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1 Introduction

In [1], Lupaş proposed to study the following sequence of linear and positive
operators

P [0]
n (f, x) = 2−nx

∞∑
k=0

(nx)k
2kk!

f

(
k

n

)
, x ≥ 0, f : [0,∞)→ R, (1.1)

where (nx)0 = 1 and (nx)k = nx(nx+ 1)(nx+ 2) . . . (nx+ k − 1), k ≥ 1.

We can consider that P
[0]
n , n ≥ 1, are defined on E where E =

⋃
a>0

Ea and

Ea is the subspace of all real valued continuous functions f on [0,∞) such as
sup
x≥0

(exp(−ax)|f(x)|) < ∞. The space Ea is endowed with the norm ‖f‖a =

sup
x≥0

(exp(−ax)|f(x)|) with respect to which it becomes a Banach space.

In recent year, Patel and Mishra [2] generalized Jain operators type variant of
the Lupaş operators defined as

P [β]
n (f, x) =

∞∑
k=0

(nx+ kβ)k
2kk!

2−(nx+kβ)f

(
k

n

)
, x ≥ 0, f : [0,∞)→ R, (1.2)

where (nx+ kβ)0 = 1, (nx+kβ)1 = nx and (nx+kβ)k = nx(nx+kβ+1)(nx+
kβ + 2) . . . (nx+ kβ + k − 1), k ≥ 2.

We mention that β = 0, the operators P
[0]
n reduce to Lupaş operators (1.1). In
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[2], the authors have used following Lagrange’s formula to define the operators
(1.2):

φ(z) = φ(0) +
∞∑
k=1

1

k!

[
dk−1

dzk−1
((f(z)k)φ′(z)

]
z=0

(
z

f(z)

)k
. (1.3)

But, if we use following Lagrange’s formula then the generalization of the oper-
ators (1.1) is written better way:

φ(z)

[
1− z

f(z)

df(z)

dz

]−1
=
∞∑
k=0

1

k!

[
dk

dzk
((f(z)k)φ(z)

]
z=0

(
z

f(z)

)k
.

By choosing φ(z) = (1− z)−α and f(z) = (1− z)β , we have

(1− z)−α
[
1− zβ(1− z)−1

]−1
=

∞∑
k=0

1

k!
(α+ kβ)(α+ kβ + 1) . . . (α+ kβ + k − 1)

(
z

(1− z)−β

)k
.

Taking z = 1
2 , we get

1 = (1− β)
∞∑
k=0

1

2kk!
(α+ βk)k2−(α+βk).

Now, we may define the operators as

P [β]
n (f, x) =

∞∑
k=0

pβ(k, nx)f

(
k

n

)
(1.4)

where pβ(k, nx) = (1− β)
∞∑
k=0

1

2kk!
(nx+ βk)k2−(nx+βk). where (nx+ βk)0 = 1

and (nx + βk)k = (nx + βk)(nx + βk + 2) . . . (nx + βk + k − 1), k ≥ 1 and

0 ≤ β + 1

2
< 1

The parameter β may depend on the natural number n. It is easy to see that

for β = 0, the operators P
[β]
n (f, x) reduces to Lupaş operator (1.1). We mention

that, the operators (1.2) and (1.4) has no much difference as their moments are
same. To calculate the moments of (1.4), we follows techniques developed in [2]
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and along the lines of [2], we have

P [β]
n (1, x) = 1

P [β]
n (t, x) =

x

1− β
+

2β

n(1− β)2

P [β]
n (t2, x) =

x2

(1− β)2
+

2x(1 + 2β)

n(1− β)3
+

6
(
β + β2

)
n2(1− β)4

P [β]
n (t3, x) =

x3

(1− β)3
+

6x2(1 + β)

n(1− β)4
+

6x
(
1 + 6β + 3β2

)
n2(1− β)5

+
2
(
13β + 34β2 + 13β3

)
n3(1− β)6

P [β]
n (t4, x) =

x4

(1− β)4
+

4x3(3 + 2β)

n(1− β)5
+

36x2
(
1 + 3β + β2

)
n2(1− β)6

+
2x
(
13 + 146β + 209β2 + 52β3

)
n3(1− β)7

+
30
(
5β + 23β2 + 23β3 + 5β4

)
n4(1− β)8

.

In the present paper, we modify the operators defined by (1.4) into integral
form in Kantorovich sense, see also G.G. Lorentz [3, Ch.II, p.30]. Actually, we

replace f

(
k

n

)
by an integral mean of f(x) over a small interval around the

point
k

n
as follows

K [β]
n (f, x) = n

∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

f(t)dt, (1.5)

where pβ(k, nx) was as defined in (1.4) and f belongs to the class of local
integrable functions defined on [0,∞).
The focus of the paper is to investigate these linear and positive operators.

Section 2, provided results in connection with the rate of convergence for K
[β]
n

under different assumptions of the function f .

2 Approximation properties

For any integer s ≥ 0, we denote by es the test function, es(x) = xs , x ≥ 0 ,

and we also introduce the s-th order central moment of the operator K
[β]
n , that

is
Ωn,s(x) = K [β]

n (ψx,s, x), where ψx,s(t) = (t− x)s, x ≥ 0, t ≥ 0.

Lemma 1 The operators K
[β]
n , n ∈ N defined by (1.5), verify

1. K [β]
n (1, x) = 1;

2. K [β]
n (t, x) =

x

1− β
+

(1 + β)2

2n(1− β)2
;

3
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3. K [β]
n (t2, x) =

x2

(1− β)2
+
x
(
3 + 2β + β2

)
n(1− β)3

+
1 + 20β + 12β2 + 2β3 + β4

3n2(1− β)4
;

4. K [β]
n (t3, x) =

x3

(1− β)3
+

3x2
(
5 + 2β + β2

)
2n(1− β)4

+
x
(
10 + 32β + 15β2 + 2β3 + β4

)
n2(1− β)5

+
1 + 142β + 219β2 + 96β3 + 19β4 + 2β5 + β6

4n3(1− β)6

5. K [β]
n (t4, x) =

x4

(1− β)4
+

2x3
(
7 + 2β + β2

)
n(1− β)5

+
2x2

(
25 + 44β + 18β2 + 2β3 + β4

)
n2(1− β)6

+
x
(
43 + 326β + 329β2 + 116β3 + 23β4 + 2β5 + β6

)
n3(1− β)7

+
1 + 1072β + 3398β2 + 2824β3 + 900β4 + 174β5 + 28β6 + 2β7 + β8

5n4(1− β)8
.

Proof: Observe that K
[β]
n (1, x) = P

[β]
n (1, x) = 1.

Now,

K [β]
n (t, x) = n

∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

t dt

=

∞∑
k=0

pβ(k, nx)
1 + 2k

2n
=

1

2n
P [β]
n (1, x) + P [β]

n (t, x)

=
x

1− β
+

(1 + β)2

2n(1− β)2
.

Similarly, we have

K [β]
n (t2, x) = n

∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

t2 dt

=
∞∑
k=0

pβ(k, nx)
1 + 3k + 3k2

3n2

=
1

3n2
P [β]
n (1, x) +

1

n
P [β]
n (t, x) + P [β]

n (t2, x)

=
x2

(1− β)2
+
x
(
3 + 2β + β2

)
n(1− β)3

+
1 + 20β + 12β2 + 2β3 + β4

3n2(1− β)4
.
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K [β]
n (t3, x) = n

∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

t3 dt

=
∞∑
k=0

pβ(k, nx)

(
1 + 4k + 6k2 + 4k3

4n3

)
=

1

4n3
P [β]
n (1, x) +

1

n2
P [β]
n (t, x) +

6

4n
P [β]
n (t2, x) + P [β]

n (t3, x)

=
x3

(1− β)3
+

3x2
(
5 + 2β + β2

)
2n(1− β)4

+
x
(
10 + 32β + 15β2 + 2β3 + β4

)
n2(1− β)5

+
1 + 142β + 219β2 + 96β3 + 19β4 + 2β5 + β6

4n3(1− β)6

and

K [β]
n (t4, x) = n

∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

t4 dt

=
∞∑
k=0

pβ(k, nx)

(
1

5n4
+

k

n4
+

2k2

n4
+

2k3

n4
+
k4

n4

)
=

1

5n4
P [β]
n (1, x) +

1

n3
P [β]
n (t, x) +

2

n2
P [β]
n (t2, x)

+
2

n
P [β]
n (t3, x) + P [β]

n (t4, x)

=
x4

(1− β)4
+

2x3
(
7 + 2β + β2

)
n(1− β)5

+
2x2

(
25 + 44β + 18β2 + 2β3 + β4

)
n2(1− β)6

+
x
(
43 + 326β + 329β2 + 116β3 + 23β4 + 2β5 + β6

)
n3(1− β)7

+
1 + 1072β + 3398β2 + 2824β3 + 900β4 + 174β5 + 28β6 + 2β7 + β8

5n4(1− β)8
.

5

J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 29, NO.1, 2021, COPYRIGHT 2021 EUDOXUS PRESS, LLC

56 Patel 52-67



Lemma 1 implies the following identities

Ωn,0(x) = 1, Ωn,1(x) =
xβ

1− β
+

(1 + β)2

2n(1− β)2
, (2.1)

Ωn,2(x) =
x2β2

(1− β)2
+
x
(
2 + β + 2β2 + β3

)
n(1− β)3

+
1 + 20β + 12β2 + 2β3 + β4

3n2(1− β)4
, (2.2)

Ωn,3(x) =
x3β3

(1− β)3
+

3x2β
(
4 + β + 2β2 + β3

)
2n(1− β)4

+
x
(
9 + 13β + 23β2 + 12β3 + 2β4 + β5

)
n2(1− β)5

+
1 + 142β + 219β2 + 96β3 + 19β4 + 2β5 + β6

4n3(1− β)6
, (2.3)

Ωn,4(x) =
x4β4

(1− β)4
+

2x3β2
(
6 + β + 2β2 + β3

)
n(1− β)5

(2.4)

+
2x2

(
6 + 18β + 25β2 + 26β3 + 12β4 + 2β5 + β6

)
n2(1− β)6

+
x
(
42 + 185β + 252β2 + 239β3 + 100β4 + 19β5 + 2β6 + β7

)
n3(1− β)7

+
1 + 1072β + 3398β2 + 2824β3 + 900β4 + 174β5 + 28β6 + 2β7 + β8

5n4(1− β)8
.

Remark 1 Since β ∈ [0, 1), (1−β)2 ≤ 1 and (1−β)−2 ≤ (1−β)−3 ≤ (1−β)−4,
we have

Ωn,1(x) ≤ 2xnβ + (1 + β)2

2n(1− β)2
(2.5)

and

Ωn,2(x) ≤
3n2x2β2 + 3nx

(
2 + β + 2β2 + β3

)
+ 1 + 20β + 12β2 + 2β3 + β4

3n2(1− β)4

≤ 3n2x2β2 + 6nx (1 + 2β) + 1 + 35β

3n2(1− β)4
. (2.6)

Also, using max{1, x, x2, x3, x4} ≤ (1 + x+ x2 + x3 + x4), we have

Ωn,4(x) ≤
(

β4

(1− β)8
+

20

n(1− β)8
+

180

n2(1− β)8

+
840

n3(1− β)8
+

8400

5n4(1− β)8

)
(1 + x+ x2 + x3 + x4)

≤ Bβ(n)(1 + x+ x2 + x3 + x4), (2.7)

where

Bβ(n) =
β4

(1− β)8
+

20

n(1− β)8
+

180

n2(1− β)8
+

840

n3(1− β)8
+

8400

5n4(1− β)8
. (2.8)

6
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Theorem 1 Let K
[βn]
n be defined by (1.5) and βn ∈ [0, 1) with βn → 0. Then for

f ∈ C[0,∞) one has lim
n→∞

K [βn]
n (f, ·) = f uniformly on any compact K ⊂ [0,∞).

Proof: By making use of Lemma 1, we have

lim
n→∞

K [βn]
n (tj , x) = xj , with βn → 0

j = 0, 1, 2, uniformly on any compact K ⊂ [0,∞). Consequently, our assertion
follows directly from the well-known theorem of Bohman-Korovkin.
Let CB [0,∞) denote the space of real valued continuous and bounded functions
f on the interval [0,∞), endowed with the norm

‖f‖ = sup
0≤x≤∞

|f(x)|

For any δ > 0, Peetre’s K-functional is define by

K2(f, δ) = inf
g∈C2

B [0,∞)
{‖f − g‖+ δ‖g′′‖},

where C2
B [0,∞) = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)}. By DeVore and Lorentz

[4, P.177, Theorem 2.4], there exists an absolute constant C > 0 such that

K2(f, δ) ≤ Cω2

(
f,
√
δ
)
, (2.9)

where the second order modulus of smoothness of g ∈ CB [0,∞) is defined as

ω2(g; δ) = sup
0<h≤δ

sup
x≥
|g(x)− 2g(x+ h) + g(x+ 2h)|, δ > 0,

also usual modulus of continuity of f ∈ CB [0,∞) is defined by

ω1(g; δ) = sup
0<h≤δ

sup
x≥0
|g(x+ h)− g(x)|, δ > 0.

Theorem 2 Let K
[β]
n be defined by (1.5) and β ∈ [0, 1) then for each x ≥ 0 the

following inequality

|K [β]
n (f, x)− f(x)| ≤ 4

3
ω1

(
f ;

√
3n2x2β2 + 6nx (1 + 2β) + 1 + 35β

3n(1− β)2

)
holds.

Proof: Since K
[β]
n (1, x) = 1 and pβ(k, nx) ≥ 0, we can write

|K [β]
n (f, x)− f(x)| ≤ n

∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

|f(t)− f(x)|dt. (2.10)

On the other hand

|f(t)− f(x)| ≤ ω1(f ; |t− x|) ≤ (1 + δ−2(t− x)2)ω1(f ; δ).

7
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For |t − x| < δ the last increase is clear. For |t − x| ≥ δ, we use the following
properties

ω1(f ;λδ) ≤ (1 + λ)ω1(f ; δ) ≤ (1 + λ2)ω1(f ; δ),

where one can choose λ = δ−1|t− x|. This way the relation (2.6) implies

|K [β]
n (f, x)− f(x)| ≤ n

∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

(1 + δ−2(x− t)2)ω1(f ; δ)dt

=
(
Ωn,0(x) + δ−2Ωn,2(x)

)
ω1(f ; δ)

=

(
1 + δ−2

{
3n2x2β2 + 6nx (1 + 2β) + 1 + 35β

3n2(1− β)4

})
ω1(f ; δ).

Choosing δ =

(
3n2x2β2 + 6nx (1 + 2β) + 1 + 35β

n2(1− β)4

)1/2

, we obtain the desired

result.
Further, we estimate the rate of convergence for smooth functions.

Theorem 3 Let K
[β]
n be defined by (1.5) and β ∈ [0, 1). Then for f ∈ C1[0,∞)

and a > 0 one has

|K [β]
n (f, x)− f(x)| ≤ 1

2n(1− β)2

(
bn‖f ′||C[0,a] + cnω1

(
f ′;

1√
n

))
,

where bn = 2anβ + (1 + β)2 and
cn = 2

√
n2a2β2 + 2na (1 + 2β) + 1 + 35β(
1 + (1− β)−2

√
na2β2 + 2a (1 + 2β) + (1 + 35β)n−1

)
.

Proof: We can write

f(x)− f(t) = (x− t)f ′(x) + (x− t)(f ′(ξ)− f ′(x)),

where ξ = ξ(t, x) is a point of the interval determinate by x and t. If we

multiply both members of this inequality by npβ(k, nx)

∫ (k+1)/n

k/n

dt and sum

over k , there follows

|K [β]
n (f, x)− f(x)| ≤ |f ′(x)|Ωn,1(x)

+n
∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

|x− t| · |f ′(ξ)− f ′(t)|dt

≤
(

2xnβ + (1 + β)2

2n(1− β)2

)
max
x∈[0,a]

|f ′(x)| (2.11)

+n
∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

|x− t|(1 + δ−1|t− x|)ω1(f ′; δ)dt.

8
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According to Cauchy’s inequality, we have

n
∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

|x− t|dt

≤
√
n
∞∑
k=0

pβ(k, nx)

{∫ (k+1)/n

k/n

(x− t)2dt

}1/2

≤
√
n

{[ ∞∑
k=0

pβ(k, nx)

][ ∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

(x− t)2dt

]}1/2

.

Hence,

n
∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

|x− t|dt ≤
√

Ωn,2(x). (2.12)

Using inequalities (2.12) in (2.11), we write

|K [β]
n (f, x)− f(x)| ≤

(
2anβ+(1+β)2

2n(1−β)2

)
‖f ′‖C[0,a]

+
√

Ωn,2(x)
(

1 + δ−1
√

Ωn,2(x)
)
ω1(f ′; δ)dt. (2.13)

Inserting δ =
1√
n

and using
√

Ωn,2(x) ≤
√
n2a2β2 + 2na (1 + 2β) + 1 + 35β

n(1− β)2
,

x ∈ [0, a] , the proof of our theorem is complete.

Theorem 4 Let f ∈ CB [0,∞). Then for all x ∈ [0,∞) there exists a constant
A > 0 such that

|K [β]
n (f, x)− f(x)| ≤ Aω2 (f, ξn(x)) + ω1

(
f,

x

1− β
+

(1 + β)2

2n(1− β)2

)
,

where ξn(x) = 3n2x2β2+6nx(1+2β)+1+35β
3n2(1−β)4 +

(
2xnβ+(1+β)2

2n(1−β)2

)2
.

Proof: Consider the following operator

K̂ [β]
n (f, x) = K [β]

n (f, x)− f
(

x

1− β
+

(1 + β)2

2n(1− β)2

)
+ f(x). (2.14)

By the definition of the operators K̂
[β]
n and Lemma 1, we have

K̂ [β]
n (t− x, x) = 0.

Let g ∈ C2
B [0,∞) and x ∈ [0,∞). By Taylor’s formula of g, we get

g(t)− g(x) = (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du, t ∈ [0,∞).

9
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One may write

K̂ [β]
n (g, x)− g(x) = g′(x)K̂ [β]

n (t− x, x) + K̂ [β]
n

(∫ t

x

(t− u)g′′(u)du, x

)
= K̂ [β]

n

(∫ t

x

(t− u)g′′(u)du, x

)
= K [β]

n

(∫ t

x

(t− u)g′′(u)du, x

)

−
∫ x

1−β+
(1+β)2

2n(1−β)2

x

(
x

1− β
+

(1 + β)2

2n(1− β)2
− u
)
du.

Now, using the following inequalities∣∣∣∣ ∫ t

x

(t− u)g′′(u)du

∣∣∣∣ ≤ (t− x)2‖g′′‖ (2.15)

and∣∣∣∣ ∫ x
1−β+

(1+β)2

2n(1−β)2

x

(
x

1− β
+

(1 + β)2

2n(1− β)2
− u
)
du

∣∣∣∣ ≤ [ x

1− β
+

(1 + β)2

2n(1− β)2

]2
‖g′′‖,

we reach to

|K̂ [β]
n (g, x)− g(x)| ≤

{
K [β]
n ((t− x)2, x) +

[
x

1− β
+

(1 + β)2

2n(1− β)2

]2}
‖g′′‖

≤
{

3n2x2β2 + 6nx (1 + 2β) + 1 + 35β

3n2(1− β)4

+

(
2xnβ + (1 + β)2

2n(1− β)2

)2
}
‖g′′‖. (2.16)

By means of the definitions of the operators K̂
[β]
n and K

[β]
n , we have

|K [β]
n (f, x)− f(x)| ≤ |K̂ [β]

n (f − g, x)|+ |(f − g)(x)|+
∣∣K̂ [β]

n (g, x)− g(x)
∣∣

+

∣∣∣∣f ( x

1− β
+

(1 + β)2

2n(1− β)2

)
− f(x)

∣∣∣∣
and

K̂ [β]
n (f, x) ≤ |K [β]

n (f, x)|+ 2‖f‖ ≤ ‖f‖K [β]
n (1, x) + 2‖f‖ = 3‖f‖.

Thus, we may conclude that

|K [β]
n (f, x)− f(x)| ≤ 4‖f − g‖+ |K̂ [β]

n (g, x)− g(x)|

+

∣∣∣∣f ( x

1− β
+

(1 + β)2

2n(1− β)2

)
− f(x)

∣∣∣∣.
10
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In the light of inequality (2.16), one gets

|K [β]
n (f, x)− f(x)| ≤ 4‖f − g‖

+

{
3n2x2β2 + 6nx (1 + 2β) + 1 + 35β

3n2(1− β)4

+

(
2xnβ + (1 + β)2

2n(1− β)2

)2
}
‖g′′‖

+ω1

(
f,

x

1− β
+

(1 + β)2

2n(1− β)2

)
.

Therefore taking the infimum over all g ∈ CB [0,∞) on the right-hand side of
the last inequality and considering (2.9), we find that

|K [β]
n (f, x)− f(x)| ≤ 4K2 (f, ξn(x)) + ω1

(
f,

x

1− β
+

(1 + β)2

2n(1− β)2

)
≤ 4Cω2 (f, ξn(x)) + ω1

(
f,

x

1− β
+

(1 + β)2

2n(1− β)2

)
≤ Aω2 (f, ξn(x)) + ω1

(
f,

x

1− β
+

(1 + β)2

2n(1− β)2

)
,

which completes the proof.

Theorem 5 Let 0 < γ ≤ 1, β ∈ [0, 1) and f ∈ CB [0,∞). Then if f ∈ LipM (γ),
that is, the inequality |f(t)−f(x)| ≤M |t−x|γ , x, t ∈ [0,∞) holds, then for each
x ∈ [0,∞), we have

|K [β]
n (f, x)− f(x)| ≤ d

γ
2
n (x),

where dn(x) =
3n2x2β2 + 6nx (1 + 2β) + 1 + 35β

3n2(1− β)4
and M > 0 is a constant.

Proof: Let f ∈ CB [0,∞) ∩ LipM (γ). By the linearity and monotonicity of

the operators K
[β]
n , we get

|K [β]
n (f, x)− f(x)| ≤ K [β]

n (|f(t)− f(x)|, x)

≤ MK [β]
n (|t− x|γ , x)

= Mn
∞∑
k=0

pβ(k, nx)

∫ (k+1)/n

k/n

|t− x|γdt.

11
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Now, applying the Hölder inequality two times successively with p =
2

γ
, q =

2

2− γ
, we obtain

|K [β]
n (f, x)− f(x)| ≤ M

∞∑
k=0

pβ(k, nx)

(
n

∫ (k+1)/n

k/n

|t− x|γdt

) γ
2

≤ M(Ωn,2(x))
γ
2

≤ M

(
3n2x2β2 + 6nx (1 + 2β) + 1 + 35β

3n2(1− β)4

) γ
2

.

This completes the proof.

3 Weighted approximation properties

Now, we introduce convergence properties of the operators K
[β]
n via the weighted

Korovkin type theorem given by Gadzhiev in [5, 6]. For this purpose, we recall
some definitions and notations.
Let ρ(x) = 1+x2 and Bρ[0,∞) be the space of all functions having the property

|f(x)| ≤Mfρ(x),

where x ∈ [0,∞) and Mf is a positive constant depending only on f . The set
Bρ[0,∞) is equipped with the norm

‖f‖ρ = sup
x∈[0,∞)

|f(x)|
1 + x2

.

Cρ[0,∞) denotes the space of all continuous functions belonging to Bρ[0,∞).
By C0

ρ [0,∞), we denote the subspace of all functions f ∈ Cρ[0,∞) for which

lim
x→∞

|f(x)|
ρ(x)

<∞.

Theorem 6 ([5, 6]) Let {An} be a sequence of positive linear operators acting
from Cρ[0,∞) to Bρ[0,∞) and satisfying the conditions

limn→∞‖An(tv;x)− xv‖ρ = 0, v = 0, 1, 2.

Then for any function f ∈ C0
ρ [0,∞),

lim
n→∞

‖An(f ; ·)− f(·)‖ρ = 0.

Note that, a sequence of linear positive operators An acts from Cρ[0,∞) to
Bρ[0,∞) if and only if

‖An(ρ;x)‖ ≤Mρ,

where Mρ is positive constant. This fact also given in [5, 6].
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Theorem 7 Let {K [βn]
n } be the sequence of linear positive operators defined by

(1.5) and βn ∈ [0, 1) with βn → 0 as n → ∞. Then for each f ∈ C0
ρ [0,∞), we

have
lim
n→∞

‖K [β]
n (f ;x)− f(x)‖ρ = 0.

Proof: Using Lemma 1, we may write

sup
x∈[0,∞)

|K [βn]
n (ρ, x)|
1 + x2

≤ 1

(1− βn)2
+

(
3 + 2βn + β2

n

)
n(1− βn)3

+
1 + 20βn + 12β2

n + 2β3
n + β4

n

3n2(1− βn)4
+ 1.

Since lim
n→∞

βn = 0, , there exists a positive constant M∗ such that

1

(1− βn)2
+

(
3 + 2βn + β2

n

)
n(1− βn)3

+
1 + 20βn + 12β2

n + 2β3
n + β4

n

3n2(1− βn)4
≤M∗

for each n. Hence, we get

‖K [βn]
n (ρ, x)‖ρ ≤ 1 +M∗,

which shows that {K [βn]
n } is a sequence of positive linear operators acting from

Cρ[0,∞) to Bρ[0,∞).
In order to complete the proof, it is enough to prove that the conditions of
Theorem 6

lim
n→∞

‖K [βn]
n (tv;x)− xv‖ρ = 0, v = 0, 1, 2

are satisfied. It is clear that

lim
n→∞

‖K [βn]
n (1;x)− 1‖ρ = 0

By Lemma 1, we have

‖K [βn]
n (t;x)− x‖ρ = sup

x∈∞

∣∣∣∣ ( 1

1− βn
− 1

)
x

1 + x2
+

(1 + βn)2

2n(1− βn)2
1

1 + x2

∣∣∣∣
≤

∣∣∣∣ βn
1− βn

+
(1 + βn)2

2n(1− βn)2

∣∣∣∣.
Thus taking into consideration the conditions βn → 0 as n → ∞, we can
conclude that

lim
n→∞

‖K [βn]
n (t;x)− x‖ρ = 0
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Similarly, one gets

‖K [βn]
n (t2;x)− x2‖ρ

= sup
x∈∞

∣∣∣∣ ( 1

(1− βn)2
− 1

)
x2

1 + x2
+

(
3 + 2βn + β2

n

)
n(1− βn)3

x

1 + x2

+
1 + 20βn + 12β2

n + 2β3
n + β4

n

3n2(1− βn)4
1

1 + x2

∣∣∣∣
≤ sup

x∈∞

∣∣∣∣ ( 1

(1− βn)2
− 1

)
+

(
3 + 2βn + β2

n

)
n(1− βn)3

+
1 + 20βn + 12β2

n + 2β3
n + β4

n

3n2(1− βn)4

∣∣∣∣
≤ sup

x∈∞

∣∣∣∣ 2βn − β2
n

(1− βn)2
+

(
3 + 2βn + β2

n

)
n(1− βn)3

+
1 + 20βn + 12β2

n + 2β3
n + β4

n

3n2(1− βn)4

∣∣∣∣
which leads to

lim
n→∞

‖K [βn]
n (t2;x)− x2‖ρ = 0 with βn → 0.

Thus the proof is completed.

Now, we compute the order of approximation of the operators K
[β]
n in terms of

the weighted modulus of continuity Ω2(f, δ) (see[7]) defined by

Ω2(f, δ) = sup
x≥0,0<h≤δ

|f(x+ h)− f(x)|
1 + (x+ h)2

, f ∈ C0
ρ [0,∞)

and has the following properties:

(a) Ω2(f, δ) is monotone increasing function of δ,

(b) lim
δ→0+

Ω2(f, δ) = 0,

(c) for each λ ∈ [0,∞), Ω2(f, λδ) ≤ (1 + λ)Ω2(f, δ).

Theorem 8 Let {K [β]
n } be the sequence of linear positive operators defined by

(1.5). Then for each f ∈ C0
ρ [0,∞), we have

sup
0≤x<∞

|K [β]
n (f ;x)− f(x)|

(1 + x2)3
≤ CΩ2

(
f, (Bβ(n))

1/4
)
,

where C is positive constant and Bβ(n) is defined in (2.8).

Proof: For x ≥ 0 and t ≥ 0, by the definition of Ω2(f, δ) and the property
(c), we may write

|f(t)− f(x)| ≤
(
1 +

(
x+ |t− x|2

))(
1 +
|t− x|
δn

)
Ω2(f, δn)

≤ 2(1 + x2)(1 + (t− x)2)

(
1 +
|t− x|
δn

)
Ω2(f, δ2).
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By using the monotonicity of K
[β]
n and the following inequality (see [8])(

1 + (t− x)2
)(

1 +
|t− x|
δn

)
≤ 2

(
1 + δ2n

)(
1 +

(t− x)4

δ4n

)
,

one gets

|K [β]
n (f, x)− f(x)| ≤ 2(1 + x2)K [β]

n

((
1 + (t− x)2

)(
1 +
|t− x|
δn

)
, x

)
Ω2(f, δn)

≤ 4(1 + x2)(1 + δ2n)K [β]
n

((
1 +

(t− x)4

δ4n

)
, x

)
Ω2(f, δn)

≤ 4(1 + x2)(1 + δ2n)

(
1 +

1

δ4n
K [β]
n ((t− x)4, x)

)
Ω2(f, δn)

≤ C1(1 + x2)

(
1 +

1

δ4n
K [β]
n ((t− x)4, x)

)
Ω2(f, δn),

with the help of the inequality (2.7) this inequality leads to

|K [β]
n (f, x)− f(x)| ≤ C1(1 + x2)

(
1 +

Bβ(n)

δ4n
(1 + x+ x2 + x3 + x4)

)
Ω2(f, δn),

which gives the required result.

Remark 2 In [9], the authors has consider the generalization of the operators
(1.1) as

P [0]
n (f, an, bn, x) = 2−anx

∞∑
k=0

(anx)k
2kk!

f

(
k

bn

)
, x ≥ 0, f : [0,∞),→ R, (3.1)

where {an}, {bn} are increasing and unbounded sequences of positive numbers
such that

lim
n→∞

1

bn
= 0,

an
bn

= 1 +O

(
1

bn

)
.

They studied the convergence properties of these operators in weighted spaces of
continuous functions on positive semi-axis. Also, A. Erençin and F Taşdelen

[10] consider the generalization of the Kantorovich type operators P
[0]
n (f, an, bn, x)

given by (3.1) as follows:

K [0]
n (f, an, bn, x) = bn2−anx

∞∑
k=0

(anx)k
2kk!

∫ (k+1)/bn

k/bn

f(t)dt, (3.2)

where f is an integrable function on [0,∞) and bounded on every compact subin-
terval of [0,∞).

Motivated by the operators (3.1) and (3.2), we generalize the operators P
[β]
n and

K
[β]
n in following way

P [β]
n (f, an, bn, x) =

∞∑
k=0

2−(anx+kβ)(anx+ kβ)k
2kk!

f

(
k

bn

)
, x ≥ 0, f : [0,∞)→ R,

(3.3)
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and

K [β]
n (f, an, bn, x) = bn

∞∑
k=0

2−(anx+kβ)(anx)k
2kk!

∫ (k+1)/bn

k/bn

f(t)dt (3.4)

and extend the studies of the present article in a similar direction for the opera-
tors (3.3) and (3.4). The analysis is different so we may discuss that elsewhere.

References

[1] A. Lupas, The approximation by some positive linear operators, in: Pro-
ceedings of the International Dortmund Meeting on Approximation Theory,
Akademie Verlag, Berlin, 1995, pp. 201–229.

[2] P. Patel, V. N. Mishra, On new class of linear and positive operators,
Bollettino dell’Unione Matematica Italiana 8 (2) (2015) 81–96.

[3] G. G. Lorentz, Bernstein polynomials, no. 8, American Mathematical Soc.,
1953.

[4] R. A. DeVore, G. G. Lorentz, Constructive approximation, Vol. 303,
Springer Verlag, 1993.

[5] A. D. Gadzhiev, The convergence problem for a sequence of positive lin-
ear operators on unbounded sets, and theorems analogous to that of PP
Korovkin, in: Doklady Akademii Nauk, Vol. 218, Russian Academy of Sci-
ences, 1974, pp. 1001–1004.

[6] A. D. Gadzhiev, Theorems of the type of PP Korovkin’s theorems, Mat.
Zametki 20 (5) (1976) 781–786.
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