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ABSTRACT 
In competitive business environment, product demand is often positively influenced by the displayed 
stock level, which is why suppliers frequently allow retailers to delay payments. This study examines an 
inventory model that explores the favorable conditions where time-varying holding costs, permissible 
delays in payment, and multi-level demand prove advantageous for manufacturers and businesses. In the 
proposed decision model, during the allowable delay period, retailers are permitted to postpone 
payments for purchased products without incurring interest charges. This study focuses on analyzing the 
optimal replenishment policy for products that deteriorate gradually and have variable demand. The 
results, supported by a numerical example, demonstrate the model's effectiveness in maximizing profit 
and optimizing replenishment time. Additionally, a sensitivity analysis is conducted to further illustrate 
the model's practical applications. 
 
Keywords: Inventory, Multivariable demand, Permissible delay in payments, Inflation, variable holding 
cost. 

 

1. INTRODUCTION 
In today's world, displaying products in large quantities in malls, big bazaars, and supermarkets attracts 
more customers and increases demand. As a result, the effects of inflation and varying demand must be 
considered when developing the best inventory policy for businesses. However, most researchers 
studying inventory models often overlook the combined impact of trade credit and inflation. Both the 
option to delay payments and inflation have a significant influence on the optimal ordering policy and 
product demand. The first Economic Order Quantity (EOQ) model that included inflation was introduced 
by [1].A lot of researchers assumed the inventory models under the condition of permissible delay in 
payment. First an EOQ inventory model with constant demand assuming the permissible delay in 
payments [2]. Expanded the inventory model [2],assuming an inventory model using fix deterioration 
rate [4].  
The first mathematical model aimed at optimizing total inventory cost, while accounting for stock-
dependent demand in a utilization environment, was explored in [3]. Over the past two decades, 
numerous researchers worldwide have published studies on inventory models with demand dependent 
on inventory levels, incorporating other crucial factors such as deterioration, demand, permissible delay 
in payment, shortage, inflation;some of such articles are by [5-8].In production and inventory 
management literature, stock-dependent level is an appropriate methodology to deal customers to 
increase the interest level to purchase more items and inventory models with demand and deteriorate 
rate were discussed [9-19]. Some important optimization techniques conditions and supply chain models 
are discussed by [64-68]. Some studies were also conducted with two storage capacity with inventory 
model and deteriorate rate by [20-23].Inventory modeling is a well-established field within operations 
management, receiving significant attention in management science, operational research, and 
practitioner-focused journals. However, the literature on this topic is fragmented, and there is a lack of 
comprehensive, up-to-date reviews. When studying deteriorating inventory systems, factors like demand 
and deterioration rate must be carefully considered. Demand drives the inventory system, while the 
deterioration rate represents the characteristics of the items. Additionally, factors like price discounts, 
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shortages, inflation, and time-value of money are crucial in shaping inventory models. By combining these 
various elements, different inventory models can be developed to address specific scenarios. 
A mathematical model for deteriorating inventory systems, with a focus on models where demand is 
quadratic types [24-28].Traditionally, most inventory models assume that products have an infinite shelf 
life while in storage, meaning they remain unchanged and fully usable to meet future demand. While the 
impact of deterioration can often be ignored when the rate of decay is minimal, there are many cases 
where deterioration significantly affects inventory management, necessitating its explicit consideration. 
Inventory models with stock-dependent demand are examined by the [29-36]. A particularly intriguing 
area within inventory theory is the mathematical modeling of deteriorating items with variable demand 
rate by [37-53]. Some optimum inventory model with fuzzy environment are discussed by [54-63]. The 
deterioration rate is another crucial factor in the study of deteriorating item inventories, as it 
characterizes the nature of how items deteriorate over time. When examining deterioration rates, several 
different scenarios can arise. 
Deteriorating items are common in everyday life; however, there is no clear consensus in academia 
regarding their precise definition. Beyond demand and deterioration rate, other important factors such as 
price discounts, allowance for shortages, inflation, and the time-value of money also play significant roles 
in inventory management. Price discounts, for example, are a commonly used strategy by sellers to 
encourage bulk purchasing, and many researchers have incorporated this into models of deteriorating 
inventory. 
 
2. Assumptions and Notations 
For the developed inventory model, we use the following notations and assumptions: 

   The demand rate is ( ) ( )nvD t a bt cI t   , Where  , , 0a b c  are positive constants and 

Inv(t) is the inventory level at time t. 
  is the deterioration rate 

 C1 is the ordering cost per order 
 C3 is the deteriorating cost per unit  
 C4 is the purchasing cost per unit 
 C5 is the sales revenue cost per unit 
 Ch=h1+h2t is the inventory holding cost per unit time 
 tm is the permissible delay in payment offered by supplier in months 
 R is the net discount rate of inflation; R = r-i, where r is the discount rate representing the time 
value of money, and i is the inflation rate 
 Zp is the interest charges per month 
 Zeis the interest earned per in stocks per month 
 TVP1 is the total optimum inventory profit per unit time of the developed system (t1tmT).  
 TVP2 is the total optimum inventory profit per unit time of the developed system (tm ≥T). 
 T=t1+t2 total time horizon for the developed inventory system. 
 

3. Mathematical Model 
The initial concept behind developing the inventory model was that the retailer could generate revenue 
and earn interest before paying the purchasing cost. This is based on the assumption that the retailer 
benefits from the payment delay period offered by the supplier, allowing them to earn returns during this 
interval. During the time interval [0, t1], the inventory level (Inv1) decreases due to the multivariable 
demand rate. The inventory level drops to zero due to demand and the deterioration in the items during 
the interval is [t1, T]; in time (0≤t≤t1) items has no deterioration and in time (t1≤t≤T) the items has 
deterioration. Thus, the examined model, the inventory level at any time t can be represented by the 
following differential equations:  

  
   

1

1

, 0( )

,
nv

nv

D t t tdI t

D t I t t t Tdt 
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    …. (1) 

with the boundary conditions 1(0)I L , 2 1 2( ) 0I t t T   respectively, solving the above system of  

equations (1), we get 

 

   

1 1 1

( )( )

2 3 3 2 1

, 0
( )

,

ct

nv
c T t

b
L x e x t t t

I t c

x tx e Tx x t t T



 


    

 
     

 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024 

 

                                                                                 1176                                                                   Anchal et al 1174-1184 

where
 

 
1 2 322

, ,
b a cac b b

x x x
c cc





     
            

    …. (2) 

Due to continuity of Inv(t) at t=t1, it follows from the above system of equations (2) we have  

   1

1 1 2 1 3 1 2 3

c Tctb
L t x x t x e x e x Tx

c

 
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     

…(3) 

The total optimum inventory profit per cycle contains the following components: 
The inventory ordering cost (ICO) is     CO= C1.    …(4) 
The inventory holding cost (ICH) is 

 1

10
( ) ( )

t T
Rt Rt

h nv nv
t

ICH C e I t dt e I t dt     

    

 
 

    

1 1

1 1

2 11

1 1

2

3 2

1 1 2

3 3 2
1

1 1
R c t Rt

Rt RtRT

c t RtRtRT RT

L x cRx b
e e

R c cR

x x Rb
h t e e e

cR R

x Tx x
Te t e e e

R R c





  

 

  

     
      

    
 

    
 
  
     

    
 

 
     

  

  
 

    

 

 
 

    
    

1

1

1

1

1

1
12

1
12

2 2

2 1 13

2 3

12

13 2

2

1 1

1 1

2 2 2

1 1

1

1

R c t

Rt

Rt

Rt RT

R c t

c T

R c T

L x
e t R c

R c

x
e t R

R

b
h e t R t R

R c

x t x
e Rt e RT

R

e R c tTx x
e

R c e R c T









 

 





 

  



  

       
    
 
   
 
 

     
 

 
    
 

      
   
         



 

…(5) 

The inventory deterioration cost (ICD) is 

1
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The inventory purchasing cost (ICP) is  

pICP C L     1
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…(7) 

The inventory sales revenue cost (ISRC) is 

5
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In this paper we have considered two cases with permissible delay in payment:  



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 6, 2024 

 

                                                                                 1177                                                                   Anchal et al 1174-1184 

Case-1: t1tmT, the interest payable is 

1 ( )
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The interest earned is 
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The total optimum inventory profit (TVP1 for t1tmT) per unit time is  

 1 1 1

1
TVP ISRC ICO ICH ICD ICP IP IE

T
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… (11) 

For the profit function TVP1 is maximum, and the necessary and sufficient conditions are 1

2
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Case-I1: tmT, there is no interest charges are paid for the products, i.e., 
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The total optimum inventory cost (TVP2 for tmT)per unit time is

   2 2 2

1
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For the profit function TVP2 is maximum, and the necessary and sufficient conditions are 2
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4. Numerical Example and Sensitivity Analysis  
To demonstrate the optimum solution procedure, discussed the following examples: 
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Ex.1. Let C1=450, R=0.015, C5=150, C4=55, tm=0.50 month, Zp= 0.1, Ze=0.090, h1= 0.40, h2= 0.40, C3= 0.060, 
=0.45, a=450, b=0.40 and c=0.20. From Table 1, we observe that the inventory profitfunction 
(TVP1=35117.1794) is maximum when t1=1/2 and t2=0.7720 month. 

 
Table 1: Sensitivity analysis of various parameters with TVP1 

Change in t2 L TVP1 2

1

2

2

0
d TVP

dt
  

C1 495 0.7753 1057.8904 35081.8471 -8376.5263 
450 0.7720 1054.4771 35117.1794 -8381.3383 
405 0.7686 1051.0553 35152.6040 -8386.2348 

R 0.0165 0.7648 1047.0952 35046.0533 -8499.8961 
0.015 0.7720 1054.4771 35117.1794 -8381.3383 
0.0135 0.7793 1062.0279 35188.8334 -8263.2899 

C5 165 0.9229 1217.7692 43385.0154 -5828.1382 
150 0.7720 1054.4771 35117.1794 -8381.3383 
135 0.6729 955.6716 26972.2756 -11012.4106 

C4 60.5 0.6791 961.6425 30536.6947 -11813.3819 
55 0.7720 1054.4771 35117.1794 -8381.3383 
49.5 0.9456 1243.8352 39829.1970 -5031.2868 

tm 0.55 0.7729 1056.4600 35360.3725 -8250.3899 
0.50 0.7720 1054.4771 35117.1794 -8381.3383 
0.45 0.7703 1052.8007 34878.3364 -8514.9970 

Zp 0.11 0.7556 1037.6924 35049.2515 -8728.7262 
0.10 0.7720 1054.4771 35117.1794 -8381.3383 
0.09 0.7893 1072.3762 35187.4801 -8035.8942 

Ze 0.099 0.7673 1049.6736 35199.3357 -8371.5780 
0.090 0.7720 1054.4771 35117.1794 -8381.3383 
0.081 0.7766 1059.2450 35035.2041 -8391.2696 

h1 0.44 0.7702 1052.7075 35098.2061 -8416.8892 
0.40 0.7720 1054.4771 35117.1794 -8381.3383 
0.36 0.7737 1056.2584 35136.1776 -8345.8063 

h2 0.044 0.7718 1054.3516 35116.4799 -8384.3060 
0.040 0.7720 1054.4771 35117.1794 -8381.3383 
0.036 0.7721 1054.6027 35117.8790 -8378.3702 

C3 0.066 0.7719 1054.3952 35116.8440 -8383.0117 
0.060 0.7720 1054.4771 35117.1794 -8381.3383 
0.054 0.7720 1054.5610 35117.5148 -8379.6648 

 0.495 0.6774 988.9160 34104.5586 -10883.2665 
0.45 0.7720 1054.4771 35117.1794 -8381.3383 
0.405 0.8975 1147.4613 36212.9866 -6114.9088 

a 495 0.7688 1156.3535 38661.5130 -9226.0403 
450 0.7720 1054.4771 35117.1794 -8381.3383 
405 0.7758 952.5936 31572.9453 -7536.7480 

b 0.44 0.7721 1054.6277 35119.9870 -8379.6750 
0.40 0.7720 1054.4771 35117.1794 -8381.3383 
0.36 0.7719 1054.3266 35114.3719 -8383.0021 

c 0.22 0.8462 1143.8538 36266.3128 -6801.4926 
0.20 0.7720 1054.4771 35117.1794 -8381.3383 
0.18 0.7199 994.6305 33997.2325 -9911.7873 

 
The following graph (Fig. 1) shows the relation between optimal inventory profit (TVP1) and time period 
t1 and t2. 
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Fig 1: Graphical representation and 3-D view of optimal inventory profit TVP1 and t2, TVP1 v/s t2 and t1 

 
Ex.2. Let C1=450, R=0.015, C5=150, C4=55, tm=1.150 month, Zp= 0.1, Ze=0.090, h1= 0.40, h2= 0.40, C3= 
0.060, =0.45, a=450, b=0.40 and c=0.20. From Table 2, we observe that the inventory profit 
function(TVP1=40223.1506) is maximum when t1=1/2 and t2=0.1784 month. 
 

Table 2: Sensitivity analysis of various parameters with TVC2 

Change in t2 L TVP2 𝑑2𝑇𝑃

𝑑2𝑡
 

C1 495 0.1825 550.2881 40157.0188 -24105.8690 
450 0.1784 547.4704 40223.1506 -24234.6739 
405 0.1744 544.6417 40289.6769 -24365.9109 

R 0.0165 0.1762 545.9287 40185.8314 -24477.9951 
0.015 0.1784 547.4704 40223.1506 -24234.6739 
0.0135 0.1807 549.0328 40260.6139 -23991.5973 

C5 165 0.1352 517.5923 48784.3072 -24417.1238 
150 0.1784 547.4704 40223.1506 -24234.6739 
135 0.1807 573.2636 31700.4762 -24443.8930 

C4 60.5 0.1352 568.8963 35797.8377 -26905.7189 
55 0.1784 547.4704 40223.1506 -24234.6739 
49.5 0.2149 517.2991 44680.9612 -21906.9744 

tm 1.165 0.1706 542.0256 40457.8299 -24474.1090 
1.15 0.1784 547.4704 40223.1506 -24234.6739 
1.135 0.1861 552.8061 39991.4230 -24007.0432 

Zp 0.11 0.1785 547.4704 40223.1506 -24234.6739 
0.1 0.1784 547.4704 40223.1506 -24234.6739 
0.09 0.1784 547.4704 40223.1506 -24234.6739 

Ze 0.099 0.1234 509.6225 41143.3774 -28037.6931 
0.09 0.1784 547.4704 40223.1506 -24234.6739 
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0.081 0.2363 588.7592 39380.0356 -20942.6935 
h1 0.44 0.1782 547.2960 40210.6070 -24284.9683 

0.40 0.1784 547.4704 40223.1506 -24234.6739 
0.36 0.1787 547.6454 40235.6985 -24184.3784 

h2 0.044 0.1784 547.4606 40222.8566 -24237.4079 
0.040 0.1784 547.4704 40223.1506 -24234.6739 
0.036 0.1785 547.4802 40223.4447 -24231.9398 

C3 0.066 0.1784 547.4619 40223.1212 -24237.0557 
0.060 0.1784 547.4704 40223.1506 -24234.6739 
0.054 0.1785 547.4788 40223.1801 -24232.2921 

 0.495 0.1665 549.9918 39563.2188 -27231.2198 
0.45 0.1784 547.4704 40223.1506 -24234.6739 
0.405 0.1888 542.8605 40920.2422 -21481.8712 

a 495 0.1744 599.4077 44309.2019 -26793.7834 
450 0.1784 54704704 40223.1506 -24234.6739 
405 0.1829 495.5235 40920.2422 -21678.0130 

b 0.44 0.1784 547.4526 40225.9211 -24230.1543 
0.40 0.1784 547.4704 40223.1506 -24234.6793 
0.36 0.1785 547.4882 40220.2812 -242391935 

c 0.22 0.1744 543.3080 41136.2360 -22245.6397 
0.20 0.1784 547.4704 40223.1506 -24234.6739 
0.18 0.1843 553.0998 39228.1517 -26085.6331 

 
The following graph (Fig. 2) shows the relation between optimal inventory cost (TVP2) and time period t1 
and t2. 
 

 
 

 
Fig 2: Graphical representation and 3-D view of optimal inventory cost TVP2 and t2, TVP2 v/s t2 and t1 
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5. CONCLUSION 
This paper examines an inventory system for non-instantaneously deteriorating items, taking into 
account the effects of inflation and trade credit terms. In real-world scenarios, most products deteriorate 
as they reach the end of their shelf life. The proposed inventory model includes two numerical examples 
to highlight key features of the results, along with a sensitivity analysis of the various parameters to the 
determine the optimal solution. It is recommended that more researchers focus on studying deteriorating 
item inventory problems within supply chains using fuzzy, stochastic, and dynamic research methods. 
This approach will help ensure that the findings can be effectively applied in practice. It is hoped that this 
paper provides a comprehensive overview of recent developments in deteriorating item inventory 
management, serving as a foundation for future research in this field. Additionally, future research 
directions could involve the development of inventory models that incorporate production-dependent 
factors, partial backlogging, and the use of two warehouses, among other considerations. 
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