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ABSTRACT 
The increasing focus on mental health has amplified interest in stress detection and classification 
systems. Classifying stress levels using physiological data has shown promise for both traditional 
machine learning (ML) and deep learning (DL) approaches. However, achieving ultra-high accuracy in 
multi-class stress classification remains challenging for current methods, particularly when utilizing the 
SWELL-KW dataset. To address this issue, the present study introduces an innovative DL model assisted 
by Ant Lion Optimization (ALO) for feature selection. The ALO algorithm enhances the model's overall 
performance by effectively selecting the most relevant features with rapid convergence, overcoming 
limitations such as overfitting often observed in traditional approaches like Recursive Feature 
Elimination (RFE) or Principal Component Analysis (PCA). This study highlights the significance of using 
comprehensive evaluation metrics beyond the conventional F-measure, accuracy, precision, and recall, 
emphasizing metrics like Cohen's Kappa, Root Mean Square Error (RMSE), and Matthews Correlation 
Coefficient (MCC) for a more complete assessment of the model's performance. The proposed framework 
involves data preprocessing, Ant Lion Optimization for feature selection, and classification using Deep 
Belief Network (DBN), Multi-Layer Perceptron (MLP), and XGBoost algorithms. This approach offers an 
effective solution for stress detection, with the potential to outperform existing models in terms of 
accuracy and adaptability. 
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1. INTRODUCTION 
Mental health has been more crucial over time given the rising stress related with modern life, which is 
now linked with the previous few years. One's mental state is a significant component of overall human 
well-being. Early diagnosis and classification of stress is very important for the goal of enhancing the 
results of public health campaigns as stress is a main element causing the development of several mental 
and physical diseases[1]. According to technology, it is now feasible to design stress detection systems 
employing physiological signals such heart rate, galvanic skin response, and other biometric data[2]. 
These systems have been made in part possible via DL models and typical ML models have showed quite 
considerable promise for the categorisation of stress levels based on the acquired data[3]. Especially with 
regard to the classification of stress into a wide range of categories, one of the most recurrent challenges 
still to be encountered is the accomplishment of very high accuracy. This difficulty becomes much more 
difficult to solve using sophisticated and huge datasets such as the SWELL-KW dataset, which shows 
actual stress episodes[4]. This facilitates more appropriate handling of the challenge.  
Motivation: The need of stress detection systems that are not only more accurate as well as more flexible 
and efficient motivates the present endeavour. Feature selection methods include RFE or PCA are used in 
classical ML and DL models[5]. These methods help to lower data dimensionality and raise performance 
standards. Still, issues including overfitting, insufficient convergence, or a failure to identify the most 
significant features in very complex datasets might also influence these methods[6]. There is a possibility 
that some of the above mentioned issues are interrelated. According to the evolution of bio-inspired 
algorithms more notably, Ant Lion Optimisation (ALO) a useful approach for feature selection has been 
made available. These systems are designed on the hunting habit of ant lions, which eventually influences 
the selection of special features. It intends to analyse novel methods that may surpass the limitations of 
existing models by increasing the accuracy and reliability of stress detecting systems. ALO in the context 
of DL-based stress classification will help us to reach this goal[7]. 
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Problem statement: Particularly in cases of multi-class categorisation, there is still a significant disparity 
in terms of obtaining ultra-high accuracy and dependability in stress detection even if the currently used 
models have showed improvement[8]. Most of the presently used algorithms suffer from overfitting or 
lack effective techniques for feature selection when complicated and high-dimensional datasets are 
handled incorrectly[9]. Both of these issues may be explained by the algorithms' incompetence to 
properly govern the datasets[10]. Conventional evaluation criteria accuracy, precision, and recall are 
helpful even if they provide a limited perspective of the performance of a model[11]. This is especially 
apparent in disciplines comprising the classification of many different variables when numerous 
elements are involved[12]. Beyond these signals, a thorough evaluation procedure encompassing extra 
metrics such Cohen's Kappa, RMSE, and MCC is required to provide a full assessment of stress detection 
models[13]. This facilitates one's decision on whether these models effectively detect stress. Under line of 
this analysis, the fundamental problem under consideration is the mismatch between assessment and 
accuracy[14]. 
The paper proposes an Ant Lion Optimisation (ALO) model driven by DL with the intention of stress 
detection and classification utilising heart rate data. The goal of it is to find solutions for the problems 
underlined in the previous paragraphs[15]. By means of ALO, the dimensionality of the input data is 
lowered while maintaining the most relevant properties for the present problem, therefore facilitating a 
good feature selection. It comprises many DL architectures aiming at a robust categorisation 
system[16,17].  
 
Contribution of this paper 
 The findings that were obtained enable ALO to be presented as a better approach for feature 

selection than more conventional techniques such RFE and PCA. It reduces overfitting that arises 
from selecting significant features in an effective way, therefore enhancing the performance of the 
model. 

 DBN, MLP, and XGBoost have been combined uniquely prompted by establishing multi-class stress 
detection. Moreover, this mix provides greater flexibility and accuracy than presently in use models. 

 Furthermore highly weighted in the analysis are sophisticated metrics such MCC, RMSE, Cohen's 
Kappa, and other similar evaluations. These steps provide a more whole evaluation of the accuracy 
and precision of the model performance than more traditional tests including accuracy and 
precision.  

 
Summary 
The paper presents a DL-assisted ALO model for heart rate data stress detection and classification. By 
lowering data dimensionality while maintaining important features, ALO improves feature selection and 
hence reduces overfitting problems in such methods as RFE and PCA, thereby improving model 
performance. Combining DBN, MLP, and XGBoost designs with sophisticated evaluation metrics such 
MCC, RMSE, and Cohen's Kappa yields a more comprehensive and accurate evaluation of stress 
classification systems. When compared to current models, the suggested method shows reasonable for 
quite dependability, accuracy, and flexibility. The upcoming section is as follows: section 2 deliberates the 
related works, section 3 examines the proposed methodology, section 4 describes the results and 
discussion and section 5 concludes the overall paper work. 
 
2. RELATED WORKS 
Wearable sensors proliferate an ML advances help to build stress detecting systems based on 
physiological data such as heart rate, EEG, ECG, and Pulse Polarisation. These systems analyse 
physiological data, hence being able to detect stress. Among the vital roles these systems fulfil are stress 
level monitoring and control, which can have major long-term effects on health. These very crucial system 
purposesaims to analyse ML approaches based on multimodal data from wearable sensors for stress 
detection holistically. Many of the approaches are discussed in many lectures strewn about the book. This 
paper aims to analyse the effectiveness of ML techniques in the categorisation of stress responses 
utilising many environments including driving, learning, and working. It additionally analyses at 
additional approaches such edge computing to maintain real-time stress monitoring. 
 
Machine Learning Techniques (MLT) 
The paper presents a thorough overview with an emphasis on stress detection by wearable sensors and 
applied ML approaches. The paper analyses the stress detection techniques used in line with the sensory 
devices wearable sensors, Electrocardiogram (ECG), Electroencephalography (EEG), and 
Photoplethysmography (PPG), and also depending on different environments including during driving, 
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learning, and working. Emphasising the stresses, methods, outcomes, benefits, constraints, and problems 
for each analysis, one can want to create a road map for subsequent proposes[18]. At this point, provided 
is a multimodal stress detection system employing a wearable sensor-based DL approach. 
A dependable, reasonably priced, acute stress detection device might let its users better control and 
monitor the level of stress to minimise its long-term detrimental consequences. Papers using ML based 
techniques for stress detection will be reviewed and discussed in this paper[19]. It additionally plan to 
address the current methods out there that have made use of edge computing to provide a possible 
answer in real-time stress monitoring. 
 
Deep Neural Networks (DNN) 
Analysing physiological signs is a consistent indicator of stress, according in the past. These signals come 
from sensors attached to the human body. By use of conventional ML techniques for analysing 
physiological information, analysts have tried to identify stress. Results vary in accuracy from 50 to 90%. 
One of the limitations of conventional ML techniques is the need for handcrafted features. 
Misidentification of characteristics reduces accuracy. This paper constructed two deep neural networks a 
multilayer perceptron neural network and a 1-Dimensional (1D) convolutional neural network to solve 
this shortfall. Through the layers of the neural networks, deep neural networks collect features from raw 
data rather than requiring handcrafted features. Using physiological data gathered from wrist-worn and 
chest-worn sensors, the deep neural networks investigated two tasks. Each neural network created was 
specifically designed for analysing data from either wrist-worn (multilayer perceptron) or chest-worn (1D 
convolutional) sensors. Initially the networks separated between stressed and non-stressed states in 
binary classification for stress detection[20]. 
With IoT-based sensors for healthcare easily available, visible and measurable physical traits of the 
human body, physiological changes in the body can be recorded using different wearable devices[21].  
 
 
Enhanced Deep learning assisted Convolutional Neural Network (EDCNN)  
Proposed to help and enhance patient prognostics of heart disease is the Enhanced Deep learning aided 
Convolutional Neural Network (EDCNN). The EDCNN technology has been used on the Internet of Medical 
Things Platform (IoMT) for decision support systems which enables clinicians to efficiently diagnose 
cardiac patient information on cloud platforms anywhere in the globe[22]. The test results show 
compared with conventional approaches such Artificial Neural Network (ANN), Deep Neural Network 
(DNN), Ensemble Deep Learning-based Smart Healthcare System (EDL-SHS), Recurrent Neural Network 
(RNN), Neural Network Ensemble method (NNE), based on the analysis the designed diagnosis system 
can efficiently determine the risk level of heart disease effectively.  
Using baseline stress self-reports, one can created a hybrid strategy of personal level stress clustering to 
boost the effectiveness of person-independent models without needing a significant volume of personal 
data. It additionally included decision level smoothing to our unobtrusive wristwatch based stress level 
distinction system to improve the performance by fixing incorrect labels issued by the ML algorithm. It 
gathered physiological data from 32 participants of a summer school using wrist-worn inconspicuous 
wearable sensors to try to test and assess this strategy. There are baseline, lecture, test, and recuperation 
sessions making up this event. A stress management technique was used to help the attendees of the 
rehabilitation session relax[23]. Separately will analyse the perceived stress expressed as NASA-TLX 
questionnaires gathered from the users as self-reports and physiological stress levels obtained using 
wearable sensors. It effectively differentiated the three levels of stress using the approach. By means of 
high-level accuracy computation and decision level smoothing techniques as well as by personal stress 
level clustering, this paper significantly improve our performance. 
 
Analysis of supervised-learning 
Statistics verified that many kinds of data/signals (related to skin temperature, electro-dermal activity, 
blood circulation, heart rate, facial expressions, etc.) are used in stress diagnosis. Furthermore, on 
multimodal data compiled using behavioural testing, electroencephalogram signals, finger temperature, 
respiration rate, pupil diameter, galvanic-skin-response, and blood pressure, there is possibility for using 
different nature-inspired computing techniques (Genetic Algorithm, Particle Swarm Optimisation, Ant 
Colony Optimisation, Whale Optimisation Algorithm, Butterfly Optimisation) and DL techniques. 
Additionally, there is more opportunity to analyse the use of SL and SC approaches in stress diagnosis 
employing numerous features including sentiment analysis, speech recognition, handwriting recognition, 
and facial expressions[24].Analysed a thermal infrared imaging contactless method for drivers' stress 
level evaluation[25]. 
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3. PROPOSED METHOD 
Research in mental health is advancing at a rapid pace, highlighting the critical need for reliable methods 
of stress diagnosis and classification. Traditional machine learning and deep learning techniques have 
shown their potential when applied to physiological data for the purpose of stress level prediction; 
nevertheless, the models that are currently in use often fail to achieve high accuracy, particularly when 
dealing with multi-class classification issues. To address the limitations of stress classification models, the 
proposed method use ALO to choose characteristics in an effort to make them more precise and 
adaptable. There are instances where overfitting and sluggish convergence plague traditional feature 
selection methods like RFE and PCA. The objective of the ALO-based architecture is to enhance stress 
detection capabilities. Stress classification utilizing XGBoost, MLP, and DBN classifiers becomes more 
efficient and accurate with this technique. A number of robustness measures are used to evaluate the 
model, including Cohen's Kappa, RMSE, and MCC.  
Contribution 1: AI-powered feature selection using Ant Lion Optimization (ALO): A First Overview 
The main goal of employing ALO for feature selection is to improve the efficiency and accuracy of stress 
classification algorithms. Conventional methods, such RFE and PCA, have problems with overfitting and 
insufficient convergence. To address these challenges, ALO improves DL model efficiency by extracting 
the essential elements. This optimization strategy provides a sound framework for selecting traits that 
make stress classification issues involving several classes more adaptable and generalizable, and it is 
based on ant lion hunting strategies.  
 

 
Figure 1: Stress Prediction Model Using Ant Lion Optimization (ALO) 

 
On display in Figure 1 is a comprehensive model for stress level prediction. By making use of the SWELL-
KW dataset. The first stages of this process include gathering, organizing, and cleansing the data. 
Exploratory research begins with the application of statistical tools after data cleansing. Data clustering 
groups comparable points together before feature selection and model training. Using the ALO algorithm 
for feature selection is a game-changer in this framework. PCA and RFE feature selection algorithms 
sometimes overfit, however ALO may help to find the most important features while decreasing this risk.  
During training, the hyperparameters of a stress prediction model are adjusted. Some of these parameters 
include the number of layers, learning rate, batch size, and epoch. Classification is performed using 
XGBoost, DBN, and MLP after the features selection. This framework offers a robust solution for stress 
detection using physiological data to improve the precision and adaptability of multi-class stress 
classification. 
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Figure 2: EEG-Based Stress Level Prediction Using XGBoost Classifier 

 
The two stages of stress level prediction utilising EEG data, training and testing, are shown in Figure 2. 
EEG data is acquired and pre-processed to begin training. Artefacts and powerline noise are removed 
throughout this procedure to prepare the data for further analysis. Once the EEG data has been pre-
processed, useful insights is extracted using feature extraction algorithms. A classifier is supplied with 
them. The fundamental model is trained to understand stress patterns using XGBoost upon retrieval of 
the characteristics.  
New EEG data is acquired and processed in a similar manner, eliminating noise and body artefacts to 
ensure signal purity during testing. A second round of feature extraction is performed to retrieve the 
relevant portions of the EEG data. By feeding these characteristics into the trained classifier from before, 
this paper were able to get an estimate of the subject's stress level. Integrating ML with signal processing 
allows for the accurate detection of stress. In both steps, the XGBoost classifier is crucial. Using the data 
acquired, it produces accurate stress estimations, demonstrating the method's long-term viability. 
 
Contribution 2:Development of a Hybrid Classification Framework 
Using ML/DL models such as DBN, MLP, and XGBoost in conjunction with ALO produces a hybrid 
categorization system. This method enhances model performance by reducing feature dimensionality via 
efficient feature selection using ALO. Even when faced with a large number of stress classes, ALO's 
combination with these classifiers allows for effective detection and categorization of stress. Using the 
SWELL-KW dataset, this hybrid model aims to improve upon earlier methods of stress classification in 
terms of accuracy and adaptability. 
 

 
Figure 3: Deep Learning and Ant Lion Optimization Stress Detection and Classification Workflow 
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Using heart rate (HR) data and an ALO deep learning model, Figure 3 depicts a comprehensive workflow 
for stress identification and categorization. The heart rate data is collected using monitoring equipment 
that operates in real-time. Cleaning, normalizing, and scaling are some of the pre-processing methods that 
improve the raw data quality. To extract features, the most important parameters are the average heart 
rate and the heart rate variability (HRV). To improve precision while reducing dimensionality, ALO 
selects the most important properties for stress classification and optimizes them to enhance the 
recovered features. 
Once the characteristics have been improved and inputted into the network, the convolution and 
recurrent layers use a DL architectural model. This approach employs nonlinear transformations to 
categorise stress levels. Following the fine-tuning of a stress classification layer utilising many stress 
indicators, the final classification is presented to users. 
The figure depicts the complex process of stress detection and emphasises how ALO improves the 
performance of the DL model by tackling issues such as overfitting and feature selection. 
 

 
Figure 4: Ant Lion Optimization (ALO) Flowchart for Stress Classification 

 
Figure 4 shows the ALO method is used to choose features for stress classification systems. After the issue 
is initialised, the next step is to find the best solution. The number is incremented and an ant-lion is 
selected using the roulette wheel with each repetition. The ant's position is altered as possible replies are 
created using a normalized random walk. The algorithm makes the necessary adjustments to the site 
based on whether the ant's fitness function is greater than the ant-lion's. Assuming it is more fit, the ant-
lion will be the top choice. When the conditions for termination are met, the loop terminates. At the end of 
the procedure, will have the best solution. Integrating the ALO into DL models like DBN and XGBoost 
improves the accuracy of stress detection by minimizing typical problems with older approaches, such as 
overfitting, and improving feature selection with fast convergence.. 
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Contribution 3:Comprehensive Model Evaluation Metrics 
This method emphasizes the requirement of using evaluation metrics to provide a thorough review of the 
model's performance. When dealing with complicated categorization problems, the usual metrics like as 
F-measure, recall, accuracy, and precision do not work. Utilizing metrics like Cohen's Kappa, RMSE, and 
MCC, this paper conducted a comprehensive evaluation of the proposed hybrid model. To compare and 
improve the model in the future, these metrics provide insight into its reliability and accuracy in stress 
categorization. 
 

 
Figure 5: Stress Level Prediction Framework with ALO-Based Feature Selection and Classification 

 
Figure 5 illustrates that the stress prediction system depends on the implementation of ML models for 
data selection and classification. Data preparation include activities such as cleansing, standardising, and 
feature engineering. Next, the data will be readied for analysis. A baseline set of characteristics is 
obtained to facilitate further improvements after pre-processing.  
The unique aspect of the framework is the usage of ALO for feature selection. The ALO algorithm 
enhances model performance by minimising dimensionality and overfitting, two issues that may occur 
with more traditional methods such as RFE. The method does this by eliminating the first set of data that 
contains the most important properties.  
The data is sent through three separate categorisation algorithms having selected the most effective 
characteristics. These models may predict how stressed out the person would feel by analysing the 
chosen traits.  
Model fit is assessed by quantitative metrics such as MCC, RMSE, and Cohen's Kappa. Reports are 
generated and the models' general accuracy and adaptability are evaluated in performance analysis. 
Applying this approach in real-world scenarios ensures accurate stress calculations. 
The proposed method for stress classification integrates ALO with ML and DL models to improve the 
accuracy of multi-class stress detection. Since feature selection methods like RFE and PCA can lead to 
overfitting, ALO provides a robust mechanism for identifying the most crucial features, making it a vast 
improvement over these methods. Prior to data classification utilising XGBoost, DBN, and MLP, the 
framework optimises many crucial model parameters, including layers, learning rates, and batch sizes. In 
addition to the usual recall, accuracy, and precision metrics, this paper supplement the image of the 
models' performance with Cohen’s Kappa, RMSE, and MCC. By combining ALO with advanced classifiers, 
this novel framework surpasses earlier models in stress prediction. Implementing this approach to 
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provide dependable and precise stress level predictions is an excellent means to improve stress detection 
applications in practical settings. 
 
4. Analytic Discussion  
𝑀𝐹 𝑒 𝑚2 , 𝑞𝑤 , 𝑟 ≥ 𝑢, 𝜕𝑚 ≡ 𝐶 𝑣, 𝛽 ∩ 𝐺𝑤        (1) 
Meet or surpass a threshold 𝑢 in the equation 1 at hand where a function 𝑀𝐹  that depends on 
characteristics like heart rate 𝑒 (which might be represented by variables 𝑚2, 𝑞𝑤, and others) is required 
𝜕𝑚. The link between this condition and 𝐶 𝑣, 𝛽 , which might represent a particular weighting function 
∩ 𝐺𝑤 . This equation provides the feature selection criterion for Ant Lion Optimisation, ensuring that the 
essential classification thresholds are maintained. 
𝐺 𝑅 𝑚, 𝑢𝑞  ≥ 𝑔 𝑟 +  ∀𝑢, 𝜀𝑝 ≡ 𝐶 𝑒, 𝜕 ≥ 𝑃𝑛−2    (2) 

With the condition that it holds for every ∀𝑢 and 𝑅 𝑚, 𝑢𝑞 , equation 2 seems to depict a connection 
between a function 𝐺, which is dependent on characteristics like 𝜀𝑝, and a threshold 𝑔 𝑟 . The function of 
convergence, denoted as 𝐶 𝑒, 𝜕 , must be greater than or equal to 𝑃𝑛−2, which signifies a necessary degree 
of performance. The goal is for the model to choose characteristics that are ideal and perform up to 
standards. 

𝑃2 𝐺2, 𝑚 𝑝𝑘 , 𝑒𝑟 > 2, 𝜕3  𝑛, 𝑊 . 𝐸 ≥  𝜔 + 𝜌𝜋      (3) 

The convergence condition 𝑃2  implies that the model parameters 𝐺2, 𝑚 𝑝𝑘 , 𝑒𝑟 (which might be 
associated with the network layers 𝜔 + 𝜌𝜋 or data points), 𝜕3  (weights), and  𝑛, 𝑊 . 𝐸 were considered. 
The success of the Ant Lion Optimisation procedure in enhancing model accuracy and lowering error is 
ensured when the model's feature selection in equation 3. 

  𝑒 ∗ 𝑀𝑝    𝑔, 𝑣𝑝𝑛−2𝑤 = 2 ≡  𝐻 ∗  𝑅𝑃−1  𝑚, ∀ − 𝑆 𝑝  = 1    (4) 

One term,  𝑒 ∗ 𝑀𝑝  , represents feature mappings or model weight adjustment  𝑔, 𝑣𝑝𝑛−2𝑤 , while the 

other,𝐻 ∗  𝑅𝑃−1, indicates a complicated function of characteristics  𝑚, ∀ − 𝑆 𝑝   like velocity or variation 

over time. To achieve correct stress categorization, this equation is utilized to balance model optimization, 
which involves fulfilling particular requirements in equation 4. 
𝐵:  𝑚 ≡ 𝐶 𝑟, ∀𝑞 : 𝐺 𝑚2 > 𝐸𝑣 + 𝑀𝑞 𝑛 − 2𝑣       (5) 
If the function 𝐶 𝑟, ∀𝑞  (which might be a function 𝐸𝑣  of squared aspects 𝐵 or model output 𝑚) is greater 
than a threshold determined by 𝐺 𝑚2  (error or energies function) and 𝑀𝑞 the equation 5 must be 
satisfied by 𝑛 − 2𝑣. With this equation as a guide, this paper can limit sophistication and 
misunderstanding while making sure the right characteristics help the model perform better. 

𝑒 𝑀 𝑝. 𝑢 , 𝑟 ≥ 𝑞 𝑣′ − 𝑏𝑝 = 𝑔 𝑀 𝑒, 𝑡𝑣𝑛−2     (6) 

The model's energy might be represented by the following equation 6 𝑀 𝑝. 𝑢 , 𝑟 where𝑟, 𝑞 𝑣′ − 𝑏𝑝  are 

the parameters that must be larger than or equal to 𝑔 and 𝑒, 𝑡𝑣𝑛−2 , respectively. The goal of the equation 
is to minimize the energy function or model error. 
𝐸 𝐾𝑛2 𝑍𝑋𝑚𝑛−2𝑣  = 𝐹 𝑚𝑖𝑛𝐻  𝑛0 , 𝐻 𝑄2𝑃      (7) 

The translated feature 𝑍𝑋𝑚𝑛−2𝑣  and the model parameters 𝐾𝑛2 and 𝐸 are independent variables in the 
equation 7. Based on the starting circumstances 𝐻 𝑄2𝑃  and a further parameter combination 𝑚𝑖𝑛𝐻  𝑛0 , 
hazard function 𝐹. The goal of this equation is to maximize model performance by minimizing complexity 
and selecting the most important characteristics. 
∀=  P r𝑣2−𝑝  → 𝑅𝑧 𝑀𝑛2 + 𝑅𝑓 + 𝑁 𝑍2𝑟 𝑠 − 𝑣𝑞    (8) 

P r𝑣2−𝑝  is a model-dependent function that involves squared parameters ∀, model weights 𝑅𝑧, and 
feature 𝑅𝑓; it is likely a feature function that depends on velocity 𝑁, rate 𝑍2𝑟, and parameter 𝑠 − 𝑣𝑞 and 
leads to the equation 8 where is a feature function. With this, by outlining the connection between 
parameter values for models and feature modifications. 
𝐸𝑞 ≡ 𝑀𝑣𝑏2𝑛−𝑞 :  𝑟 ≤  𝐻𝑏 − 𝑞𝑟 → 𝑔 𝑟 ≥ 𝐻 2    (9) 

There is a constraint 𝐸𝑞 that states that the magnitude of  𝑟  (a rate 𝐻 2 ) must not be beyond a threshold 
specified by 𝑀𝑣𝑏2𝑛−𝑞  in the equation 9 where 𝐻𝑏  (which is probably a model function containing 

parameters 𝑞𝑟, 𝑔 𝑟 . To guarantee that the chosen characteristics result in satisfactory performance 
levels, the equation's goal is to set limits on the model's parameters. 

−𝑜𝑝𝑘 ∀3𝑚  𝑒, 𝑉, 𝜕𝑄  +  𝑀𝑡𝑄 𝑣, 𝑒, ∀2𝑃 = 0 𝑖𝑛 𝜀   (10) 

A possible adjustment ∀3𝑚 in feature selection  𝑒, 𝑉, 𝜕𝑄  is represented by the equation −𝑜𝑝𝑘, which 
includes 𝜀 a process on features 𝑀𝑡𝑄, and a derivative 𝑣, 𝑒, ∀2𝑃. When classifying stresses, it is important 
to keep the model's accuracy and stability in mind by equation 10. 
 𝑀 𝑦, 𝑝, ∀  ≥  𝐵0 𝑌𝑛2 − 𝐾𝑣 −  𝐶2 𝑞𝑝𝑣2∗𝑒𝑟  + 𝑑𝑣0 𝑝𝑛′   (11) 

For the model, function (𝑀 𝑦, 𝑝, ∀ to be valid, the magnitude of the variables (𝐵0), parameters (𝑌𝑛2 −
𝐾𝑣), and any other relevant factors 𝐶2 must be greater than or equal to a certain threshold. A baseline 
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adjustment based on feature parameters 𝑌𝑛2  is included in these terms as is 𝑞𝑝𝑣2∗𝑒𝑟  which is a penalty 

term based on feature interaction and error rate, and an extra adjustment term is 𝑑𝑣0 𝑝𝑛′ . To improve 

the model's stress classification accuracy, this equation is designed to guarantee feature contribution, 
sanctions, and modifications in equation 11. 

 𝑀𝑒
𝑣−𝑝 − 𝑁 𝑘𝑣′ + 𝑛𝑝  =  𝑀𝑛2𝑏 ∗ 𝑝′ + 𝑃𝑘 𝑣2 − 𝑄𝑝   (12) 

The quadratic features 𝑀𝑛2𝑏 ∗ 𝑝′ and parameter 𝑁 𝑘𝑣 ′ + 𝑛𝑝  are involved in the equation 12 𝑀𝑒
𝑣−𝑝  

respectively, which might represent the output 𝑃𝑘 𝑣2 − 𝑄𝑝  or weight adjustment of a model. By doing so, 
the accuracy of the model is optimised by aligning its outcomes with specified thresholds or limitations. 

−𝑃𝑤𝑡  𝐸𝑓 ∗ 𝑄 𝑤𝑚2 ∗ 𝐸𝑝  = 𝑉𝑀2 ∗ 𝐸𝑝 𝑓𝑟 ∗ 𝑘𝑛   (13) 

The function associated with features 𝐸𝑓  and error parameters, −𝑃𝑤𝑡, is used in the equation 13 to 

indicate 𝑄 𝑤𝑚2 ∗ 𝐸𝑝  a weighted penalty or compensation term. A model term that incorporates the 
detection on physiological for stress classification. 

𝑀 𝑝 ∗ 𝑣𝑚  = 𝑀 𝑦, 𝑞𝑚 ∗  𝑣𝑞𝑛2 ∗ 𝐸𝑟  ∗ 𝑄 𝑣𝑚𝑛
𝑟     (14) 

The function that describes the model, denoted as 𝑀 𝑝 ∗ 𝑣𝑚  , is dependent on the parameters 𝑦, 𝑞𝑚. The 
𝑣𝑞𝑛2 ∗ 𝐸𝑟 as a function that incorporates 𝐸𝑟, in conjunction with a distinct model component that is 
involved in equation 14. To maximize the efficiency of stress detection and classification, this equation is 
designed to provide results from a separate set by coordinating various features for stress classification. 

 𝑝𝑘  𝑚2𝑄 ≤ min   𝑁𝑓 . 𝑀 𝐸, 𝑟. ∀𝑞   ∗  𝑅2𝑣 − 𝐸𝑝 𝑣2𝑟 + 2   (15) 

The total of  𝑝𝑘  must be 𝐸, 𝑟. ∀𝑞 equal to the minimum of a coupled term 𝑚2𝑄, as stated in the equation 
15. Error penalties 𝑅2𝑣  are represented by the term 𝑁𝑓 . 𝑀 on the right side, which is a combination of 

feature adjustments 𝐸𝑝, model 𝑣2𝑟 + 2, and characteristics. To maintain a reasonable trade-off between 
model complexity in stress classification, this equation is used for MLP classifier in stress classification. 

|| − 𝑀𝑖𝑛  𝑏𝑣𝑟 ∗ 2𝑞  𝑏2
𝑦
𝑒 + 𝐸𝑓 𝑚𝑘 − 𝑒𝑣2         (16) 

Where 𝑏𝑣𝑟 ∗ could stand for error terms 2𝑞 or feature functions 𝑏2
𝑦
𝑒, the equation 16 𝑀𝑖𝑛, 𝐸𝑓, and a sum 

including 𝑚𝑘 − 𝑒𝑣2 are all involved. Using this equation, this paper may find the minimum amount of a 
model's change that can guarantee feature interactions in XGBoost classifier in stress classification. 

∀𝑚2 =  𝜕𝑞 ≡ M 𝑟𝑢−2t ∗  X 𝑅𝑝𝑞 − Nq 𝑣2 − Pk      (17) 

Under these circumstances, the equation 17, ∀𝑚2 is augmented by another term 𝜕𝑞. In this case, M 𝑟𝑢−2t  
incorporates parameters X, 𝑅𝑝𝑞 , while Nq incorporates changes depending on 𝑣2 − Pk, and other 
variables. To make sure that feature interactions and parameters this equation specifies the variables 
used in the model and adjustments should be on the evaluation of DBN, MLP, and XGBoost classifiers. 
𝐺 < min 𝐸 𝐹2 ∗ 𝑝𝑤𝑛2−𝑞 = 𝑌 ≡ 𝐵 𝑐𝑣2 − 𝑄𝑝 , 𝐶𝑑 ≅ 𝐹𝑝 ∗ 𝑄   (18) 
Equation 18, incorporates an error term (𝐹2 ∗ 𝑝𝑤𝑛2−𝑞 ) that is defined as min𝐸 and contrasted with a 
baseline term (𝐺) incorporating model parameters (𝑌, and \( p \)). Further, the equation 𝐵 𝑐𝑣2 − 𝑄𝑝  
implies a connection 𝐹𝑝 ∗ 𝑄 or close approximation between the terms 𝐶𝑑. The goal is for the model's 
accuracy and efficiency to be maximized while minimizing errors on comparison of DBN, MLP, and 
XGBoost models. 
𝑀 𝑦, −𝑟, −𝑉𝑞 = 𝑀 𝐸, 𝑓, 𝑣𝑚−2𝑏 ∗ 𝐸𝑞   (19) 
The equation 19 (𝑀 𝑦, −𝑟, −𝑉𝑞 ) which incorporates parameters 𝑀. The equation 19, 𝐸, 𝑓, 𝑣𝑚−2𝑏 ∗ 𝐸𝑞 
which incorporates E, f, and a term that uses model features in conjunction with adjustments. To get 
reliable results for stress categorization, this equation is used for the DBN model for stress classification. 

𝑄𝑤 ∗ 𝑅𝑝 =  𝑒𝑟𝑀3 ∗ 𝐾𝑞 𝑤2𝐹 𝑚𝑛 ∗ 𝑘      (20) 

The given equation 20 describes the situation when the product of two terms, 𝑄𝑤 ∗ 𝑅𝑝 and 𝑒𝑟𝑀3)—an 
absolute term involving 𝐾𝑞 and 𝑤2𝐹 —and 𝑚𝑛 ∗ 𝑘 a product involving parameters. To achieve accurate 
stress classification equation 20 does precisely that by balancing both the combined impact of feature 
weights and modifications on XGBoost model for stress classification. 
 
5. RESULT AND DISCUSSION 
Stress is one of the areas that can enhance the health and disease diagnosis and so stress detection using 
physiological data has only recently received attention as a technical component. On the other hand, 
within stress categorisation, both DL and more classical ML models have been applied, although it 
remains challenging to reach very precise results. That evaluates the applicability of XGBoost, MLP, and 
DBN on the SWELL-KW dataset. In the course of the feature selection, ALO is applied to identify the most 
functional physiological characteristics of the subjects to increase the effectiveness of the model. The 
application of sophisticated model evaluation criteria such as Cohen’s Kappa, RMSE and MCC sheds more 
light into the models. This paper compares models ALO and classifier and shows how ALO increases the 
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accuracy of classification and handles stress level classification problems especially in multi-level stress 
that includes low, medium and high stress. 
 

Table 1: Table for DBN 
Aspect Values 
Accuracy 97.71159798211197 
Precision 97.71065767672006 
Recall 97.35572963508204 
F1-score  97.70981158297876 
RMSE 0.17813073381957242 
matthews_corrcoef 0.9615574578336887 
Kappa 0.9627492199942581 

 
In this table 1 for a Deep Belief Network (DBN), key performance metrics are presented. Accuracy, 
precision, recall, and F1-score reflect the model's predictive capability, all exceeding 97%, indicating high 
classification performance. The low RMSE demonstrates strong predictive accuracy. Matthews correlation 
coefficient (0.9616) and Kappa (0.9627) suggest excellent reliability and agreement in classification. 
 

 
Figure 6: Correlation Heatmap of Physiological Features for Stress Classification 

 
The correlation matrix of the physiological measures used for stress categorisation in the SWELL-KW 
dataset is shown in the heatmap in Figure 6, following. Correlation strengths are shown by the intensity 
of the colours, whereas darker tones indicate stronger correlations. The relationships within the matrix 
highlights elements for understanding stress levels, such as SDRR, RMSSD_REL_RR, and LF_HF. This 
visualisation improves the feature selection process of the ALO algorithm, enabling the DL model to 
concentrate on the most significant features, minimise redundancy, and optimise classification accuracy 
in general. 
 

Table 2: Table for XG Boost 
Aspect Values 
Accuracy 78.8389832573782 
Precision 78.87976993473026 
Recall 74.31335487339267 
F1-score  78.49706528761318 
RMSE 0.5609142663312795 
matthews_corrcoef 0.6393775764222028 
Kappa 0.6322749082408294 
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In this table 2 for an XGBoost model, performance metrics are displayed. The accuracy and precision are 
around 78%, indicating reasonable classification performance. However, recall is slightly lower at 74%, 
suggesting room for improvement in detecting all true positives. The higher RMSE (0.56) points to lower 
predictive accuracy compared to DBN. Matthews correlation coefficient (0.6394) and Kappa (0.6323) 
suggest moderate agreement and classification reliability. 
 

 
Figure 7: Line Plots of Key Physiological Features for Stress Classification 

 
Figure 7 shows time-series line graphs for four important physiological variables utilized in the stress 
categorisation framework: SDRR_RMSSD_REL_RR, Median_RR, Median_Rel_RR, and Mean_RR. These 
properties vary between data sets, and each figure shows how these attributes vary, exposing patterns 
and variations that are important for stress identification. Feature selection using ALO is further justified 
by the time-series analysis as it aids in selecting the most important variables for classification. The 
suggested DL models, including DBN, MLP, and XGBoost, efficiently handle the dynamic nature of the 
physiological data. 
 

Table 3: Table for MLP 
Aspect Values 
Accuracy 69.54402554041869 
Precision 71.48860492985119 
Recall 61.19490310872606 
F1-score  67.56830216247799 
RMSE 0.6194084313011043 
matthews_corrcoef 0.4721114162362617 
Kappa  0.4620843634872548 

 
In this table 3 for a Multi-Layer Perceptron (MLP) model, the accuracy is 69.54%, and precision is slightly 
higher at 71.49%, showing decent classification performance. However, recall is lower at 61.19%, 
indicating missed true positives. The RMSE (0.619) suggests lower predictive accuracy. Matthews 
correlation coefficient (0.472) and Kappa (0.462) indicate moderate reliability but a weaker overall 
agreement compared to other models. 
 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 

 

                                                                                 280                                                       Fathima Kondeth et al 269-284 

 
Figure 8: Confusion Matrix for MLP Classifier in Stress Classification 

 
The MLP model for multi-class stress classification is shown in Figure 8 using the confusion matrix as its 
foundation. The above matrix shows the MLP classifier's performance on the SWELL-KW dataset when 
three different stress levels are taken into account: 0, 1, and 2. The diagonal represent accurate 
classifications and off-diagonal represent mistakes. In class 1, 20,000 were accurately categorised, but 
6,100 were wrongly assigned to class 0 and 3,200 to class 2. Class 1 represents moderate stress and is 
identified with high accuracy by the model. However, there is a larger probability of misclassification 
between classes 0 and 2, suggesting that lower and higher stress levels may share characteristics. To 
improve model performance, especially when distinguishing between closely related classes, it highlights 
the need of robust feature selection methods such as ALO. 
 

 
Figure 9: Confusion Matrix for XGBoost Classifier in Stress Classification 

 
Figure 9 displays the XGBoost classifier's confusion matrix for the stress classification issue after training 
on the SWELL-KW dataset. The model's discrimination abilities across the three stress levels are shown in 
the matrix. On the diagonal, can see the amount of accurate forecasts, and off the diagonal, can see the 
quantity of incorrect ones. The XGBoost model made 20,000 accurate class 1 identifications, 3,200 
incorrect class 0 identifications, and 1,700 accurate class 2 identifications. While XGBoost outperforms 
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MLP in class 0 (7,800 accurate predictions), it still has significant issues distinguishing between classes 1 
and 2. In class 2, 4,800 instances are correctly identified, suggesting XGBoost succeeds at discriminating 
between higher stress levels. The XGBoost model can differentiate between low and high stress levels and 
out performs others in multi-class stress classification, proving that ALO feature selection is accurate. 
 

 
Figure 10: Comparative Performance Evaluation of DBN, MLP, and XGBoost Classifiers 

 
Based on the multi-class stress classification test, Figure 10 presents a comprehensive analysis of the 
accuracy, recall, F1 score, and precision of the XGBoost, MLP, and DBN models. By achieving a 95% F1 
score, recall, accuracy, and precision, the DBN model surpasses its rivals in the classification and 
generalisation of stress levels. The MLP model reveals the worst results, with a recall that falls below 
70%, suggesting that accurately detecting all stress levels is a struggle. When compared to MLP, the 
XGBoost model performs far better, particularly in recall, while still being comparable with respect to 
accuracy and F1 score. These results suggest that DBN, with the aid of Ant Lion Optimization (ALO) for 
feature selection, is the most effective model in the proposed framework, followed by XGBoost, which 
performs well in differentiating stress levels but slightly lags behind DBN. 
 

 
Figure 11: Performance Comparison of DBN, MLP, and XGBoost Models 

 
The three models XGBoost, MLP, and DBN are compared in Figure 11 using three performance metrics: 
Cohen's Kappa, RMSE, and MCC. DBN emerges as the superior model due to its substantial RMSE, minimal 
MCC, and Kappa values. The Multilayer Perceptron (MLP) exhibits convergence to comparable values for 
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all measures and demonstrates consistent performance across all evaluation criteria. When compared to 
DBN and MLP, XGBoost consistently has the highest MCC and Kappa values, establishing it as the better 
model. The XGBoost model outperforms DBN in terms of prediction errors when stress classification is 
done using ALO-assisted feature selection. 
 

 
Figure 12: Confusion Matrix of DBN Model for Stress Classification 

 
The confusion matrix of the stress classification model, as determined by the DBN method, is shown in 
Figure 12. Evaluation of the provided labels in connection to the anticipated stress levels demonstrates 
the accuracy of the model. Class 1 is sometimes mistaken for class 0 (320 occurrences) and class 2 (160 
instances) in the off-diagonal cells, where misclassifications are indicated. Class 1 and class 2 are 
somewhat confused, although class 0 and class 1 are not too confused (210 occurrences).  
This matrix shows that DBN has the most trouble differentiating between classes 1 and 2 of stress. Even if 
other models may show superior accuracy, DBN is still able to attain a decent performance with the help 
of Ant Lion Optimization-assisted feature selection. 
 

 
Figure 13: Confusion Matrix of XGBoost Model for Stress Classification 

 
Figure 13 shows how well XGBoost model's confusion matrix predicts stress levels across three 
categories, low (0), moderate (1), and high (2). While there are a few misclassifications in classes 0 and 2, 
XGBoost has great performance overall, with 20,000 accurate predictions in class 1 (moderate stress). 
There are 7,800 accurate predictions for class 0, 1,100 for class 1, and 620 for class 2 that were 
erroneously categorised. There is also considerable ambiguity in the Class 2 predictions: 4,800 were right, 
although 1,300 were wrongly labelled as Class 1 and 790 as Class 0.  
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Compared to DBN, XGBoost exhibits improved accuracy, particularly for high-stress class 2, although 
some errors still occur in differentiating between moderate and high stress (classes 1 and 2). These 
results suggest that the Ant Lion Optimization for feature selection effectively improves XGBoost’s 
classification capability, leading to better performance, especially for the critical task of distinguishing 
higher stress levels. 
These results demonstrate that DL and ML models' performance in stress categorisation is much 
enhanced when ALO is used for feature selection. The MLP model failed to achieve significant 
generalisation with recall scores below 90%, whereas the DBN model succeeded with scores over 95% in 
all four categories. The XGBoost model demonstrated exceptional performance in managing both low and 
high stress levels, but had difficulties in differentiating between categories of intermediate stress. After 
analysing the RMSE, MCC, and Kappa scores, XGBoost was determined to be the better model, with DBN 
following closely behind. Confusion matrices for DBN and XGBoost revealed areas where both models 
performed well, but also highlighted misclassifications, especially between similar stress levels. Overall, 
the ALO-enhanced feature selection process proves effective, offering promising results in stress 
classification and supporting the framework’s applicability in real-world mental health monitoring 
solutions. 
 
6. Conclusion and future works 
This paper presents a tailored ALO model driven by DL utilising heart rate data to allow stress detection 
and categorisation. This model was created to solve the problems utilising another one by means of past 
approaches. Sometimes overfitting comes from RFE and PCA. One avoids overfits and the model might 
efficiently lower the data dimensionality. Using ALO in feature selection is doable and lets this happen. 
Stress categorisation problems affect DL models such DBN, MLP, and XGBoost. These designs help to raise 
the accuracy and flexibility of the model. Using thorough evaluation measures such as Cohen's Kappa, 
RMSE, and MCC will help one to get a more whole perspective of the model's performance. This is not the 
case with traditional measurements requiring accuracy and precision. Statistics show that the suggested 
method improves multi-class stress detection capacity. This offers a more dependable and adaptable 
response for actual application. This approach offers a means to considerably improve stress detecting 
systems and support more effective treatment of mental health issues. 
It will look into future prospects to expand the technique to other diverse datasets and physiological 
markers outside merely heart rate. This paper talk about two situations of physiological signals: EEG and 
GSR. Let shall go over two instances of physiological signals: Together, these two are Furthermore, the 
real-time properties of the edge-based method might enable ongoing observation of the generated stress 
levels arising from regular activities. Considering the possibilities of including more sophisticated bio-
inspired algorithms such as GA or PSO might help the model performance to increase even further. Other 
appealing methods include on particle swarm optimisation and genetic algorithms. This would enhance 
the model and simplify its use in more broad contexts, including the management of stress in the 
workplace or the awareness of mental health issues in medical institutions. Not least of all, if the range of 
multi-class categorisation included various cognitive and emotional states, the model would be stronger. 
 
REFERENCE 
[1] Lu, H., Huang, L., Xie, Y., Zhou, Z., Cui, H., Jing, S., ... & He, W. (2023). Prediction of fractional flow 

reserve with enhanced ant lion optimized support vector machine. Heliyon, 9(8). 
[2] MunishKhanna, Singh, L. K., & Garg, H. (2024). A novel approach for human diseases prediction using 

nature inspired computing & machine learning approach. Multimedia Tools and Applications, 83(6), 
17773-17809. 

[3] IoT, S. H. M. I. (2022). Bat ant lion optimization-based generative adversarial network for structural 
heath monitoring in IoT. The Computer Journal, 65(9). 

[4] Rojas, M. G., Olivera, A. C., & Vidal, P. J. (2024). A genetic operators-based Ant Lion Optimiser for 
training a medical multi-layer perceptron. Applied Soft Computing, 151, 111192. 

[5] Karim, A. M., Kaya, H., Alcan, V., Sen, B., &Hadimlioglu, I. A. (2022). New optimized deep learning 
application for COVID-19 detection in chest X-ray images. Symmetry, 14(5), 1003. 

[6] Challab, J. M., &Mardukhi, F. (2021). A Hybrid Method Based on LSTM and Optimized SVM for 
Diagnosis of Novel Coronavirus (COVID-19). Traitement du Signal, 38(4), 1061-1069. 

[7] Badr, Y., Tariq, U., Al-Shargie, F., Babiloni, F., Al Mughairbi, F., & Al-Nashash, H. (2024). A review on 
evaluating mental stress by deep learning using EEG signals. Neural Computing and Applications, 1-
26. 

[8] Pandiyan, N., & Narayan, S. (2023). A Survey on Deep Learning Models Embed Bio-Inspired 
Algorithms in Cardiac Disease Classification. The Open Biomedical Engineering Journal, 17(1). 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 

 

                                                                                 284                                                       Fathima Kondeth et al 269-284 

[9] Sun, J., Portilla, J., & Otero, A. (2024). A deep learning approach for fear recognition on the edge based 
on two-dimensional feature maps. IEEE journal of biomedical and health informatics. 

[10] Mohd Yamin, M. N., Ab. Aziz, K., Siang, T. G., & Ab. Aziz, N. A. (2023). Particle swarm optimisation for 
emotion recognition systems: a decade review of the literature. Applied Sciences, 13(12), 7054. 

[11] Gamel, S. A., & Talaat, F. M. (2024). SleepSmart: an IoT-enabled continual learning algorithm for 
intelligent sleep enhancement. Neural Computing and Applications, 36(8), 4293-4309. 

[12] Prasanna, K. S., & Challa, N. P. (2023). Deep Bi-LSTM with Binary Harris Hawkes Algorithm-Based 
Heart Risk Level Prediction. SN Computer Science, 5(1), 134. 

[13] Shukla, P. K., Alqahtani, A., Dwivedi, A., Alqahtani, N., Shukla, P. K., Alsulami, A. A., ... & Simic, V. (2023). 
Attaining an IoMT-based health monitoring and prediction: a hybrid hierarchical deep learning 
model and metaheuristic algorithm. Neural Computing and Applications, 1-18. 

[14] Verma, A., Agarwal, G., Gupta, A. K., Kumar, V., & Singh, S. (2024). An adaptive secure internet of things 
and cloud based disease classification strategy for smart healthcare industry. Wireless Networks, 1-
19. 

[15] Hu, W., Cao, Q., Darbandi, M., & Jafari Navimipour, N. (2024). A deep analysis of nature-inspired and 
meta-heuristic algorithms for designing intrusion detection systems in cloud/edge and IoT: state-of-
the-art techniques, challenges, and future directions. Cluster Computing, 1-27. 

[16] Raed, M. W., Yön, S., Günes, A., Kotenko, I., Fedorchenko, E., &Polubaryeva, A. (2023). An RFID based 
localization and mental stress recognition system using wearable sensors. In Proceedings of the 16th 
International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 
2023) (Vol. 4, pp. 325-331). 

[17] Pati, S. K., Banerjee, A., Gupta, M. K., & Shai, R. (2022). NIANN: Integration of ANN with Nature-
Inspired Optimization Algorithms. In Nature-Inspired Optimization Methodologies in Biomedical and 
Healthcare (pp. 113-145). Cham: Springer International Publishing. 

[18] Gedam, S., & Paul, S. (2021). A review on mental stress detection using wearable sensors and 
machine learning techniques. IEEE Access, 9, 84045-84066. 

[19] Nath, R. K., Thapliyal, H., Caban-Holt, A., & Mohanty, S. P. (2020). Machine learning based solutions for 
real-time stress monitoring. IEEE Consumer Electronics Magazine, 9(5), 34-41. 

[20] Li, R., & Liu, Z. (2020). Stress detection using deep neural networks. BMC Medical Informatics and 
Decision Making, 20, 1-10. 

[21] Kumar, A., Sharma, K., & Sharma, A. (2021). Hierarchical deep neural network for mental stress state 
detection using IoT based biomarkers. Pattern Recognition Letters, 145, 81-87. 

[22] Pan, Y., Fu, M., Cheng, B., Tao, X., & Guo, J. (2020). Enhanced deep learning assisted convolutional 
neural network for heart disease prediction on the internet of medical things platform. Ieee 
Access, 8, 189503-189512. 

[23] Can, Y. S., Chalabianloo, N., Ekiz, D., Fernandez-Alvarez, J., Riva, G., & Ersoy, C. (2020). Personal stress-
level clustering and decision-level smoothing to enhance the performance of ambulatory stress 
detection with smartwatches. IEEE Access, 8, 38146-38163. 

[24] Sharma, S., Singh, G., & Sharma, M. (2021). A comprehensive review and analysis of supervised-
learning and soft computing techniques for stress diagnosis in humans. Computers in Biology and 
Medicine, 134, 104450. 

[25] Cardone, D., Perpetuini, D., Filippini, C., Spadolini, E., Mancini, L., Chiarelli, A. M., & Merla, A. (2020). 
Driver stress state evaluation by means of thermal imaging: A supervised machine learning approach 
based on ECG signal. Applied Sciences, 10(16), 5673. 

 
 
 


