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ABSTRACT 
Ordinary Differential Equations (ODEs) are fundamental to modelling a wide range of phenomena across 
various scientific and engineering disciplines. Traditional numerical methods for solving ODEs, while 
effective, can be computationally intensive and may struggle with complex or high-dimensional problems. 
Recently, Artificial Neural Networks (ANNs) have emerged as a promising alternative for solving ODEs, 
leveraging their ability to approximate complex functions and patterns. This paper explores the 
application of ANNs in solving ODEs, presenting a detailed overview of various neural network 
architectures and training techniques used to address this problem. We discuss the advantages and 
limitations of ANNs compared to classical methods, present case studies demonstrating their 
effectiveness, and propose a framework for integrating ANNs into existing ODE-solving strategies. Our 
findings suggest that ANNs offer a flexible and efficient approach for certain classes of ODEs, paving the 
way for further research and practical applications. 
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1. INTRODUCTION 
Ordinary Differential Equations (ODEs) play a fundamental role in mathematical modeling across a wide 
array of disciplines, including physics, engineering, biology, and finance [1]. These equations describe how 
a system evolves over time and are essential for predicting system behaviour, whether it's the motion of 
physical objects, the dynamics of biological processes, or financial market fluctuations. Solving ODEs 
accurately and efficiently is crucial for understanding and forecasting the behaviour of such systems. 
Traditional numerical methods have been the cornerstone of solving ODEs. Techniques such as Euler's 
method [2], Runge-Kutta methods [3], and finite difference methods [4] have been extensively utilized to 
obtain approximate solutions. Euler's method offers a straightforward approach by approximating 
solutions through a series of discrete steps, while the Runge-Kutta methods, including the popular fourth-
order variant, provide higher accuracy by considering multiple points within each step. Finite difference 
methods are widely used for discretizing differential equations and solving them on grids. Although these 
methods are well-established and widely applicable, they can encounter significant challenges when 
applied to high-dimensional problems, stiff equations, or complex boundary conditions. High-dimensional 
problems can lead to increased computational costs and complexities in ensuring numerical stability. Stiff 
equations, which exhibit rapidly varying solutions, often require specialized techniques to manage their 
inherent numerical difficulties. 
In recent years, the advent of Artificial Intelligence (AI) and machine learning has introduced innovative 
techniques for addressing the limitations of traditional methods. Among these, ANNs [5] have emerged as 
a powerful tool for solving ODEs. ANNs, inspired by the neural architecture of the human brain, consist of 
interconnected nodes (neurons) organized into layers. These networks are capable of learning complex 
patterns from data and making predictions based on this learned information. This inherent flexibility 
and adaptability make ANNs a promising alternative for solving differential equations, particularly when 
traditional methods become cumbersome or are not feasible. 
The integration of ANNs into the process of solving ODEs involves training the network to either 
approximate the solution directly or to learn the underlying patterns from data generated by numerical 
methods. By feeding the network with inputs related to the differential equation and desired outputs, the 
ANN learns to predict solutions with a high degree of accuracy. This approach can offer several 
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advantages, such as reduced computational costs and the ability to handle complex or high-dimensional 
problems more efficiently than conventional numerical methods [12-14]. 
The optimization techniques and conditions with fuzzy-based approach provides greater flexibility by 
using fuzzy sets and fuzzy numbers to represent uncertain data, allowing for more informed decision-
making under uncertain conditions [15-22]. 
This paper provides a detailed overview of how ANNs can be applied to solving ODEs, including an 
examination of various neural network architectures like feedforward networks, recurrent networks, and 
deep learning models. Feedforward networks are typically used for straightforward function 
approximation tasks, while recurrent networks are well-suited for problems involving sequences or time-
dependent data. Deep learning models, with their multiple layers and advanced architectures, can capture 
intricate patterns and improve solution accuracy. We also discuss training methodologies for ANNs, such 
as backpropagation and optimization techniques, and analyze the trade-offs associated with using ANNs 
compared to classical numerical methods. Through illustrative case studies, we demonstrate the practical 
application of ANNs in solving ODEs and propose a framework for future research to explore and expand 
upon these findings. Our aim is to highlight the potential of ANNs to enhance both the efficiency and 
accuracy of ODE solutions, paving the way for further advancements in this field. 
 
2. Introduction to ANN  
ANNs [6] are sophisticated computational models designed to simulate the information processing 
capabilities of biological neural networks found in the human brain. These networks are structured to 
perform complex tasks such as classification, regression, and other machine learning functions by 
learning from data. The fundamental architecture of an ANN consists of multiple interconnected layers of 
neurons, each contributing to the network's ability to model and solve various problems [7]. 
The architecture of an ANN typically includes three main types of layers: the input layer, hidden layers, 
and the output layer. 
1. Input Layer: Receiving raw data is the responsibility of this first layer of the network. Information 

enters the network through each neuron in the input layer, which is matched to a feature of the input 
data. 

2. Hidden Layers: One or more hidden layers receive the input data after it is transmitted from the 
input layer. Neurones in each hidden layer process inputs by applying a weighted sum to them. After 
that, this total is run via an activation function. The network gains non-linearity from the activation 
function, which enables it to understand and depict intricate interactions between inputs and 
outputs.  The hidden layers transform the input data in increasingly abstract ways as it progresses 
through the network [8]. 

3. Output Layer: The final layer of the network is the output layer. It receives the processed 
information from the last hidden layer and produces the network’s final result or prediction. The 
output layer's structure and activation function depend on the specific task. For example, in 
classification tasks, the output layer may use a softmax function to provide probabilities for different 
classes, whereas, in regression tasks, a linear activation function may be used to predict continuous 
values. 

An ANN learns by varying the weights of connections among its neurons in order to reduce the 
discrepancy between the goal values and the projected output. Usually, this is accomplished by a process 
known as backpropagation, which iteratively updates the weights depending on the error gradients using 
gradient descent. By continually adjusting these weights, the network learns to approximate the desired 
function or pattern from the input data, thereby improving its performance on tasks such as prediction 
and classification [7]. 
Overall, the ability of ANNs to process and model complex data through their layered architecture and 
learning mechanisms makes them powerful tools in various applications, from image and speech 
recognition to financial forecasting and beyond. 
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Figure 1: Structure of ANN 

 
One of the most basic and popular network topologies is the feedforward neural network, which is a 
particular kind of ANN architecture (Figure 1). Without any cycles or feedback loops, information only 
flows in one direction in a feedforward neural network: from the input layer via the hidden layers to the 
output layer. Because of their unidirectional nature, feedforward networks are easy to create and 
comprehend. Because every neuron in a layer is fully connected to every other neuron in the layer above 
it, the network's many layers enable it to learn intricate mappings of inputs to outputs.The activation 
function plays a crucial role in determining the output of each neuron. One commonly used activation 
function is the hyperbolic tangent (tanh) function. The tanh function is defined by the formula [9]: 

tanh( )
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x x

e e
x

e e





 
  

 
          (1) 

This function maps input values to a range between -1 and 1, which helps center the data and can improve 
the training dynamics of the network. The tanh function is symmetric around the origin, which makes it 
particularly useful in scenarios where inputs are both positive and negative. Additionally, the derivative of 
the tanh function is: 

2tanh ( ) 1 tanh ( )x x            (2) 

This derivative is essential for the backpropagation algorithm, which is used to update the weights of the 
network based on the error of the predictions. The tanh function’s derivative allows for efficient gradient 
computation, which in turn facilitates the learning process. However, the tanh function, like other 
sigmoid-based activation functions, can suffer from the vanishing gradient problem, where gradients 
become very small for large positive or negative inputs, potentially slowing down learning. Despite this, 
the tanh function remains a popular choice in feedforward neural networks due to its effective data 
scaling and symmetry properties, contributing to the overall performance and learning capability of the 
network. 
 
3. Solution of Differential Equation using ANN 
The first order differential equation can be written as 

( , )
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where f is a continuous function, [0,1]x  and (0)   

In the initial step trial solution of the form  
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In the above equation σ is activation function. The output of the ANN can be modelled as 

i i iz x u             (6) 

Differentiating equation 4 we get, 
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Substituting equation 5 in equation 7 we get, 
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Finally, the cost function is modelled as 
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4. Simulation and Results 
To solve a system of two first-order coupled differential equations using an ANN, we start by modelling 
the problem with a specific neural network architecture [10,11]. The system of equations is defined as 

1
1 2( , , )

dy
f x y y

dt
  and 2

1 2( , , )
dy

f x y y
dt

 , where x is the input variable and 1y and 2y  are the 

dependent variables that we wish to determine.The ANN architecture for solving this system includes an 
input layer with a single neuron to handle the input variable x. This input is then passed to a hidden layer 
comprising 10 neurons. In this hidden layer, the tanh (hyperbolic tangent) activation function is used. The 
tanh function is beneficial here due to its range of [−1,1], which helps in introducing non-linearity and can 
improve the network's ability to model complex relationships between the input and the outputs. 
The network’s final layer, known as the output layer, consists of two neurons. These neurons are 

responsible for producing the output values 1y  and 2y . In the output layer, a linear activation function is 

often employed to ensure that the outputs can take any real value, which is suitable for continuous 
outputs. 
During the training phase, the network learns to approximate the solution to the differential equations. 

The process involves comparing the network’s output 1y  and 2y  against expected values derived from 

solving the differential equations. A loss function, which measures the discrepancy between the predicted 
outputs and the actual values, is minimized through backpropagation and optimization techniques. This 
iterative process adjusts the weights and biases in the network to improve its performance in solving the 
differential equations. 
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The analytical solution of the equation is  

1( ) xy x e  and 2 ( ) xy x e   

After completing 120 iterations of training, both the analytical solution and the ANN-based solution for 

the parameter 1y  have been compared and are illustrated in Figure 2. In this context, the analytical 

solution refers to the exact solution obtained through mathematical techniques, while the ANN-based 
solution represents the output of the neural network after its training process. 
The results presented in Figure 2 show that the curves corresponding to the analytical solution and the 

ANN-based solution for 1y  are remarkably similar. In fact, they are so closely aligned that they appear to 

be superimposed on one another. This indicates a high level of agreement between the results obtained 
from the traditional analytical method and those predicted by the neural network. The near-identical 
nature of the two curves suggests that the ANN has effectively learned the underlying dynamics of the 
system and is capable of approximating the solution with a high degree of accuracy after the specified 
number of iterations. 
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Figure 2: Solution for parameter y1 

 
Figure 3 presents a detailed view of the error between the exact solution and the ANN-based solution for 
50 distinct points across the range of input values. In this analysis, the input values x vary from 0 to 5, 
with increments of 0.1, resulting in a total of 50 equally spaced points. 
At each of these 50 points, the difference between the exact analytical solution and the solution provided 
by the artificial neural network (ANN) is calculated. This difference is referred to as the error. The graph 
depicted in Figure 3 illustrates how this error varies across the range of input values. 

 

 
Figure 3: Error for parameter y1 

 

The results show that the maximum error observed between the exact solution and the ANN solution is 
2.88×10-3. This value quantifies the largest discrepancy between the two solutions at any of the 50 points 
considered. An error of 2.88×10-3 (or 0.00288) indicates a very small difference, demonstrating that the 
ANN has achieved a high level of accuracy in approximating the exact solution over the specified range. 
 

 
Figure 4: Solution for parameter y2 
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Figure 4 showcases a comparison between the exact solution and the ANN-based solution for the 

parameter 2y . The graph illustrates the results for various values of x, spanning from 0 to 5 with 

increments of 0.1, generating a total of 50 discrete data points. The curve representing the ANN-based 
solution is plotted alongside the curve for the exact solution. This visual comparison allows for an 
evaluation of how closely the neural network's predictions match the exact results across the entire range 
of input values. 
Figure 5 provides a detailed representation of the error between the exact and ANN-based solutions for

2y . The error is calculated at the same 50 points within the range of x, and the graph displays the 

variation in error values across these points. The maximum error observed in this analysis is 0.005530. 
This value represents the largest deviation between the exact solution and the ANN approximation at any 
of the 50 points considered. 
 

 
Figure 5: Error for parameter y2 

 
5. CONCLUSION 
In this paper, we investigated the use of ANNs to solve ODEs, focusing on a system of two first-order 
coupled equations. We designed an ANN with one input neuron, ten hidden units with the tanh activation 

function, and two output neurons to predict the dependent variables 1y  and 2y .Our results indicate that 

the ANN effectively approximates the solutions to the ODEs. The predictions for 1y  closely matched the 

exact analytical solutions, demonstrating the network's ability to learn and model the system dynamics 

with high accuracy. For 2y , while the maximum error observed was slightly larger, it still remained within 

an acceptable range, confirming the overall reliability of the ANN approach.The comparison between the 
ANN-based and analytical solutions, along with the minimal observed errors, highlights the potential of 
ANNs as a robust tool for solving differential equations. This work not only validates the feasibility of 
using neural networks for such problems but also suggests opportunities for further refinement and 
application to more complex systems. Future research could focus on enhancing the network's accuracy 
and exploring its use in a broader range of differential equation problems. 
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