: 1 ≤ 𝑖1 ≤ 𝑚 − 1, 𝑦𝑖1𝑥2𝑖1−1, 𝑦𝑖1𝑥2𝑖1

, 𝑤𝑖1
𝑥2𝑖1−1, 𝑤𝑖1

𝑥2𝑖1
: 1 ≤ 𝑖1 ≤ 𝑚 .  

We observe that 𝐺 has 4𝑚 vertices and 5𝑚 − 1 edges. 
Define 𝜇 ∶ 𝑉 𝐺 →  0, 1, 2, … , 𝐻5𝑚−1  as follows. 

For1 ≤ 𝑖1 ≤ 𝑚,𝜇 𝑤𝑖1
 =  

20 𝑖1 − 1 + 16                if  𝑖1𝑖𝑠 𝑜𝑑𝑑   

20 𝑖1 − 2 + 17                if  𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇 𝑥2𝑖1−1 =  
20 𝑖1 − 1 + 1             if  𝑖1  𝑖𝑠 𝑜𝑑𝑑  

20 𝑖1 − 2 + 25          if  𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇 𝑥2𝑖1 =  
20 𝑖1 − 1 + 9                 if  𝑖1  𝑖𝑠 𝑜𝑑𝑑 

20 𝑖1 − 2 + 33              if  𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇 𝑦𝑖1 =  
20 𝑖1 − 1                            if  𝑖1 𝑖𝑠 𝑜𝑑𝑑 

20 𝑖1 − 2 + 32                if  𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
  

Clearly,𝜇 is an injective function and the induced bijectiveedge labeling is defined as follows. 

𝜇∗ 𝑤𝑖1𝑤𝑖1+1 = 𝐻5 𝑖1−1 +5                  1 ≤ 𝑖1 ≤ 𝑚 − 1 

For 1 ≤ 𝑖1 ≤ 𝑚, 

𝜇∗ 𝑤𝑖1𝑥2𝑖1−1 =  
𝐻5 𝑖1−1 +3                if  𝑖1  𝑖𝑠 𝑜𝑑𝑑  

𝐻5 𝑖1−2 +6                if  𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇∗ 𝑤2𝑖1𝑥2𝑖1 =  
𝐻5 𝑖1−1 +4                  if  𝑖1  𝑖𝑠 𝑜𝑑𝑑    

𝐻5 𝑖1−2 +7                  if  𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛  
  

𝜇∗ 𝑦𝑖1𝑥2𝑖1−1 =  
𝐻5 𝑖1−1 +1                 if  𝑖1  𝑖𝑠 𝑜𝑑𝑑 

𝐻5 𝑖1−2 +8                  if  𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇∗ 𝑦2𝑖1𝑥2𝑖1 =  
𝐻5 𝑖1−1 +2                   if  𝑖1  𝑖𝑠 𝑜𝑑𝑑  

𝐻5 𝑖1−2 +9                   if  𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

Thus, we get the induced edge labels as Ӈ1, Ӈ2, … , Ӈ5𝑚−1 . 

Hence 𝐺 = 𝑃𝑚  𝑄𝑠1 where 𝑚 is even is a hilbert mean graph.  
 
Theorem 3.6:  𝐺 = 𝑃2 𝑄𝑠𝑚   where 𝑚 ≥ 1is a hilbert mean graph. 

Proof:  Let 𝐺 = 𝑃2 𝑄𝑠𝑚  , 𝑉 𝐺 =  𝑦𝑖1 : 1 ≤ 𝑖1 ≤ 2𝑚 + 2, 𝑥𝑖1 : 1 ≤ 𝑖1 ≤ 4𝑚  and  

𝐸 𝐺 =  𝑥2𝑖1−1𝑦𝑖1 ∶ 1 ≤ 𝑖1 ≤ 𝑚, 𝑥2𝑖1𝑦𝑖1 : 1 ≤ 𝑖1 ≤ 𝑚, 𝑥2𝑖1−1𝑦𝑖1+1 ∶ 1 ≤ 𝑖1 ≤ 𝑚 , 𝑥2𝑖1𝑦𝑖1+1: 1 ≤ 𝑖1 ≤

𝑚, 𝑥2𝑚+𝑖1+1𝑦𝑚+𝑖1+1: 1 ≤ 𝑖1 ≤ 𝑚, 𝑥2𝑚+𝑖1𝑦𝑚+𝑖1+2: 1 ≤ 𝑖1 ≤ 𝑚, 𝑥2𝑚+𝑖1+1𝑦𝑚+𝑖1+2: 1 ≤ 𝑖1 ≤ 𝑚, 𝑦𝑚+1𝑦𝑚+2   

We observe that 𝐺 has 6𝑚 + 2 vertices and 8𝑚 + 1 edges. 
Define 𝜇 ∶ 𝑉 𝐺 →  0, 1, 2, … , 𝐻8𝑚+1  as follows. 

𝜇 𝑦𝑖1 =  16 𝑖1 − 1 ,   1 ≤ 𝑖1 ≤ 𝑚 + 1 

𝜇 𝑦𝑚+𝑖1+1 =  16 𝑚 + 𝑖1 − 1 + 1,  1 ≤ 𝑖1 ≤ 𝑚 + 1 

For 1 ≤ 𝑖1 ≤ 2𝑚,𝜇 𝑥𝑖1 =  
8 𝑖1 − 1 + 1                            if  𝑖1  𝑖𝑠 𝑜𝑑𝑑 

8 𝑖1 − 2 + 9                            if  𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇 𝑥2𝑚+𝑖1 =  
8 2𝑚 + 𝑖1 + 1                        if  𝑖1  𝑖𝑠 𝑜𝑑𝑑 

8 2𝑚 + 𝑖1                                  if  𝑖1𝑖𝑠 𝑒𝑣𝑒𝑛
  

Clearly,𝜇 is an injective function and the inducedbijective edge labelingis defined as follows. 
For 1 ≤ 𝑖1 ≤ 𝑚, 

𝜇∗ 𝑥2𝑖1−1𝑦𝑖1 = 𝐻4 𝑖1−1 +1,  𝜇∗ 𝑥2𝑖1𝑦𝑖1 = 𝐻4 𝑖1−1 +2 

𝜇∗ 𝑥2𝑖1−1𝑦𝑖1+1 = 𝐻4 𝑖1−1 +3,  𝜇∗ 𝑥2𝑖1𝑦𝑖1+1 = 𝐻4 𝑖1−1 +4   

𝜇∗ 𝑥2𝑚+𝑖1
𝑦𝑚+𝑖1+1 = 𝐻4 𝑚+𝑖1−1 +2,  𝜇∗ 𝑥2𝑚+𝑖1+1𝑦𝑚+𝑖1+1 = 𝐻4 𝑚+𝑖1−1 +3 

𝜇∗ 𝑥2𝑚+𝑖1
𝑦𝑚+𝑖1+2 = 𝐻4 𝑚+𝑖1−1 +4,  𝜇∗ 𝑥2𝑚+𝑖1+1𝑦𝑚+𝑖1+2 = 𝐻4 𝑚+𝑖1 +1 

𝜇∗ 𝑦𝑚+1𝑦𝑚+2 = 𝐻4𝑚+1 
Thus, we get the induced edge labels as Ӈ1, Ӈ2, … , Ӈ8𝑚+1 . 

Hence 𝐺 = 𝑃2 𝑄𝑠𝑚  where 𝑚 ≥ 1 is a hilbert mean graph. 
 
Example 3.7: The hilbert mean labeling of𝑃2 𝑄𝑠2  is given in figure 3. 
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Figure 3: Hilbert mean labeling of𝑃2 𝑄𝑠2  

 
Theorem 3.8:  Alternate Quadrilateral Snake graph 𝐺 = 𝐴 𝐶4

𝑛 is a hilbert mean graph where 𝑛 is even. 

Proof:  Let 𝐺 = 𝐴(𝐶4
𝑛),𝑉 𝐺 =  𝑤𝑖1

, 𝑥𝑖1 : 1 ≤ 𝑖1 ≤ 𝑛  and  

𝐸 𝐺 =  𝑥𝑖1𝑤𝑖1 , 𝑥2𝑖1𝑤2𝑖1−1, 𝑥𝑖1  𝑤𝑖1+1, 𝑥2𝑖1𝑤2𝑖1 : 1 ≤ 𝑖1 ≤ 𝑛  

We observe that 𝐺 has 2𝑛 vertices and 2𝑛 + 1edges.Define 𝜇 ∶ 𝑉 𝐺 →  0, 1, 2, … , 𝐻2𝑛+1  as follows. 

For 1 ≤ 𝑖1 ≤ 𝑛,𝜇 𝑤2𝑖1−1 =   
20 𝑖1 − 1 + 1                if 𝑖1𝑖𝑠 𝑜𝑑𝑑   

20 𝑖1 − 2 + 25             if 𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛 
  

𝜇 𝑤2𝑖1
 =   

20 𝑖1 − 1 + 9                   if 𝑖1  𝑖𝑠 𝑜𝑑𝑑   

20 𝑖1 − 2 + 32                if 𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛  
  

𝜇 𝑥2𝑖1 =   
20 𝑖1 − 1 + 16                 if 𝑖1  𝑖𝑠 𝑜𝑑𝑑 

20 𝑖1 − 2 + 33                if 𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇 𝑥2𝑖1−1 =   
20 𝑖1 − 1                        if 𝑖1  𝑖𝑠 𝑜𝑑𝑑 

20 𝑖1 − 2 + 17            if 𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

Clearly,𝜇 is an injective function and the inducedbijective edge labeling 𝜇∗ ∶ 𝐸 𝐺 →  Ӈ1, Ӈ2, … , Ӈ2𝑛+1 is 

defined as follows. 

𝜇∗ 𝑥𝑖1𝑤𝑖1 = 𝐻5 𝑖1−1 +1                        1 ≤ 𝑖1 ≤ 𝑛 

𝜇∗ 𝑥2𝑖1𝑤2𝑖1−1 = 𝐻5 𝑖1−1 +3                 1 ≤ 𝑖1 ≤ 𝑛 

𝜇∗ 𝑥2𝑖1−1  𝑤2𝑖1 = 𝐻5 𝑖1−1 +2               1 ≤ 𝑖1 ≤ 𝑛 

𝜇∗ 𝑥2𝑖1
𝑤2𝑖1

 = 𝐻5 𝑖1−1 +4                   1 ≤ 𝑖1 ≤ 𝑛 

Thus, we get the induced edge labels as Ӈ1, Ӈ2, … , Ӈ2𝑛+1. 

Hence Alternate Quadrilateral Snake graph 𝐺 = 𝐴 𝐶4
𝑛 is a hilbert mean graph where 𝑛 is even. 

 
Example 3.9:The hilbert mean labelling of𝐴 𝐶4

2 is given in figure 4. 
 

 
Figure 4: Hilbert mean labelling of 𝐴 𝐶4

2  
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Theorem 3.10:  The Bull graph is a Hilbert mean graph. 
Proof: Let us denote Bull graph by 𝐵𝐺.Let 𝑉 𝐵𝐺 =  𝑤1 , 𝑤2 , ⋯ , 𝑤5  and  

𝐸 𝐵𝐺 =  𝑤𝑖1𝑤𝑖1+1: 1 ≤ 𝑖1 ≤ 4,𝑤2𝑤𝑛−1 . We observe that 𝐵𝐺 has 5 vertices and 5 edges. 

Define 𝜇 ∶ 𝑉 𝐵𝐺 →  0, 1, 2, … , 𝐻5  as follows. 
𝜇 𝑤1 =  𝐻1 − 1,         𝜇 𝑤2 =  𝐻1  

For 3 ≤ 𝑖1 ≤ 5,𝜇 𝑤𝑖1 =   
𝐻𝑖1                         if 𝑖1  𝑖𝑠 𝑜𝑑𝑑 

𝐻𝑖1+1 − 1             if 𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
  

Clearly,𝜇 is an injective function and the induced bijective edge labeling 𝜇∗ ∶ 𝐸 𝐵𝐺 →  Ӈ1, Ӈ2, … , Ӈ5 is 

defined as follows. 

𝜇∗ 𝑤𝑖1𝑤𝑖1+1 = 𝐻𝑖1 , 𝑖1 = 1,2     𝜇∗ 𝑤𝑖1+2𝑤𝑖1+3 = 𝐻𝑖1+3, 𝑖1 = 1,2      𝜇∗ 𝑤2𝑤4 = 𝐻3  

Thus, we get the induced edge labels as Ӈ
1

, Ӈ
2

, … , Ӈ
5

. 

Hence the Bull graph is a hilbert mean graph. 
 
Example 3.11: The hilbert mean labeling of𝐵𝐺is given in figure 5. 
 

 
Figure 5: Hilbert mean labeling of 𝐵𝐺 

 
Theorem 3.12:  The splitting graph 𝑆𝑝𝑙 𝑃𝑚  is a hilbert mean graph, where 𝑚 ≥ 4 𝑎𝑛𝑑 𝑚 is even.  

Proof:  Let 𝐺 = 𝑆𝑝𝑙(𝑃𝑚 ),𝑉 𝐺 =  𝑤𝑖1 , 𝑥𝑖1 : 1 ≤ 𝑖1 ≤ 𝑚  and  

𝐸 𝐺 =  𝑥𝑖1  𝑥𝑖1+1, 𝑤𝑖1  𝑥𝑖1+1, 𝑥𝑖1  𝑤𝑖1+1 ∶  1 ≤ 𝑖1 ≤ 𝑚 − 1  

We observe that 𝐺 has 2𝑚 vertices and 3𝑚 − 3 edges.  
Define 𝜇 ∶ 𝑉 𝐺 →  0, 1, 2, … , 𝐻3𝑚−3  as follows. 

For 1 ≤ 𝑖1 ≤ 𝑚,𝜇 𝑤𝑖1 =   
12 𝑖1 − 1                           if 𝑖1  𝑖𝑠 𝑜𝑑𝑑  

12 𝑖1 − 2 + 9                  if 𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇 𝑥𝑖1 =   
12 𝑖1 − 1 + 8                  if 𝑖1 𝑖𝑠 𝑜𝑑𝑑  

12 𝑖1 − 2 + 1                  if 𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
  

Clearly,𝜇 is an injective function and the induced bijective edge labeling𝜇∗ ∶ 𝐸 𝐺 →  Ӈ
1

, Ӈ
2

, … , Ӈ
3𝑚−3

 is 

defined as follows. 

For 1 ≤ 𝑖1 ≤ 𝑚 − 1,𝜇∗ 𝑥𝑖1  𝑤𝑖1+1 =   
𝐻3 𝑖1−1 +3             if 𝑖1  𝑖𝑠 𝑜𝑑𝑑 

𝐻3 𝑖1−2 +4            if 𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇∗ 𝑤𝑖1  𝑥𝑖1+1 =   
𝐻3 𝑖1−1 +1               if 𝑖1  𝑖𝑠 𝑜𝑑𝑑 

𝐻3 𝑖1−2 +6                if 𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇∗ 𝑥𝑖1  𝑥𝑖1+1 =   
𝐻3 𝑖1−1 +2                 if 𝑖1  𝑖𝑠 𝑜𝑑𝑑 

𝐻3 𝑖1−2 +5                if 𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛
  

Thus, we get the induced edge labels as Ӈ1, Ӈ2, … , Ӈ3𝑚−3 . 

Hence the splitting graph 𝑆𝑝𝑙(𝑃𝑚 )is a hilbert mean graph, where 𝑚 ≥ 4 and𝑚 is even.  
 
Theorem 3.13: An alternate trianglular snake graph 𝐴𝑇𝑆(𝑃𝑛)is a hilbert mean graph, where 𝑛 ≥ 4 and 
𝑛is even. 

Proof: Let 𝐺 = 𝐴𝑇𝑆(𝑃𝑛),𝑉(𝐺) =  𝑥𝑖1 : 1 ≤ 𝑖1 ≤ 𝑛, 𝑦𝑖1 : 1 ≤ 𝑖1 ≤
𝑛−2

2
  and  

𝐸(𝐺) =  𝑥𝑖1𝑥𝑖1+1 : 1 ≤ 𝑖1 ≤ 𝑛 − 1, 𝑥2𝑖1𝑦𝑖1 ∪ 𝑥2𝑖1+1𝑦𝑖1 : 1 ≤ 𝑖1 ≤
𝑛 − 2

2
  

We observe that 𝐺 has  
3𝑛−2

2
  vertices and 2𝑛 − 3 edges. 

Define 𝜇 ∶ 𝑉 𝐺 →  0, 1, 2, … , 𝐻2𝑛−3 as follows. 
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For 1 ≤ 𝑖1 ≤ 𝑛,  𝜇 𝑥𝑖1 =   
8  𝑖1 − 1             if 𝑖1 𝑖𝑠 𝑜𝑑𝑑 

8  𝑖1 − 2 + 1     if 𝑖1 𝑖𝑠 𝑒𝑣𝑒𝑛
  

𝜇 𝑦𝑖1 = 16 𝑖1 − 1 + 9        1 ≤ 𝑖1 ≤
𝑛 − 2

2
 

Clearly,𝜇 is an injective function and the induced bijective edge labeling𝜇∗ is defined as follows. 

𝜇∗ 𝑥𝑖1𝑥𝑖1+1  = 𝐻2 𝑖1−1 +1                             1 ≤ 𝑖1 ≤ 𝑛 − 1 

𝜇∗ 𝑥2𝑖1  𝑦𝑖1 = 𝐻4 𝑖1−1 +2                               1 ≤ 𝑖1 ≤
𝑛−2

2
    

𝜇∗ 𝑥2𝑖1+1𝑦𝑖1 = 𝐻4 𝑖1−1 +4                          1 ≤ 𝑖1 ≤
𝑛 − 2

2
 

Thus, we get the induced edge labels as Ӈ1, Ӈ2, … , Ӈ2𝑛−3. 

Hence the alternate trianglular snake graph 𝐴𝑇𝑆(𝑃𝑛)is a hilbert mean graph, where 𝑛 ≥ 4and 𝑛 is even. 
 
Example 3.14: The hilbert mean labeling of𝐴𝑇𝑆(𝑃6) is given in figure 6. 
 

 
Figure 6: Hilbert mean labeling of𝐴𝑇𝑆(𝑃6) 

 
Theorem 3.15: A double alternate triangular snake graph 𝐷𝐴𝑇𝑆(𝑃𝑛) is a hilbert mean graph, where 𝑛 ≥
4and 𝑛is even. 

Proof: Let 𝐺 = 𝐷𝐴𝑇𝑆(𝑃𝑛),𝑉(𝐺) =  𝑥𝑖1 : 1 ≤ 𝑖1 ≤ 𝑛, 𝑦𝑖1 : 1 ≤ 𝑖1 ≤
𝑛−2

2
, 𝑧𝑖1 : 1 ≤ 𝑖1 ≤

𝑛−2

2
 and𝐸(𝐺) =

 𝑥𝑖1𝑥𝑖1+1 : 1 ≤ 𝑖1 ≤ 𝑛 − 1 ∪ 𝑥2𝑖1𝑦𝑖1 ∪ 𝑥2𝑖1+1𝑦𝑖1
∪ 𝑥2𝑖1𝑧𝑖1 ∪ 𝑥2𝑖1+1 𝑧𝑖1 : 1 ≤ 𝑖1 ≤

𝑛−2

2
 . We observe that 𝐺 

has2𝑛 − 2vertices and 3𝑛 − 5 edges. 
Define 𝜇 ∶ 𝑉 𝐺 →  0, 1, 2, … , 𝐻3𝑛−5 as follows. 

For 1 ≤ 𝑖1 ≤ 𝑛,𝜇 𝑥𝑖1 =   
12  𝑖1 − 1                      if 𝑖1𝑖𝑠 𝑜𝑑𝑑   

12 𝑖1 − 2 + 1              if 𝑖1  𝑖𝑠 𝑒𝑣𝑒𝑛 
  

For 1 ≤ 𝑖1 ≤
𝑛−2

2
,𝜇 𝑦𝑖1 = 24 𝑖1 − 1 + 9,  𝜇 𝑧𝑖1 = 24 𝑖1 − 1 + 17    

Clearly,𝜇 is an injective function and the induced bijective edge labeling𝜇∗ is defined as follows. 

𝜇∗ 𝑥𝑖1𝑥𝑖1+1  = 𝐻3 𝑖1−1 +1                            1 ≤ 𝑖1 ≤ 𝑛 − 1 

For 1 ≤ 𝑖1 ≤
𝑛−2

2
,𝜇∗ 𝑥2𝑖1𝑦𝑖1 = 𝐻6 𝑖1−1 +2,  𝜇∗ 𝑥2𝑖1+1𝑦𝑖1 = 𝐻6 𝑖1−1 +5 

𝜇∗ 𝑥2𝑖1𝑧𝑖1 = 𝐻6 𝑖1−1 +3, 𝜇∗ 𝑥2𝑖1+1 𝑧𝑖1 = 𝐻6 𝑖1−1 +6 

Thus, we get the induced edge labels as Ӈ1, Ӈ2, … , Ӈ3𝑛−5. 

Hence the double alternate triangular snake graph 𝐷𝐴𝑇𝑆(𝑃𝑛) is ahilbert mean graph,where 𝑛 ≥ 4and 𝑛 is 
even. 
 
Example 3.16: The hilbert mean labeling of 𝐷𝐴𝑇𝑆(𝑃6) is given in figure 7.  
 

 
Figure 7: Hilbert mean labeling of 𝐷𝐴𝑇𝑆(𝑃6) 
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4. CONCLUSION 
In this paper, we have investigated the hilbert mean labelling of certain special graphs. This work 
contributes several new results to the theory of graph labeling. 
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