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ABSTRACT 
Clustered or hierarchical data structures with binary responses are prevalent in various practical 
applications. These structures can involve an equal or unequal number of observations, leading to the 
analysis of data exhibiting intricate variability patterns. Mixed models, incorporating fixed effects of 
interest and random effects to address clustering, are commonly employed due to their appropriateness 
in practice. Random effects in these models account for multiple error structures. In the domain of 
clustered binary mixed effects models, the Hierarchical Generalized Linear Model (HGLM) stands out as a 
preferred model. This study assesses the performance of the h-Likelihood estimation method for clustered 
binary mixed effects models with both balanced and unbalanced cluster sizes. Evaluation through 
computer simulations considers parameters such as unbiasedness, Type I error rate, power, and standard 
error. The simulations encompass varying numbers of clusters and cluster sizes, revealing nuances in the 
performance of the mixed effects clustered binary data model based on the cluster sizes. 
 
Keywords: Hierarchical Generalized Linear Model (HGLM), H-Likelihood Method, balance, unbalanced, 
Binary Response. 
 
INTRODUCTION 
Numerous research endeavors across health, finance, education, and the social sciences have entailed the 
collection of binary data organized into clusters. For instance, studies might involve the smoking status of 
students sampled from various schools or the disease status of animals from different farms. Such data 
typically exhibit correlations within clusters, where students from the same school or animals from the 
same farm tend to share similarities that distinguish them from individuals in other clusters.In the design 
of these studies, a critical decision point emerges regarding the selection of the number of groups to 
sample from. Opting for a larger number of groups or schools tends to reduce data dependence and 
enhance the precision of estimates related to explanatory variables. In certain experimental settings, 
clusters may be either balanced or unbalanced, with variations in the number of observations within each 
cluster.Unbalanced clusters can arise from uneven sub-sampling practices or random missing elements in 
clustered multivariate outcomes. The presence of different cluster sizes can introduce varying dispersions, 
thereby posing challenges of heterogeneity in models that necessitate distinct variance components, a 
concern previously explored in continuous response studies (El-Saeiti, 2004). This study adopts a nested 
design incorporating mixed effects models, a pragmatic choice due to its inclusion of fixed and random 
factors. When a model encompasses both fixed and random effects, it is referred to as a generalized linear 
mixed model (GLMM) or a hierarchical generalized linear model (HGLM) as introduced by Lee and Nelder 
(1996). Lee et al. (2024) provides a valuable contribution to the literature on advanced statistical methods 
for modeling and analyzing multivariate longitudinal binary data, leveraging the H-likelihood estimation 
technique. The proposed methodology can be a valuable tool for researchers and practitioners working 
with such complex data structures. Hierarchical generalized linear models accommodate additional error 
components in the linear predictors of generalized linear models, offering a non-normative distribution 
requirement and thereby broadening the model class. Within hierarchical generalized linear models, 
response variables and random effects can adhere to any distribution within the exponential family, a 
concept elaborated by McCullagh and Searle (2001). Consequently, HGLMs stand out as more suitable for 
clustered data compared to generalized linear models (GLMs).Yau, K. K., & Lee, A. H. (2021) presents a 
generalized mixed effects model for the analysis of longitudinal binary data. The model incorporates both 
random and fixed effects, and allows for the inclusion of time-varying covariates. The model parameters 
are estimated using the H-likelihood approach, which provides a unified framework for estimating the 
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fixed and random effects. In generalized linear models, the estimation of the mean component typically 
involves using Maximum Likelihood (ML) methods. An extension to this approach within Hierarchical 
Generalized Linear Models (HGLM) is the Restricted Pseudo Likelihood (REPL) estimation method for 
binary mixed effect models, extensively discussed by El-Saeiti (2015). Comparative studies by Helena and 
Louise (1997) have indicated that parameter estimates obtained through ML and REPL methods exhibit 
fairly close agreement.To estimate both the mean and dispersion parameters, researchers often turn to 
the hierarchical likelihood (HL) estimation technique. Unlike traditional approaches, HL does not 
necessitate normality assumptions for random components, akin to the REPL method, thereby allowing 
for a wider array of model specifications as highlighted by Lee and Nelder (1996). 
Lee and Nelder 2006, propose a class of double hierarchical generalized linear models in which random 
effects can be specified for both the mean and dispersion. Heteroscedasticity between clusters can be 
modelled by introducing random effects in the dispersion model, as is heterogeneity between clusters in 
the mean model. 
The formulation of the hierarchical likelihood for the response variable y is expressed as: 
h = ln(f(y|v; β, φ)) + ln(f(v; α)). 
Here, f(y|v; β) and f(v; α) represent the conditional density function of y given random effect v and the 
density function of v, respectively. Lee and Nelder (1996) argued for developing algorithms based on the 
v-scale rather than the u-scale due to the flexibility of v in assuming real values, unlike u which may have 
constrained ranges leading to convergence issues.Parameter estimates in HGLMs are derived by 
maximizing the h-likelihood, leading to the computation of Maximum Hierarchical Likelihood Estimates 
(MHLEs). These estimates are obtained by solving the partial derivatives of the h-likelihood with respect 
to the fixed effects (β) and random effects (v).In the context of binary outcomes, the HGLM framework, as 
elucidated by Lee and Nelder (1996), involves modeling the dependent variable with a binomial 
distribution and the random effect with a beta distribution. Further insights into binary outcomes with 
beta distribution for random effects can be found in the works of El-Saeiti (2013), Lalonde (2009), and Lee 
and Nelder (1996). 
The key components of the HGLM framework include the response distribution (Binomial), random 
distribution (Beta), linear component (η), and the link function (logit). The h-likelihood for the binomial-
beta model is given by: 
h = l(β, φ; y|v) + l(α; v). 
The estimation equations for the fixed part (β) and random component (v) in the h-likelihood estimation 
process are derived to obtain estimates for both parameters, ensuring a comprehensive understanding of 
the model and its components. 
 
Simulation 
In the simulation study conducted, the researcher initiated data generation by creating two distinct 
datasets: one with balanced cluster sizes and the other with unbalanced cluster sizes. Parameters were 
defined and values were generated including random effect variables, followed by the calculation of 
probabilities for the dependent variable. In cases of unequal cluster sizes, varying numbers of subjects 
were generated per cluster using a Poisson distribution, where the mean for the Poisson distribution 
represented the average number of observations within each cluster. By altering the mean cluster sizes (n  
= 10, 25, 50, 100), the researcher illustrated the impact on statistical performance across different sample 
sizes. 
Furthermore, a normally distributed continuous variable, xi j, was generated with a mean of 3 and a 
known variance of 20 (xij∼N(3, 20)). Subsequently, a beta-distributed random variable, ui, was created 
with parameters γ = 2 and λ = 3 for each cluster i (ui∼Beta(2, 3)). For scenarios with equal cluster sizes, 
similar processes were followed, but with an equal number of observations in each cluster. 
Each data unit was randomly generated from a Bernoulli distribution with a success probability calculated 

as pij =
e

(β0 + β1x ij   + u i )

1+ e
(β0 + β1x ij   + u i ).  

Here, β
0

 = 1 and β
1

 = 0.2, and parameter estimates were derived using the H-Likelihood methodHeo and 

Leon (2005). 
The study specified the number of clusters (K = 10, 20, 50, 100), the cluster size for balanced clusters (n = 
10, 25, 100), and for unbalanced clusters, the mean number of observations per cluster (n  = 10, 25, 100). 
For each combination of K and n, 1,000 datasets were generated for both equal and unequal cases to 
evaluate power, Type I error rates, and standard errors. Power, Type I error rates, and standard errors 
were computed based on the model with the systematic component ηij = β0 + β1 x1ij + vi, with a specified 
treatment effect for β1. 
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The H-Likelihood Hierarchical Generalized Linear Model (HGLM) was utilized for data generation, where 
the systematic component for data generation was ηij= 1 + 0.2 x1i j + vi, and for the model fitting, it was 
represented as ηij= 1 + 0.2 x1ij + 3.1 x2ij + vi, with vi ∼Beta(2, 3). The researcher employed the HGLM 
function within the HGLM package in R to estimate parameters β and t-statistics along with corresponding 
p-values. By averaging 1,000 estimates obtained through simulation, the researcher calculated the values 
for β1, β2, power of the hypothesis test for β1, Type I error rate for β2, and the standard error for β1. 
 
RESULT 
Table1 for Binomial Beta h-likelihood estimate parameters. The Binomial Beta h-likelihood estimate 
 

Table 1: Estimate parameters 

 
The estimation of parameters β1 and β2 using Binomial Beta h-likelihood for both balanced and 
unbalanced cluster sizes demonstrated values that closely approximated the true parameters, with β1 
estimated at 0.2 and β2 at 0. The Binomial Beta h-likelihood method proved to be effective in providing 
estimates that closely matched the actual values. 
In Table 2, the Binomial Beta h-likelihood Type I error rates for β2 were detailed for both balanced and 
unbalanced cluster sizes. Type I error rates were calculated as the proportion of p-values less than 0.05 
under the null hypothesis H0: β2 = 0. Ideally, the Type I error rate should hover around 0.05. The 
explanation of the Type I error rate for β2 revealed slightly varying values for equal and unequal cluster 
sizes. It was observed that balanced cluster sizes exhibited lower values compared to unbalanced cluster 
sizes. 
 

Table 2: Type I Error 

                         Balanced Cluster                         Unbalanced Cluster 

Clusters        Sample size            β 
0

β 
1

β 
0

β 
1

 

 10 0.2319765 -0.007228321 0.1958833 0.009286461 

K=10 25 0.1939059 0.003553967 0.2017746 0.0108503 

 50 0.1970002 -0.002042296 0.188225 -0.0001238602 

 100 0.199145 0.002284678 0.2009817 -0.01050844 

 10 0.215392 -0.03054897 0.210038 0.01873527 

K=20 25 0.2038395 -0.01017131 0.2013315 -0.001884942 

 50 0.2035105 0.004907986 0.2022876 0.0006811804 

 100 0.2006388 -0.002680622 0.1983477 -0.000997808 

 10 0.2080814 0.001532905 0.1958833 0.009286461 

K=50 25 0.1994717 0.002696468 0.2022252 0.006061514 

 50 0.1967751 -0.0005004571 0.2000865 0.002234016 

 100 0.2001256 0.0007905866 0.20241 0.000397104 

 10 0.2004939 0.001584383 0.196161 0.003048525 

K=100 25 0.2016236 -0.002657747 0.202098 0.002534502 

 50 0.1991661 0.0008547018 0.2014994 0.001459892 

 100 0.1996344 -0.00128299 0.1980433 0.001697924 

Clusters Samplesize Balanced Unbalanced 

 10 0.12 0.085 
K=10 25 0.07 0.095 
 50 0.12 0.09 
 100 0.073 0.104 

 10 0.136 0.109 
K=20 25 0.09 0.096 
 50 0.165 0.108 
 100 0.067 0.087 

 10 0.067 0.085 
K=50 25 0.065 0.126 
 50 0.087 0.104 
 100 0.123 0.089 
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Table 3 illustrated the power of the hypothesis test for β1 using the Binomial Beta h-likelihood method. 
Statistical power was determined as the ratio of correctly rejected null hypotheses (H0: β1 = 0). The test 
was iterated 1,000 times through simulation to ascertain how frequently the test yielded significant 
results. Power represented the proportion of these 1,000 tests that were correctly rejected. 
It was observed that balanced cluster sizes exhibited greater statistical power compared to unbalanced 
cluster sizes, particularly evident with smaller sample sizes. The power statistics for balanced clusters 
surpassed those for unbalanced clusters, indicating that the Binomial Beta h-likelihood method provides 
more accurate estimates for balanced cluster binary models than for unbalanced cluster models. 

 
Table 3: Power 

Clusters Samplesize Balanced Unbalanced 

 10 0.89 0.906 

K=10 25 1 0.677 

 50 1 0.864 

 100 1 0.991 

 10 0.998 0.615 

K=20 25 1 0.937 

 50 1 0.999 

 100 1 1 

 10 1 0.906 

K=50 25 1 1 

 50 1 1 

 100 1 1 

 10 1 0.991 

K=100 25 1 1 

 50 1 1 

 100 1 1 

 
In Table 4, the concept of Standard Error (SE) is examined. The average Standard Error (SE   ) was 
determined as the mean of the 1,000 SE values for the estimates of β1. A smaller SE    denoted reduced 

estimated variability or increased precision in the parameter estimates. The standard error for β  indicated 
the level of efficiency improvement. 
The findings in Table 4 suggest that the Binomial Beta h-likelihood method exhibited smaller standard 
errors for balanced clusters. 
 

Table 4:Stranded error 
Clusters Samplesize Balanced Unbalanced 

 10 0.07152838 0.05695932 

K=10 25 0.04197166 0.08128032 

 50 0.02903917 0.05683201 

 100 0.0202115 0.04005908 

 10 0.04737441 0.09272815 

K=20 25 0.02885089 0.05658015 

 50 0.02028826 0.04003575 

 100 0.0142676 0.02824783 

 10 0.02903625 0.05695932 

K=50 25 0.01807183 0.03579394 

 50 0.0127137 0.02526456 

 10 0.102 0.06 
K=100 25 0.082 0.134 
 50 0.095 0.136 
 100 0.087 0.121 
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 100 0.00901145 0.01782909 

 10 0.0202617 0.04016537 

K=100 25 0.01277624 0.0252753 

 50 0.009003529 0.01786361 

 100 0.006371349 0.01261467 

 
Tables 1 through 4 present a comprehensive overview of the simulation results for the Binomial Beta h-
likelihood method applied to both equal and unequal cluster sizes. These tables summarize the findings 
related to parameter estimation, power statistics, Type I error rates, and standard errors. The analysis 
from these tables indicates that the Binomial Beta h-likelihood method serves as a reliable estimator. 
Across 1,000 replications, the estimates were remarkably close to the true values, with β1 estimated at 0.2 
and β2 approximating zero. In terms of statistical power, balanced clusters exhibited higher values 
compared to unbalanced clusters, while Type I error rates were notably lower for balanced clusters than 
for unbalanced ones. 
Moreover, smaller average standard errors (SE) in the estimation process indicated reduced variability 
and enhanced precision in parameter estimates. Notably, balanced cluster sizes displayed superior 
performance compared to unbalanced cluster sizes in terms of these metrics, highlighting the efficacy of 
the Binomial Beta h-likelihood method, particularly for balanced cluster binary models. 
 
CONCLUSIONS 
The Binomial Beta h-likelihood method emerged as a robust approach for handling mixed effects in 
clustered binary data models, showcasing nuanced variations based on cluster sizes. Through 1,000 
replications, the estimates closely mirrored the actual values, demonstrating the method's effectiveness. 
Notably, in balanced scenarios, the power of the hypothesis test for regression parameters outperformed 
unbalanced setups, while the Type I error rates for these tests were deemed acceptable, notably lower for 
balanced clusters compared to unbalanced ones. Furthermore, the standard error associated with 
regression parameters was minimal. 
This study establishes the Binomial Beta h-likelihood method as a viable estimation technique, 
particularly well-suited for balanced clustered sizes over unbalanced cluster binary responses. The 
simulation results underscore the method's proficiency, especially in scenarios with balanced cluster 
sizes. 
 
FUTURE WORK 
Since Binomial Beta h-likelihood is an acceptable estimation method for balanced clustered sizes more 
than unbalanced clusters binary response; It is a good idea to adjust the Binomial Beta h-likelihood 
estimate method to deal with unbalanced cluster size which will be the next work for the author. 
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