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ABSTRACT 
The main focus of this research is on the existence and exclusivity of solutions for the fractional 
integrodifferential equations with interval impulses and infinite delay. Schauder's fixed point theorem is 
used to acquire the required results. An example of the main result is also specified. 
 
Keywords: Fractional derivative, Integrodifferential equations, Interval impulses, Fixed point theorem, 
Nonlocal conditions. 
 
1. INTRODUCTION 
The derivatives of the non-integer and the generalization of integral are the main focus of the fractional 
calculus. Fractional derivatives are an excellent tool for describing memory and heredity qualities in a 
variety of materials and systems. In comparison to standard integer-order models, this is the main 
advantage of fractional differential equations. Fractional differential equations are used in a wide range of 
scientific disciplines and engineering, including modelling systems and processes mathematically. Many 
other subjects, such as chemistry, physics, complex media electrodynamics, aerodynamics, and so on, 
utilise fractional differential equations. Furthermore, fractional order derivatives are involved. 
In the mathematical modeling of numerous fields like physical, biological phenomena, and engineering 
sciences a major role is accomplished by the integrodifferential equation both in the theoretical and 
practical aspects where it is impossible to neglect the consequences of the real-world problem. It is 
extremely essential to make a study on integrodifferential equations as numerous practical systems are 
integrodifferential equations in nature. 
The goal of this study is to show that fractional infinite delay integrodifferential equations with interval 
impulses of the type have solutions 

Dp
αu p = f p, up +  

p

0

  k p, s, us ds, p ∈ (si , pi+1]i = 0,1, … , M  (1.1) 

u p = gi p, u p  , p ∈ (pi , si]i = 1,2, … , M                                         (1.2) 

 u 0 + h u = ϕ
1

,ϕ
1

∈ Ev                                                                            (1.3) 

where 0 < α < 1 and the state u(.)pertains to the space of Banach U provided with the expected ‖ ⋅ ‖, Dp
α  

represents the fractional derivative of Caputo, f is an appropriate function, 0 = p0 = s0 < p1 ≤ s1 ≤ p2 <
⋯ pM ≤ sM ≤ pM+1 = b are a predetermined number, gi ∈ C (pi , si] × U; U , i = 1,2, … , M. Let 
up(.)denote up(η) = u(p + η), η ∈ (−∞, 0]. Hence we contemplate that impulses kicks off with a bang at 

that point pi  on the interval, and their actions continue  pi , si  
Impulsive differential equations belongs to the category which most of the principle models falls in, which 
outlines most of the advancement processes that unexpectedly transform their state at a particular 
moment. IDE are most suitable method to model these processes. To obtain more information on this 
theory and more of its application, we have referred to the monographs of [7] and the papers [13,14], 
where properties of their results are deliberated and more precise bibliographies are given. In recent 
years, there has been significant progress in fractional differential and partial differential equations, for 
reference see the monographs [1,3,4,5,6,9,10,16,17]. 
The impulsive integrodifferential equations behavior in abstract spaces have already been scrutinized by 
[12,15] by several authors. To support the study of population dynamics, ecology, epidemic and biology 
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various mathematical models have been used and which could be indicated as impulsive delay differential 
equations. Many researchers have investigated the theory of impulsive delay differential equations [2,8,9] 
right away. However, there are a variety of situations in which impulsive behaviour begins immediately 
and continues for a finite period of time. A new class of abstract impulsive differential equation was 
established by Eduardo Hernandez and Donal O' Regan [11] for which the impulses are not 
instantaneous. 
 
2. Preliminaries 
This part introduces some of the fundamental notations, definitions, lemmas, and theorems that are 
utilised throughout the article. Consider a continuous function v: (−∞, 0] → (0, +∞] which satisfies 

l = ∫
−∞

0
 v(p)dt < +∞. Here the function v induces a Banach space  Ev , ‖ ⋅ ‖E(v)  it is defined in the 

following way. 
Ev = {ψ: (−∞, 0] → U;  in any case C

> 0,ψ(η) is a bounded and   on a measurable function [−C, 0] and  
0

−∞

  v(p)supp≤η≤0  ‖ψ(η)‖dt < +∞  

provided with the expected ‖ψ‖Ev
= ∫

−∞

0
 v(s)sups≤η≤0  ‖ψ(η)‖ds. 

Let us begin by defining the space 

Ew
′ = {ψ: (−∞, b] → U;ψ

k
∈ C Jk , U , k

= 0,1,2,3, … , M in addition to it  ψ pk
− and ψ pk

+ with ψ pk ψ pk
− ,ψ(p)

= gk (p, u(p)) for p ∈ (pk , sk] k = 1,2, … , M,ψ
0

= ψ(0) + h(ψ) = ψ ∈ E0  

We consider the space for the impulsive situations QC(U) it is supported via means of all functions 
u: [0, b] → U such that u(.) is continuous at p ≠ pi , u pi

− = u pi  and u pi
+  exists for all i = 1,2,3, … , M, 

provided uniform norm for [0, b] signified ‖u‖QC (U). We begin ui ∈ C  pi , pi+1 , U , which is given by 

ui(p) = {u(p),  for p ∈ (pi , pi+1] u(p),  for p = pi   
Moreover E ⊆ QC(U) the notation is used here Ei  for the set Ei =  ui : u ∈ E , i ∈ {0,1,2, … , N}. Theorem 2.1 
Assume the following D is a closed bounded convex subset of U, and that A is a completely continuous 
function from D to D. Then there is a point to be made Z ∈ D as a result AZ = Z. 
 
Lemma 2.1 [8] A set E ∪ QC(U) is relatively compact in QC(U) if and only if if each set Ei  is relatively 
compact in C  pi , pi+1 , U . 
Definition 2.1 A function U: (−∞, b] → U is referred to as a problem solution (1.1) - (1.3) if u(0) + h(u) =
ϕ

1
∈ Ev , u(p) = gi(p, u(p)) for all p ∈ (pi , si], i = 1,2,3, … , M, the integral equations following hold because 

the restriction of u(.)to the interval Jh (h = 0,1,2,3, … , M) is continuous. 

u(p) = ϕ(0) − h(u) +
1

Γ q 
 

p

0

   (p − s)q−1     (f s, us +  
s

0

  k s,σ, uσ dσ)ds,  for all p ∈  0, p1  

u(p) = gi si , u si  +
1

Γ q 
 

p

si

   (p − s)q−1 (f s, us +  
s

si

  k s,σ, uσ dσ)ds 

for all p ∈  si , pi+1  and every i = 1,2,3, … , M. 

Lemma 2.2 Assume the following U ∈ Ew
′  then, for p ∈ [0, b], Up ∈ Ev . Moreover 

l‖u(p)‖ ≤ ‖ut‖Ev ≤ ‖ϕ‖Ev + lsuus∈[0,p]‖u(s)‖ 

3. Main Results 
For ϕ ∈ Ev ,ϕˆ is defined as 

ϕˆ(p) = {ϕ(p), p ∈ (−∞, 0] ϕ(0), p ∈  0, p1  0, p ∈  p1 , b   
then ϕ 

ˆ ∈ Ew
′  

Let u(p) = v(p) + ϕˆ(p), −∞ < p < b. v clearly satisfies. v0 = 0 for p ∈ (−∞, 0] 

v(p) = −h(v + ϕˆ) +
1

Γ q 
 

p

0

   (p − s)q−1  f s, vs + ϕˆs +  
s

0

  k s,σ, vσ + ϕˆσ dσ ds 

 for all p ∈  0, p1  
v(p) = gi(p, (v + ϕˆ)(p)) for all p ∈  p1 , s1 ,  and each i = 1,2, … , M 

v(p) = gi si , (v + ϕˆ) si  +
1

Γ(q)
(p − s)q−1  f s, vs + ϕˆs +  

s

si

  k s,σ, vσ + ϕˆσ dσ ds 

for all p ∈  si , pi+1  every i = 1,2, … , M. 
iff u meets the criteria 
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 u(p) = ϕ(p), p ∈ (−∞, 0]  u(p)

= ϕ(0) − h(u) +
1

Γ(q)
 

p

0

   (p − s)q−1  f s, us +  
s

0

  k s,σ, uσ dσ ds,  for all p

∈  0, p1   u(p) = gi(p, u(p)),  for all p ∈ (pi , si] each i = 1,2,3, … , M  
And 

u(p) = gi si , u si  +
1

Γ(q)
 

p

si

   (p − s)q−1  f s, us +  
s

si

  k s,σ, uσ dσ ds 

for all p ∈  si , pi+1  every i = 1,2, … , M 
We introduce the following conditions to demonstrate our key findings 
 H1     f1: [0, b] × Ev → U is continuous, and two positive constants K1 , K2  exist such that  

‖f1 p,ϕ
1
 − f1 p,ϕ

2
 ‖ ≤ K1(‖ϕ1 − ϕ

2
‖Ev , K2 = supp∈[0,b]  ‖f1(p, 0)‖. 

 
 H2      K:Δ × Ev → U, where Δ = {(r, s): 0 ≤ s ≤ b}, with positive constants P1, P2  satisfying  

       ‖K p, s,ϕ
1
 − K p, s,ϕ

2
 ‖ ≤ P1 ‖ϕ1 − ϕ

2
‖Ew

′  , P2 = supp,s  ‖K((p, s, 0)‖. 

 H3   The functions gi : (pi , si] × U → U, these are positive constants that are continuous. As a  
result Lgi‖gi(p, u) − gi(p, v)‖ ≤ Lgi‖u − v‖ for all u, v ∈ U, p ∈ (pi , si] and each 
 i = 0,1,2, … , M. 

 H4       h: Ew
′ → U is continuous, and some positive constants δ1, δ2 exist such that ‖h(u) − 

h(v)‖ ≤ δ1‖u − v‖Ew
′  and ‖h(u)‖ ≤ δ1‖u‖Ew

′ + δ2 

 H5      ω = maxi    Lgi + δ1 +
lbq

Γ(q+1)
 K1 + p1b  < 1, i = 1,2, … , M. 

 
Theorem 3.1 If the requirements  H1 −  H5  are met, then the problem (1.1) - (1.3) has a unique 
solution. 

Proof. Define ζ: Ew
′ → Ew

′  as follows 
ζv(p) = 0, p ∈ (−∞, 0] 

ζv(p) = −h(v + ϕˆ) +
1

Γ(q)
 

p

0

   (p − s)q−1  f s, vs + ϕˆs +  
s

0

  k s,σ, vσ + ϕˆσ dσ ds, 

for all p ∈  0, p1  
ζv(p) = gi(p, (v + ϕˆ)(p)),  for all p ∈ (pi , si] and each i = 1,2,3, … , M 

and 

ζv(p) = gi si , (v + ϕˆ) si  +
1

Γ(q)
 

p

si

   (p − s)q−1  f s, vs + ϕˆs +  
s

si

  k s,σ, vσ + ϕˆσ dσ ds  for all p

∈  si , pi+1  and every i = 1,2, … , M  
v + ϕˆ is a solution of the (1.1) - (1.3) system, if v is a fixed point of ζ. We'll prove that ζ fulfils Theorem 
2.1's hypothesis. 

Define the Banach space  Ew
′ , ‖ ⋅ ‖Ew

′   defined by Ew
′ , Ew

′ =  v ∈ Ew
′ : v0 = 0 ∈ Ev  with norm ‖v‖Ew

′ =

sup{‖v(s)‖: s ∈ [0, b]} set Er =  v ∈ Ew
′ : ‖v‖Ew

′ ≤ r  for some r > 0. 

In any case v ∈ Er , p ∈ [0, b] as well as lemma 2.2, We've got 
‖vt + ϕˆt‖Ev

≤ ‖ϕ‖Ev
+ l[r + ‖ϕ(0)‖] 

‖v + ϕˆ‖Ew
′ ≤ r + ‖ϕ‖Ev

+ ‖ϕ(0)‖] 

It is clear from the premise that ζ is clearly defined. Moreover, for v1, v2 ∈ Ew
′ , i ∈ {1,2, … , M}, and 

p ∈  si , pi+1  we get 
‖ζv1(p) − ζv2(p)‖ 

≤ ‖gi si ,  v1 + ϕˆ  si  − gi si ,  v2 + ϕˆ  si  ‖ +
1

Γ(q)
 

p

si

   (p − s)q−1‖[f s, v1s + ϕˆs  

+  
s

si

  k s,σ, v1σ + ϕˆσ dσ] −  f s, v2s + ϕˆs +  
s

si

  k s,σ, v2σ + ϕˆσ dσ ‖ds 

≤  Lgi +
lbq

Γ(q + 1)
 K1 + P1b  ‖v1 − v2‖Ew

′  

Hence ‖ζv1 − ζv2‖c  si ,pi+1 ;U ≤ Ω‖v1 − v2‖Ew
′ , i = 1,2,3, … , M. 

Using the same procedure for the interval  0, p1 , we get 
‖ζv1 p − ζv2 p ‖ 

≤ ‖ − h v1 + ϕˆ + h v2 + ϕˆ ‖ +
1

Γ(q)
 

p

0

   (p − s)q−1‖[f s, v1s + ϕˆs  
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+  
s

si

  k s,σ, v1σ + ϕˆσ dσ] −  f s, v2s + ϕˆs +  
s

si

  k s,σ, v2σ + ϕˆσ dσ ‖ds 

≤  δ1 +
llq

Γ(q + 1)
 K1 + P1b  ‖v1 − v2‖Ew

′  

Hence ‖𝜁𝑣1 − 𝜁𝑣2‖𝐶  0,𝑝1 ;𝑈 ≤ 𝛺‖𝑣1 − 𝑣2‖𝐸𝑤
′  

Moreover, for 𝑝 ∈ (𝑝𝑖 , 𝑠𝑖] we have 

‖𝜁𝑣1(𝑝) − 𝜁𝑣2(𝑝)‖ ≤ 𝐿𝑔𝑖‖𝑣1 − 𝑣2‖𝐸𝑤
′  

Hence 

‖𝜁𝑣1 − 𝜁𝑣2‖𝐶 (𝑝𝑖 ,𝑠𝑖];𝑈 ≤ 𝛺‖𝑣1 − 𝑣2‖𝐸𝑤
′ , 𝑖 = 1,2, … , 𝑀. 

From the above we have that ‖𝜁𝑣1 − 𝜁𝑣2‖ ≤ 𝛺‖𝑣1 − 𝑣2‖𝐸𝑤
′ . As a result, 𝜁 is a contradiction, and the 

solution (1.1) - (1.3) is unique. This brings the proof to a close. 
 
Theorem 3.2 Assuming that the hypotheses  𝐻1 −  𝐻5  are true and that the functions 𝑔𝑖(. ,0) are 
limited, there is a solution for the system (1.1) - (1.3). 
Proof. We define 𝜁 as in the theorem 3.1 
The proof is then divided into five steps. 
Step I: To prove 𝜁𝐸𝑟 ⊂ 𝐸𝑟  There is a positive integer 𝑟 such that 𝐸𝑟  is a closed bounded convex set in 

𝐸𝑤
′ . 𝜁𝐸𝑟 ⊂ 𝐸𝑟 , if this isn't true for every positive number 𝑟, there are some 𝑣 ∈ 𝐸𝑟  and 𝑝 ∈ (−∞, 𝑏] such 

that ‖𝜁(𝑢)(𝑝)‖ > 𝑟, where 𝑝 is determined by 𝑟. 

𝑟  < ‖𝜁𝑣(𝑝)‖    ≤ ‖𝑔𝑖(𝑝, (𝑣 + 𝜙ˆ)(𝑝))‖    ≤ 𝐿𝑔𝑖
‖𝑣 + 𝜙ˆ‖

𝐸𝑤
′

′ + ‖𝑔𝑖(𝑝, 0)‖    

≤ 𝐿𝑔𝑖
 𝑟 + ‖𝜙‖𝐸𝑣

 + ‖𝑔𝑖(. ,0)‖𝐶  𝑝𝑖 ,𝑠𝑖 ;𝑈   

Taking the lower limit and dividing by 𝑟 on both sides 𝑟 → +∞, we get 1 ≤ 𝐿𝑔𝑖 . This is in direct 
Opposition to  𝐻5 . Therefore ||𝜁𝑣||𝐶  𝑝𝑖 ,𝑠𝑖 ;𝑈 ≤ 𝑟 for 𝑖 ≥ 1. 

Following the steps outlined above for 𝑝 ∈  𝑠𝑖 , 𝑝𝑖+1  and 𝑝 ∈  0, 𝑝1 , 𝑖 ≥ 1 we obtain that 𝑟 ≤ 𝐿𝑔𝑖
 𝑟 +

‖𝜙‖𝐸𝑣 + ‖𝑔𝑖(. ,0)‖𝑐  𝑝𝑖 ,𝑠𝑖 ;𝑈 +
𝑏𝑞

𝛤(𝑞+1)
 𝐾1  𝑙𝑟 + ‖𝜙‖ + 𝐸𝑣 + 𝑝1𝑏 𝑙𝑟 + ‖𝜙‖𝐸𝑣

 + 𝑝2𝑏 + 𝐾2  Taking the 

lower limit and dividing by 𝑟 on both sides 𝑝 → +∞, we get 1 ≤ 𝐿𝑔𝑖
+

𝑙𝑏𝑞

𝛤(𝑞+1)
 𝐾1 + 𝑃1𝑏  and for 𝑝 ∈  0, 𝑝1 , 

we obtain that 1 ≤ 𝛿1 +
𝑙𝑏𝑞

𝛤(𝑞+1)
 𝐾1 + 𝑃1𝑏 , as a result of which there is a discrepancy  𝐻5 . As a result, 

𝜁𝐸𝑟 ⊂ 𝐸𝑟  

The decomposition is then introduced 𝜁 = 𝜁1 + 𝜁2 = ∑𝑖=0
𝑀  𝜁𝑖

1 + ∑𝑖=0
𝑀  𝜁𝑖

2  where 𝜁𝑖
𝑗
: 𝐸𝑟 → 𝐸𝑟 , 𝑖 = 1,2, … , 𝑀, 𝑗 =

1,2,3, … provided 
𝜁𝑖

1𝑣(𝑝) = {0,  𝑓𝑜𝑟 𝑝 ∈ (−∞, 0]  − 𝑕(𝑣 + 𝜙ˆ),  𝑓𝑜𝑟 𝑝 ∈  0, 𝑡1  𝑔𝑖(𝑝, (𝑣 + 𝜙ˆ)(𝑝)),  𝑓𝑜𝑟 𝑝 ∈  𝑝𝑖 , 𝑠𝑖 , 𝑖

≥ 1 𝑔𝑖 𝑠𝑖 , (𝑣 + 𝜙ˆ) 𝑠𝑖  ,  𝑓𝑜𝑟 𝑝 ∈  𝑠𝑖 , 𝑝𝑖+1 , 𝑖 ≥ 1 0,  𝑓𝑜𝑟 𝑝 ∈  𝑝𝑖 , 𝑝𝑖+1 , 𝑖 ≥ 0  

 𝜁𝑖
2𝑣(𝑝) = {0,  𝑓𝑜𝑟 𝑝 ∈ (−∞, 0] 

1

𝛤 𝑞 
 

𝑝

𝑠𝑖

   (𝑝 − 𝑠)𝑞−1  𝑓 𝑠, 𝑣𝑠 + 𝜙ˆ𝑠 +  
𝑠

𝑠𝑖

  𝑘 𝑠, 𝜎, 𝑥𝜎 𝑑𝜎 𝑑𝑠,  𝑓𝑜𝑟 𝑝

∈ (𝑠𝑖 , 𝑝𝑖+1], 𝑖 ≥ 0 0,  𝑓𝑜𝑟 𝑝 ∈  𝑠𝑖 , 𝑝𝑖+1 , 𝑖 ≥ 0   
Step II: The 𝑚𝑎𝑝𝜁1 = ∑𝑖=0

𝑀  𝜁𝑖
1  is a contradiction on 𝐸𝑟 . Take 𝑣1 , 𝑣2 ∈ 𝐸𝑟  arbitrarily. then, for each 

𝑝 ∈ (−∞, 𝑏) and from  𝐻3  to  𝐻5 , we have 
‖𝜃𝑖

1𝑣1(𝑝) − 𝜁𝑖
2𝑣2(𝑝)‖ ≤ 𝛿1‖𝑣1 − 𝑣2‖𝐸𝑤

′ + 𝐿𝑔𝑖‖𝑣1 − 𝑣2‖𝐸𝑤
′  

which implies that 
‖∑𝑖=0

𝑀  𝜁𝑖
1𝑣1 − ∑𝑖=0

𝑀  𝜁𝑖
1𝑣2‖ ≤ 𝛺‖𝑣1 − 𝑣2‖

𝐸𝑤
′  

This proves that 𝜁1  is a contradiction on 𝐸𝑟 . Next, we use the notation 𝜁𝑖
2𝐸𝑟 (𝑝) =  𝜁𝑖

2𝑣(𝑝): 𝐸𝑟  

Step III: For 𝑖 = 0,1,2,3 … , 𝑀 and 𝑠𝑖 < 𝑠 < 𝑝 < 𝑝𝑖+1, the set 𝑋𝜎∈[𝑠,𝑝]𝜁𝑖
2𝐵𝑟 (𝜎) is relatively compact in 𝐸𝑤

′ . Let 

𝑠𝑖 < 𝜇1 < 𝑠. For 𝜖 > 0 we make a decision 0 < 𝜆1 <
𝑠−𝜇1

2
 such that 

𝜆1
𝑞

𝛤(𝑞+1)
 𝐾1 𝑙𝑟 + ‖𝜙‖𝐸𝑣

 + 𝐾2 ≤ 𝜖 for all 

𝐸 ⊂ [0, 𝑏] with 𝐷𝑖𝑎𝑚(𝐸) ≤ 𝜆1  Then, for 𝜎 ∈ [𝑠, 𝑝] and 𝑣 ∈ 𝐸𝑟  we obtain 

 𝜁𝑖
2𝑣(𝜎) =

1

𝛤(𝑞)
 

𝜎−𝜆1

𝑠𝑖

    𝜎 − 𝜆1 − 𝑠 𝑞−1  𝑓 𝑠, 𝑣𝑠 + 𝜙ˆ𝑠 +  
𝑠

𝑠𝑖

  𝑘 𝑠, 𝜎, 𝑥𝜎 𝑑𝜎 𝑑𝑠   +
1

𝛤(𝑞)
 

𝜎

𝜎−𝜆1

   (𝜎

− 𝑠)𝑞−1  𝑓 𝑠, 𝑣𝑠 + 𝜙ˆ𝑠 +  
𝑠

𝑠𝑖

  𝑘 𝑠, 𝜎, 𝑥𝜎 𝑑𝜎 𝑑𝑠 ∈ 𝐸𝑟1
+ 𝐵𝑟1 ,𝜖   

where 𝑟1 =
𝑏𝑞

𝛤(𝑞+1)
 𝐾1 𝑙𝑟 + ‖𝜙‖𝐸𝑣

 + 𝐾1𝑏 𝑃1 𝑙𝑟 + ‖𝜙‖𝐸𝑣
 + 𝑃2 + 𝐾2 , 𝑟1 , 𝜖 =

𝜆1
𝑞

𝛤(𝑞+1)
[𝐾1(𝑙𝑟 + ‖𝜙‖𝐸𝑣

) +

𝐾1𝜆1 𝑃1 𝑙𝑟 + ‖𝜙‖𝐸𝑣
 + 𝑃2 + 𝐾2], it suggests that 𝑋𝜂∈[𝑠,𝑝]𝜁𝑖

2𝐸𝑟 (𝜂) ⊂ 𝐸𝑟1 + 𝐸𝑟1,𝜖 . 𝐸𝑟1 is relatively compact 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 150                                                  M. Latha Maheswari et al 146-152 

and 𝐷𝑖𝑎𝑚 𝐸𝜖 → 0 as 𝜖 → 0, as a result 𝑋𝜂∈[𝑠,𝑝]𝜁𝑖
2𝐸𝑟 (𝜂) is relatively compact in 𝐸𝑤

′ . 

Step IV: The set of functions  𝜁𝑖
2𝐸˜𝑟 𝑖 , 𝑖 = 0,1,2,3, … , 𝑀, is a subset of that is equicontinuous 

𝐶  𝑝𝑖 ; 𝑝𝑖+1 ; 𝑈  
It is clear that  𝜁𝑖

2𝐸˜𝑟 𝑖  is Right Equicontinuous on [𝑝𝑖 , 𝑠𝑖) and Left Equicontinuous on (𝑝𝑖 , 𝑠𝑖]. Let 

𝑝 ∈  𝑠𝑖 ; 𝑝𝑖+1 , the set 𝜁𝑖
2𝐸𝑟(𝑝) is relatively compact in 𝐸𝑤

′ . For 𝑣 ∈ 𝐸𝑟  and 0 < 𝑘 < 𝜆 < 𝑝𝑖+1 − 𝑝 
we get 

‖𝜁˜𝑖
2𝑣(𝑝 + 𝑘) − 𝜁˜𝑖

2𝑣(𝑝)‖ = ‖𝜁𝑖
2𝑣(𝑝 + 𝑘) − 𝜁𝑖

2𝑣(𝑝)‖ 

≤
𝑘𝑞

𝛤(𝑞 + 1)
 𝐾1 𝑙𝑟 + ‖𝜙‖𝐸𝑣

 + 𝐾1𝑏 𝑃1 𝑙𝑟 + ‖𝜙‖𝐸𝑣
 + 𝑃2 + 𝐾2  

+
1

𝛤(𝑞)
 

𝑝

𝑠𝑖

   ‖(𝑝 + 𝑘 − 𝑠)𝑞−1 − (𝑝 − 𝑠)𝑞−1‖ 

×  𝐾1 𝑙𝑟 + ‖𝜙‖𝐸𝑣
 + 𝐾1𝑏 𝑃1 𝑙𝑟 + ‖𝜙‖𝐸𝑣

 + 𝑃2 + 𝐾2 𝑑𝑠 

The Right-Hand side is self-contained 𝑣 ∈ 𝐸𝑟  as it approaches zero 𝑘 → 0. This demonstrates that  𝜁𝑖
2𝐸˜𝑟 𝑖  

is Right Equicontinuous at 𝑝. 
We proceed in the same way as we did for 𝑝 = 𝑠𝑖  and 𝑕 > 0, and we get 𝑠𝑖 + 𝑘 < 𝑝𝑖+1 . 

‖𝜁˜2𝑣 𝑠𝑖+𝑘 − 𝜁˜2𝑣 𝑠𝑖 ‖   = ‖
1

𝛤(𝑞)
 

𝑠𝑖+𝑘

𝑠𝑖

   (𝑝 + 𝑘 − 𝑠)𝑞−1  𝑓 𝑠, 𝑣𝑠 + 𝜙ˆ𝑠 +  
𝑠

𝑠𝑖

  𝑘 𝑠, 𝜎, 𝑢𝜎 𝑑𝜎 𝑑𝑠‖    

≤
𝑘𝑞

𝛤(𝑞 + 1)
 𝐾1 𝑙𝑟 + ‖𝜙‖𝐸𝑣

 + 𝐾1𝑏 𝑃1 𝑙𝑟 + ‖𝜙‖𝐸𝑣
 + 𝑃2 + 𝐾2   

this means that  𝜁𝑖
2𝐸˜𝑟 𝑖  is Right Equicontinuous at 𝑠𝑖 . Now for 𝑝 ∈ (𝑠𝑖 , 𝑝𝑖+1]. Let 𝜇1 ∈ (𝑠𝑖 , 𝑝]. Since 

𝑋𝑠∈ 𝜇1 ,𝑝 𝜁𝑖
2𝐸𝑟 (𝑠) is relatively compact in 𝐸𝑤

′ , we choose 0 < 𝜆1 <
𝑝−𝜇1

2
 then for 0 < 𝑘 ≤ 𝜆1 and 𝑣 ∈ 𝐵𝑟  we 

obtain, ‖𝜁˜𝑖
2𝑣(𝑝 − 𝑘) − 𝜁˜𝑖

2𝑣(𝑝)‖ = ‖𝜁𝑖
2𝑣(𝑝 − 𝑘) − 𝜁𝑖

2𝑣(𝑝)‖ 

≤
1

𝛤(𝑞)
 

𝑝

𝑝−𝑘

   (𝑝 − 𝑠)𝑞−1‖𝑓 𝑠, 𝑣𝑠 + 𝜙ˆ𝑠 +  
𝑠

𝑠𝑖

  𝑘 𝑠, 𝜎, 𝑢𝜎 𝑑𝜎‖𝑑𝑠 

+
1

𝛤(𝑞)
 

𝑝−𝑕

𝑠𝑖

   ‖(𝑝 − 𝑠)𝑞−1 − (𝑝 − 𝑘 − 𝑠)𝑞−1‖ 

× ‖𝑓 𝑠, 𝑣𝑠 + 𝜙ˆ𝑠 +  
𝑠

𝑠𝑖

  𝑘 𝑠, 𝜎, 𝑢𝜎 𝑑𝜎‖𝑑𝑠 

≤
𝑘𝑞

𝛤(𝑞 + 1)
 𝐾1 𝑙𝑟 + ‖𝜙‖𝐵𝑣

 + 𝐾1𝑏 𝑝1 𝑙𝑟 + ‖𝜙‖𝐸𝑣
 + 𝑝2 + 𝐾2  

+
1

𝛤(𝑞)
 

𝑝

𝑠𝑖

   ‖(𝑝 − 𝑠)𝑞−1 − (𝑝 − 𝑘 − 𝑠)𝑞−1‖ × [𝐾1 𝑙𝑟 + ‖𝜙‖𝐸𝑣
  

+𝐾1𝑏 𝑝1 𝑙𝑟 + ‖𝜙‖𝐸𝑣
 + 𝑝2 + 𝐾2]𝑑𝑠 

which shows that  𝜁𝑖
2𝐸˜𝑟 𝑖  is left in an equicontinuous state at 𝑝 ∈ (𝑠𝑖 , 𝑝𝑖+1].  

The proof that  𝜁𝑖
2𝐸˜𝑟 𝑖  is equicontinuous is now complete. 

Step V: For 𝑖 ≠ 𝑗, the set  𝜁𝑖
2𝐸˜𝑟 𝑗  is a subset of that is equicontinuous 𝐶  𝑝𝑗 , 𝑝𝑗 +1 ; 𝑈 . The preceding 

stages, as well as Lemma 2.1, result in, the map 𝜁1  is a contraction and the map 𝜁2  is completely 
continuous. Thus, 𝜁 = 𝜁1 + 𝜁2  is an operator for condensing. Based on [13, Theorem 4.3.2], we believe 
there is a solution of (1.1) - (1.3). 
 
4. Example 
Take into consideration the following fractional integrodifferential equation of the form with interval 
impulsive condition 

𝐷𝑝
𝑞
𝑢 𝑝 =

1

(𝑝 + 2)2

 𝑢 

1 +  𝑢 
+

1

4
 

𝑝

0

  𝑒
𝑢𝑠
3 𝑑𝑠, 𝑝 ∈∪𝑖=1

𝑉  𝑠𝑖 , 𝑝𝑖+1 , 𝑖 = 0,1,2,3, … , 𝑀 (4.1) 

𝑢 𝑝 = 𝐺𝑖 𝑝, 𝑢 𝑝  , 𝑝 ∈ (𝑝𝑖 , 𝑠𝑖], 𝑖 = 1,2,3, … , 𝑀                                                          (4.2) 

𝑢 0 +
𝑢

4 + 𝑢
= 𝑢0                                                                                                               (4.3) 

where 0 < 𝑞 < 1. Take [0, 𝑏] = [0,1],0 = 𝑝0 = 𝑠0 < 𝑝1 ≤ 𝑠1 ≤ ⋯ ≤ 𝑝𝑁 ≤ 𝑠𝑀 ≤ 𝑝𝑀+1 = 1 are fixed real 
numbers, 𝐺𝑖 ∈ 𝐶 (𝑝𝑖 , 𝑠𝑖] × 𝑅1; 𝑅1  for all 𝑖 = 1,2, … , 𝑀. 

Let 𝑢 = 𝑅1, 𝐾 𝑢𝑠 = ∫
0

𝑝
 𝑘 𝑝, 𝑠, 𝑢𝑠 𝑑𝑠 = ∫

0

𝑝
 𝑒

𝑢𝑠
3 𝑑𝑠, 𝑓(𝑝, 𝑢) =

1

(𝑝+2)2

|𝑢|

1+|𝑢|
 

𝐾 𝑝, 𝑠, 𝑢𝑠 = ∫
0

𝑝
 𝑒

𝑢𝑠
3 𝑑𝑠 

‖𝑓 𝑝, 𝑢 − 𝑓 𝑝, 𝑣 ‖ 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 8, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 151                                                  M. Latha Maheswari et al 146-152 

=  
1

(𝑝 + 2)2

|𝑢|

1 + |𝑢|
−

1

(𝑝 + 2)2

|𝑣|

1 + |𝑣|
  

=  
1

(𝑝 + 2)2
 

|𝑢|

1 + |𝑢|
−

|𝑣|

1 + |𝑣|
   

≤
1

(𝑝 + 2)2
|𝑢 − 𝑣| 

≤
1

4
|𝑢 − 𝑣| 

‖𝑘 𝑝, 𝑠, 𝑢𝑠 − 𝑘 𝑝, 𝑠, 𝑣𝑠 ‖ 

=   
𝑝

0

  𝑒
u𝑠
3 𝑑𝑠 −  

𝑝

0

  𝑒
𝑣𝑠
3 𝑑𝑠  

≤
1

3
|𝑢 − v| 

If u, v ∈ U then we have ‖K us − K vs ‖ ≤
1

3
‖u − v‖ and ‖f p, u, K us  − f p, v, K vs  ‖ ≤ 

1

4
 ‖u − v‖ +

‖K us − K vs ‖ , here δ1 =
1

4
, K1 =

1

3
, P1 =

1

2
. 

Let Gi  be Lipschitz functions with Lipschitz constants LG i
 satisfied the condition 3Lgi

≤ 1. Let v(p) = ep , 

therefore l = ∫
−∞

0
 v(p)dt = ∫

−∞

0
 ep dt =  ep  −∞

0 = e0 − e−∞ = 1 − 0 = 1 < +∞. If q = 1 then Ω =

maxi    Lgi
+ δ1 +

lbq

Γ(q+1)
 K1 + P1b  < 1. Consequently, all of the Theorem 3.1 and Theorem 3.2 

hypotheses. As a result, there is a solution to the problem (4.1) - (4.3). 
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