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ABSTRACT 
The Random Forest algorithm is widely recognized for its high prediction accuracy, robustness to noise, 
flexibility in parameter tuning, adaptability, and its ability to mitigate over-fitting across various fields. 
However, its performance degrades significantly when applied imbalanced datasets, often failing to 
achieve adequate classification accuracy. Although numerous techniques have been proposed in previous 
research to address this problem, many are computationally complex and tend to introduce additional 
noise. In contrast, sample generation techniques, are more  widely employed than direct modifications to 
the classification algorithm. Therefore, this study proposes a novel hybrid sampling technique, termed the 
CH-SMOTE algorithm, which integrates the center of gravity principle with the SMOTE algorithm, and 
combines both over-sampling and under-sampling methods.. This algorithm is designed to be both 
computationally straightforward and highly effective. The CH-SMOTE algorithm addresses key limitations 
of the original SMOTE algorithm, such as blind synthesis and marginalization issues, while simultaneously 
mitigating over fitting and effectively handling class imbalance. To demonstrate its effectiveness, the CH-
SMOTE algorithm was evaluated on seventeen datasets exhibiting varying degrees of class imbalance. The 
results indicate that the CH-SMOTE algorithm significantly enhances the classification performance of the 
Random Forest on imbalanced datasets. 
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1. INTRODUCTION 
The Random Forest algorithm, an ensemble learning method developed by Breiman and Cutler [1], 
utilizes multiple decision trees to train models and make predictions through majority voting. It addresses 
the limitations of single classifiers by enhancing overall performance. Random Forest exhibits strong 
performance and is applicable to a wide range of classification and prediction tasks. Studies have 
demonstrated that Random Forest achieves high predictive accuracy, robustness to outliers and noise, and 
is resistant to overfitting[1]. 
With the rapid advancement of technology, the volume of data the volume of data generated across 
industries is increasing exponentially, and much of this data is characterized by class imbalance. For 
example, in the telecommunications industry, there is a no table disparity between regular and fraudulent 
calls. Similarly, in medical diagnosis, the cost of misdiagnosing terminally ill patients as healthy far 
outweighs the consequences of misdiagnosing asymptomatic patients. In the banking sector, although the 
number of honest users significantly exceeds that of fraudulent users, the latter tends to caused more 
severe issues for financial institutions. As a result, in imbalanced datasets, greater emphasis is placed on 
the detection and classification of the minority class. Traditional classification algorithms are not suitable 
for handling imbalanced datasets. Consequently, research on addressing class imbalanced in datasets has 
become a central focus in the field[2]. 
Imbalanced data refers to data sets in which the number of samples from one class is significantly smaller 
than that of other classes. The class with the largest number of samples is termed the “majority class,” 
while the class with the fewer samples is referred to as the “minority class.” In binary classification 
problems, the minority class is often designated as the “positive class, ”while the majority class is called 
the “negative class”  
Although Random Forest surpasses single classifiers like Decision Trees in terms of accuracy, 
generalization, and robustness, its performance is adversely affected by imbalanced training data, 
particularly in classifying minority samples. Traditional classification algorithms tend to produce much 
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lower prediction accuracy for the minority class compared to the majority class, leading to a significant 
decline in overall classifier performance. As a result, even with Random Forest’s typically high accuracy, 
substantial misclassification rates often occur. Many studies optimize the performance of the Random 
Forest by addressing the imbalance of the dataset [4],but challenges such as data data scarcity, outliers, 
and noise exacerbate this problem[6]. 
Approaches to addressing the classification of imbalanced datasets are typically categorized into three 
categories: data-level methods, algorithm-level methods, and hybrid methods [7]. Data-level methods 
balance the datasets by reducing the number of samples in the majority class or increasing the number of 
samples in the minority class [9]. Data-level methods mainly use resampling to redistribute the training 
data of different classes in the data pre-processing stage [9]. Resampling techniques, includes under-
sampling, over-sampling, and combined sampling[11].Under-sampling reduces the number of majority 
class samples, but risks discarding valuable information[12][14],with methods like the Random Under-
sampling (RUS) [15] and the Near Miss algorithm (NM) [16]being prominent. Over-sampling, such as the 
Synthetic Minority Over-sampling Technique (SMOTE), generates new minority class samples but can lead 
to overfitting [18, 19, 20] and increased computational costs[20].Combined sampling integrates both 
strategies to balance class distributions.  
Algorithm-level methods, on the other hand, involve designing algorithms that are inherently more 
suitable for imbalanced datasets, such as cost-sensitive learning, feature selection, and single-class 
learning. Hybrid methods combine the benefits of data-level resampling with algorithmic adjustments, 
offering a more comprehensive approach[22]. 
Among data-level methods, oversampling is widely used to mitigate data imbalance by generating new 
samples [23]. The SMOTE algorithm is onethe most classic over-sampling algorithm [24],though it has 
several limitations that need to be addressed. 
In this study, we propose the CH-SMOTE algorithm, an enhancement of the SMOTE algorithm, to address 
the class imbalance issue. This algorithm synthesizes a balanced dataset, which is then classified using the 
Random Forest algorithm. The performance ofthe proposed method was evaluated across 17 imbalanced 
datasets and compared to other state-of-the-art techniques. 
The remainder of this paper is organized as follows: Section 2 reviews related works. Section 3 details the 
CH-SMOTE algorithm. Section 4 introduces the evaluation metrics for classification algorithm. Section 5 
presents the experimental results. The conclusion is drawn in Section 6. 
 
2. Related Works 
In random over-sampling, minority class samples are simply copied, resulting in randomness in selecting 
which samples to replicate. This process also introduces the problem of repeating samples from the 
original dataset, which does not effectively address the core issue of imbalanced data. To improve upon 
this, Chawla et al. introduced the Synthetic Minority Over-sampling Technique (SMOTE)[24].The SMOTE 
algorithm remains one of the most widely adopted data-level methods for addressing class imbalance. 
The ccentral premise of the SMOTE algorithm is that neighboring samples around minority class samples 
are likely also minority class samples. The SMOTE algorithm achieves synthetic sample generation by 
identifying the K nearest neighbors for each minority class sample and interpolating new synthetic 
samples along the lines connecting the original sample to its neighbors. The interpolation is carried out 
using the following formula: 

(0,1) ( )new origin i originX X rand X X   
1,2, ,i m  (1) 

where newX represents the synthetic sample, originX  is the minority class sample, N is the total number of 

minority class samples, iX （ 1, 2, ,i m  ）is the m nearest neighbor samples adjacent to originX and 

rand (0,1) is a random number between 0 and 1. Fig. 1 displays the principle of the SMOTE algorithm.  
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Fig 1: The principle of the SMOTE algorithm 

 
While SMOTE offers improvements over random over-sampling, it still suffers from several limitations. 
Figure1 shows that the algorithm may generate synthetic minority class samples that include noise, 
boundary, and overlapping samples.A significant issue with the SMOTE algorithm is its indiscriminate 
selection of nearest neighbors, as there is no clear guidance on which factors should influence the 
selection of neighbors, and different choices can significantly affect the results. Additionally, the 
appropriate K value remains difficult to determine, often leading to poor handling of the underlying data 
distribution and marginalization of minority samples.  
To overcome these limitations, several variant senhancements of the SMOTE algorithm have been 
proposed. The SMOTE - Nominal Continuous (SMNC) algorithm is a generalized version that 
accommodates both continuous and nominal data [24]. The Borderline-SMOTE algorithm (BSM) focuses 
on boundary samples to improve classification accuracy[26]. The Adaptive Synthetic Sampling algorithm 
(ADA) adjusts the generation of synthetic samples based on majority class densities in the 2 K-nearest 
neighbors of each sample [27]. The Safe-Level SMOTE algorithm (SLS) guides synthetic sample generation 
using the "Safe-Level" parameter[28], while Density-based SMOTE (DSM) clusters minority samples using 
density reachability concepts [29]. The Relocating Safe-level SMOTE algorithm (RSLS) refines synthetic 
sample placement based on the "Safe-Level" parameter [30].Douzas etal. [23] combined clustering 
techniques with the SMOTE algorithm to mitigate noise in the synthesize samples. These methods 
effectively increase the volume of data and balance the datasets. However, many focus onlyon increasing 
local sample information, often neglecting the global data distribution, which may lead to discrepancies 
between the synthetic and original datasets. 
To address these concerns, Razavi et al.[31] introduced data repair techniques to improve classification 
performance on imbalanced datasets. Douzas and Bacao[33] applied Conditional Generative Adversarial 
Nets (CGAN) to generate new samples that better align with the overall distribution of the dataset. 
Mukherjee and Khushi[33]proposed the SMOTE-ENC algorithm, handles both continuous and nominal 
features, offering a more comprehensive solution for mixed data types. 
 
The CH-SMOTE Algorithm 
To address the limitations of the SMOTE algorithm, this study introduces an improved variant, termed the 
CH-SMOTE algorithm. Inspired by the K-Mean SMOTE [23], the CH-SMOTE algorithm employs K-Means 
clustering; however, randomness arises in selecting the value of k. Based on the principles of gravitational 
theory, samples within the same class are expected to share a common center of gravity [34], which serves 
as the representative point of the class. During sample generation, synthetic samples are positioned near 
the center of gravity of the minority class, providing directionality and overcoming the random nature of 
SMOTE's neighbor selection. Furthermore, samples generated excessively far from the center are 
eliminated, improving the distribution of synthetic samples, particularly near the class boundaries, and 
addressing the marginalization issue inherent in the SMOTE algorithm. Expanding the interpolation space 
within reasonablebounds effectively mitigates overfitting. The flow chart of the CH-SMOTE algorithm is 
displayed in Fig 2. 
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Fig 2: Flow chart of the CH-SMOTE algorithm 

 
The steps of the CH-SMOTE are as follows: 
Suppose the training set isT , each sample has r attributes, and the sample sizes of the minority class and 

the majority class are
1n  and 

2n , respectively. Then the minority class sample set is denoted as X: 

 1 2 1
, , , ,nX X X X 1 2 1( , , , ), ( 1, 2, , )i i i irx x x i n X   . The majority sample set is denoted as 

Y:  1 2 2
, , , nY Y Y Y ， 1 2 2( , , , ), ( 1,2, , )j j j jry y y j n Y   .  

Step 1 involves calculating the center of gravity for the minority class, denoted as centerX .  

The center of gravity of the minority samples is obtained by Eq. (2). If each minority sample is visualized 
as a point in space, the center of these points represents minority class's center of gravity. Samples closer 
to the center exhibit a higher concentration of minority class characteristics. The CH-SMOTE algorithm’s 
The CH-SMOTE algorithm's core principle is to generate synthetic samples around the center of gravity.  

1 1 1

1 2

1 1 11 1 1

1 1 1
( , , , )

n n n

center i i ir

i i i

X x x x
n n n  

   
   （2） 

The base point of the over-sampling interpolation formula is modified to be the center of gravity. Now, the 
interpolation formula is: 

)()1,0( origincentercenternew XXrandXX 
  （3） 

where newX  is the new interpolated sample, centerX  is the center of gravity of the minority sample, 

originX  is the original minority class samples with centerX as the center of gravity , and )1,0(rand is a 

random number between 0 and 1. 
All the new interpolated samples are between the center of gravity and the original samples, as shown in 
Fig 3.Howeverthis interpolation method confines the interpolation space, potentially leading to 
overfitting. 
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Fig 3: The principle of new interpolated samples 

 
Step 2involves calculating the Euclidean distance between the center of gravity and each minority class 
sample. 
Let Drepresent the Euclidean distance set from the center of gravity to each samples, which can be 
expressed as: 

 1 2 1, , , nD d d d 
（4） 

where id  represents the Euclidean distance between the center of gravity and the minority class samples. 

Once the Euclidean distances are computed, the maximum distance maxD  is determined as follows: 

 max 1 2 1max , , , nD d d d 
.      （5） 

Next, the relationship between the Euclidean distance id and the maximum Euclidean distance is 

evaluated. Eq. (6) is used to calculate the multiples iH  of id  and maxD . 

max /i iH D d
.       （6） 

Next, an integer for iH  is determined as 

 iHH 
.         （7） 

Step 3involvessynthesizing new samples. The SMOTE algorithm interpolation formula is modified is 
modified as follows to obtain the new interpolation method: 

center center(0, ) ( )new originX X rand H X X   
   （8） 

where newX  is the new interpolated sample, centerX  is the center of gravity of the minority samples, 

originX  is the original minority class samples with centerX as the center of gravity, and (0, )rand H  

represents a random number between 0 and H. The interpolation effect is shown in Fig 4. The range of the 
interpolation of the SMOTE algorithm is extended.The range is on the extension line between the center of 
gravity and the original minority class samples, but it does not exceed the minority class sample range. 
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Fig 4: The principle of CH-SMOTE samples 

 
Step 4 applies under-sampling to the synthesized minority class samples. By synthesizing samples 
according to Eq. (8), the number of generated synthetic samples for the minority class typically exceeds 
the required sample size.To correct this, under-sampling is applied to remove excess samples. Specifically, 
samples located farther from the center of gravity are eliminated, prioritizing the removal of samples that 
are spatially distant from the minority class center. 
There are several methods to compute the distance between a sample and the center of gravity, including 
the Euclidean distance, the Manhattan distance, the Chebyshev distance, the Minkowski distance, the 
standardized Euclidean distance, the Mahalanobis distance, the cosine of the included angle, the Hamming 
distance.The appropriate distance metric can be selected based on the specific application.Ultimately, the 
number of synthetic samples is adjusted to achieve the desired class balance. The pseudocode for theCH-
SMOTE algorithm is presented in Algorithm 1. 
 

Algorithm 1: CH-SMOTE algorithm 
Input: Imbalanced dataset T 
Output: New balanced dataset 
1. Divide imbalanced dataset T into minority class X and majority class Y; and record thesample 
sizes as n1 and n2 
2. For minority class X do  

 

3. Calculate the center of gravity 
1 1 1

1 2

1 1 11 1 1

1 1 1
( , , , )

n n n

center i i ir

i i i

X x x x
n n n  

   
 

4.  For i=1 to n1 do 

5.   Calculate ( , )i i centerd X X based on Euclidean distance  

6.   Take the maximum Euclidean distance maxD  

7.   Calculate the the multiple max /i iH D d  

8.   Calculate the
 iHH 

 
9.   For new = 1: z(n1-n2) , z＞1 do 

10.    Synthesize new samples center center(0, ) ( )new originX X rand H X X     

11.    For each newX
do    

12.     Calculate the Euclidean distance between newX  and centerX  

13.     Remove samples far from centerX  

14.     Make n1 + number of newX = n2 
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15.     Add newX
to X 

16.    End for 
17.   End for 
18.  End for 
19. End for 
20. Return the new balanced dataset 
 

 
The synthetic samples generated by the CH-SMOTE algorithm are closer to the minority class’s center of 
gravity, while fewer synthetic samples are generated in regions farther from the center. This selective 
sample generation reduces the occurrence of erroneous synthetic samples, particularly in sparse areas. 
For example, Fig 5shows the distribution of original and synthetic minority class samples for the 
Haberman dataset from the UCI database, illustrating the effectiveness of the CH-SMOTE algorithm.. 
 

 
Fig 5: An example used to illustrate the CH-SMOTE algorithm 

 
4. Evaluation Indices 
4.1 Evaluation Indices of the Imbalanced Dataset 
The Imbalance Ratio (IR) is a crucial metric in the evaluation of imbalanced datasets. It quantifies the 
ratio between the negative (majority) class and the positive (minority) class [35]. The equation is defined 
as: 

the number of negative the number of positive=IR       (9) 
The value of IR close to 1 indicates that the dataset is balanced. As the IR value increases, the disparity 
between the sizes of negative and positive classes becomes more pronounced. 
 
4.2 Classification Performance Evaluation Indices of Random Forest 
The Random Forest algorithm is primarily employed for classification and prediction tasks. Therefore, its 
classification performance is a key indicator for assessing the algorithm’s effectiveness. The classification 
performance can be evaluated using a confusion matrix, as shown in Table 1[24].  
 

Table 1: Confusion matrix of two-class data 
 Classified Class 

Positive Negative 

Actual Class 

Positive TP 
(True Positives) 

FN 
(False Negatives) 

Negative FP 
(False Positives) 

TN 
(True Negatives) 

 
In line with previous studies [37], several evaluation metrics are utilized, including Classification 
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Accuracy (Accuracy), Geometric mean (G-mean), F-values with  =1, and Out-of-Bag (OOB) error.The 

formula for OOB error is based on the number of decision trees (nTree) in the Random Forest. The indices 
are defined as: 
Accuracy = (TP + TN)/（TP+TN+FN+FP),       (10) 

mean Sensitivity SpecificityG   
,       

  (11) 
 where Sensitivity = TP/(TP + FN), Specificity = TN/(FP + TN)

 
2

2

(1 ) Recall Precision
value 100%,

(Recall + Precision)
F





  
  



      

(12) 
  where Recall=TP/(TP+FN), Precision= TP/(TP+FP) 

 error

 error

nTree

i

i

OOB

OOB
nTree




.         
 (13) 
These evaluation indices provide a comprehensive understanding of the classification performance of the 
Random Forest algorithm on imbalanced datasets. 
 
5. Experimental Analysis 
5.1 Description of Data 
To validate the effectiveness of the CH-SMOTE algorithm, 17 real-world datasets were collected from the 
UCI machine learning repository (http://archive-beta.ics.uci.edu/), as summarized in Table 2. The 
collection includes 9 binary-class datasets and 8 multi-class datasets. For the multi-class datasets, the 
one-versus-rest method was applied for binarization[37] or only two classes were selected for analysis 
[40]. 
 

Table 2: Brief description of the datasets 

Name Description 

Spambase A classification question of whether an email is spam or not. 

Brest-Cancer It is original Wisconsin Breast Cancer Database. 

Tic-Tac-Toe Endgame Possible configuration of Tic-Tac-Toe. 

Heart Failure Clinical Records Itis the medical records of 299 patients with heart failure. 

Blogger Contains information from 100 bloggers. 

South German Credit It is about whether actual credit is good or bad. 

Car-Evaluation It is derived from a simple hierarchical decision model. 

Haberman The survival of breast cancer surgery patients conducted. 

Blood It is obtained from the Blood Transfusion Service Center in Hsin-Chu 
City, Taiwan. 

Contraceptive Method Choice A subset of the 1987 Indonesian National Contraceptive Prevalence 
Survey. 

HCV It islaboratory value data for blood donors and hepatitis C patients. 
In this paper, 26 samples containing missing values were deleted. 

Page Blocks  A classification of blocks of the document page layout detected 

Ecoli Describe the problem of classifying Ecoli proteins. 

Cardiotocography Contain 2126 samples data of fetal heart rate classification and 
electrocardiogram characteristics of uterine contractions by 
obstetricians. 

Balance The result of a simulation psychology experiment.  

Poker Hand Hand（1vs3） It isdata that predicts poker games, selects classes 1 and 3. 

Poker Hand Hand（1vs4） It is data that predicts poker games, selects classes 1 and 4. 

 
Table 3 describes the characteristics of these datasets. It can be observed that these datasets have 3 to 57 
features, 100 to 11,112 samples, and imbalance ratios from 1.54 to 113.97. These datasets belong to 
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different fields, and their features are diverse and wide-ranging, which provide a factual basis for the 
analysis and generalization of the results of the method in this study. 
 

Table 3: Characteristics of the datasets 

Name Data size 
No. of 
features 

No. of 
positive 

No. of 
negative 

Imbalance 
Ratio 

Spambase 4601 57 1813 2788 1.54 

Breast-Cancer 683 9 239 444 1.86 

Tic-Tac-Toe Endgame 958 9 332 626 1.89 

Heart Failure Clinical Records 299 12 96 203 2.11 

Blogger 100 5 32 68 2.13 

South German Credit 1000 20 300 700 2.33 

Car-Evaluation 1728 6 518 1210 2.34 

Haberman 306 3 81 225 2.78 

Blood 748 4 178 570 3.2 

Contraceptive Method Choice 1473 9 333 1140 3.42 

HCV 589 12 63 526 8.35 

Page Blocks  5473 10 560 4913 8.77 

Ecoli 336 7 29 307 10.59 

Cardiotocography 2126 21 176 1950 11.08 

Balance 625 4 49 576 11.76 

Poker Hand Hand（1vs3） 11112 10 513 10599 20.66 

Poker Hand Hand（1vs4） 10692 10 93 10599 113.97 

 
5.2 Data Processing and Experimental Environment 
The Random Forest algorithm was implemented in the R 4.1.1 using the “Random Forest” package. The 
Euclidean distance wasemployed to compute the distance between eachsample point and the center of 
gravity of the minority class.While various distance measures exist, the Euclidean distance was chosen for 
its widespread usagein related work. 
In this experiment, the cross-validation was utilized,dividing each dataset into an training set (80% of the 
original dataset) and a test set (20% of the original dataset). To evaluate the efficacy of the CH-SMOTE 
algorithm in improving Random Forest's classification performance, several resampling methods were 
appliedto the datasets. The preprocessed dataset were subsequently classified using the Random Forest. 
The CH-SMOTEalgorithm was compared with three baseline algorithms: ORI (direct classification using 
original data), under-sampling methods, and over-sampling methods, as summarized in Table 4. Two 
under-sampling methods, Random Under-Sampling (RUC) and Near Miss (NM), were utilized, alongside 
seven over-sampling methods: SMOTE (SM), Borderline-SMOTE (BSM), Density-based SMOTE (DSM), 
Safe-Level SMOTE (SLS), Relocating Safe-Level SMOTE (RSLS), SMOTE-Nominal Continuous (SMNC), and 
Adaptive Synthetic (ADA). Method 11 is the optimization algorithm proposed in this paper (CH-SMOTE). 
 

Table 4: The description of resampling methods used in the experiment 

Model Method Abbreviation 

1 Original data is directly classified ORI 

2 Random Under-Sampling RUC 

3 Near Miss NM 

4 SMOTE SM 

5 Borderline-SMOTE BSM 

6 Density-based SMOTE DSM 

7 Safe-Level SMOTE SLS 

8 Relocating Safe-level SMOTE RSLS 

9 SMOTE - Nominal Continuous SMNC 

10 Adaptive Synthetic  ADA 

11 CH-SMOTE CH-SMOTE 
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In the R software environment, the “ROSE”, “them is”, and “smote family” packages were employed to 
implement the resampling methods used for comparison. The CH-SMOTE algorithm’s R code was 
designed to balance the above 17 datasets. It's important to note that default parameter settings were 
employed for all the compared methods. 
 
5.3 Experimental Results 
As discussed in the preceding section, data processed by ORI and resampling methods were classified 
using Random Forest. Different methods varied results across datasets, with the Random Forest classifiier 
trained on the training set and evaluated on the test set. Evaluation metrics, including Accuracy, G-mean, 
F-value, and OOB error, were used to assess the classifier's performance. Ther esults are presented in 
Tables 5-8, with the best results highlighted in bold for clarity. 
Table 5 demonstrates the significant impact of data imbalance on the classification. For different methods, 
it is found that there are different results on different datasets. For instance, the SM algorithm performed 
best on the HCV dataset, while the SMNC algorithm excelled on the Cardiotocography and Poker Hand 
(1vs4) dataset. Overall, however, the CH-SMOTE algorithm consistently yielded the highest classification 
accuracy across most datasets.  
 

Table 5: Results of experiment in terms of Accuracy 

Data ORI RUC NM SM BSM 
DS
M 

SLS 
RSL
S 

SMN
C 

ADA 
CH-
SMOTE 

Spambase 
0.94
9 

0.94
0 

0.95
3 

0.96
6 

0.95
5 

0.94
8 

0.96
4 

0.96
7 

0.96
4 

0.95
9 

0.964 

Brest-Cancer 
0.94
2 

0.96
7 

0.96
9 

0.96
8 

0.97
8 

0.97
1 

0.97
8 

0.97
8 

0.97
2 

0.97
8 

0.983 

Tic-Tac-Toe Endgame 
0.92
2 

0.90
1 

0.94
0 

0.97
3 

0.93
8 

0.95
8 

0.95
0 

0.94
6 

0.96
4 

0.95
9 

0.984 

Heart Failure Clinical 
Records 

0.81
7 

0.82
1 

0.87
2 

0.91
1 

0.89
0 

0.88
3 

0.87
0 

0.83
1 

0.90
2 

0.85
4 

0.915 

Blogger 
0.90
0 

0.69
2 

0.92
3 

0.92
6 

0.84
6 

0.88
5 

0.76
9 

0.92
3 

0.78
6 

0.85
7 

0.964 

South German Credit 
0.76
5 

0.67
8 

0.73
3 

0.80
8 

0.81
0 

0.82
5 

0.80
1 

0.80
1 

0.83
6 

0.83
3 

0.843 

Car-Evaluation 
0.97
7 

0.97
1 

0.98
6 

0.98
9 

0.99
2 

0.98
4 

0.98
4 

0.98
9 

0.98
8 

0.98
0 

0.994 

Haberman 
0.71
0 

0.56
3 

0.60
6 

0.69
2 

0.75
9 

0.72
4 

0.76
0 

0.69
3 

0.80
0 

0.76
1 

0.889 

Blood 
0.72
7 

0.50
7 

0.65
3 

0.71
5 

0.78
6 

0.78
6 

0.80
6 

0.80
9 

0.76
8 

0.73
5 

0.820 

Contraceptive Method 
Choice 

0.77
3 

0.71
0 

0.64
2 

0.83
6 

0.84
2 

0.83
1 

0.86
6 

0.85
8 

0.85
1 

0.85
3 

0.868 

HCV 
0.96
6 

0.80
0 

0.92
3 

1.00
0 

0.99
5 

0.98
6 

0.98
0 

0.99
0 

0.98
6 

0.99
1 

0.972 

Page Blocks 
0.97
5 

0.95
9 

0.96
4 

0.99
7 

0.98
5 

0.98
8 

0.99
2 

0.98
3 

0.98
6 

0.98
4 

0.987 

Ecoli 
0.94
1 

0.71
5 

0.75
0 

0.97
5 

0.99
2 

0.98
3 

0.99
1 

0.99
1 

0.96
7 

0.96
7 

0.984 

Cardiotocography 
0.98
8 

0.89
7 

0.97
2 

0.99
4 

0.98
2 

0.99
3 

0.98
9 

0.99
2 

0.99
5 

0.99
0 

0.986 

Balance 
0.93
6 

0.63
2 

0.70
0 

0.91
5 

0.93
9 

0.94
6 

0.89
0 

0.89
8 

0.93
5 

0.91
4 

0.974 

Poker Hand（1vs3） 
0.96
1 

0.65
3 

0.63
6 

0.97
6 

0.97
8 

0.97
3 

0.98
1 

0.98
2 

0.97
7 

0.97
5 

0.973 

Poker Hand（1vs4） 
0.99
2 

0.65
8 

0.84
2 

0.99
6 

0.99
6 

0.99
6 

0.99
6 

0.99
6 

0.99
6 

0.99
6 

0.995 

**Average** 
0.89
7 

0.76
8 

0.82
7 

0.92
0 

0.92
1 

0.92
1 

0.91
6 

0.91
9 

0.92
2 

0.91
7 

0.947 
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Fig 6illustrates the increase in Accuracyvalues achieved by each method relative to the ORI. The results 
indicate that various methods exert differing impacts on Random Forest classification accuracy across 
distinct datasets. While under-sampling techniques reduced classification accuracy for specific datasets, 
over-sampling approaches, particularly the CH-SMOTE algorithm, generally enhanced Random Forest 
classification accuracy in the majority of cases. 
 

 
Fig 6: The increase in the value of Accuracy compared to ORI 

 
In the context of imbalanced datasets, misclassification of the minority class as the majority class may still 
result in seemingly high overall classification accuracy[38]. For example, in a dataset with 100 samples, 10 
representing the minority class and 90 the majority class, classification accuracy may still be misleading. 
Even if all minority class samples are misclassified while the majority class samples are correctly 
identified, the overall classification accuracy still remain at 90%. However, the Random Forest algorithm 
does not inherently account for imbalances in data distribution. Although it may achieve high overall 
classification accuracy, Random Forest tends to favor the majority class, leading to lower recognition rates 
for minority class samples in imbalanced datasets. This inherent bias diminishes the effectiveness of 
minority class recognition. To assess the impact of the imbalance ratio on classification performance, 
changes in the Sensitivity index were examined as the imbalance ratio increases, as shown in Fig 7. 
 

 
Fig 7: The Sensitivity of Random Forest with the increase of the imbalance ratio 
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Fig 7demonstrates that as the imbalance ratio increases, the sensitivity index on the original dataset 
declines consistently. Thus, larger imbalance ratios are associated with lower recognition rates of 
minority class samples by the Random Forest classifier. In the Balance, Poker Hand (1vs3), and Poker 
Hand (1vs4), which exhibit the highest imbalance ratios (IR),Random Forest misclassifies all minority 
class samples in both the training and the test sets as the majority class samples, while majority class 
samples are correctly classified. Despite the high overall accuracy, driven by the low representation of 
minority class samples, Sensitivity and Precision values are 0, while and Specificity reaches 1 in these 
cases. The CH-SMOTE algorithm, however, consistently maintains higher sensitivity index values 
compared to other resampling methods, achieving the highest average value overall. 
However, it is essential to recognize that Accuracy alone may not sufficiently capture the classification 
challenges posed by imbalanced datasets. Therefore, this study also considers G-mean and F-value as 
complementary metrics. G-mean is a robust performance metric for imbalanced datasets, calculated as 
the geometric mean of Specificity and Sensitivity. A high G-mean value indicates strong classifier 
performance, as it reflects high Specificity and Sensitivity. The G-mean values obtained in this study are 
presented in  
Table 6. The G-mean values for the Balance, Poker Hand (1 vs. 3) and Poker Hand (1 vs. 4) datasets exhibit 
extreme cases. Fig 8illustrates the increase in G-mean values following resampling, compared to the ORI. 
As shown in Figure 8, the RUC method, unlike the other 10 methods, fails to improve G-mean for certain 
datasets. Nevertheless, in most cases, G-mean values improved after over-sampling. Overall, all 
resampling methods contribute to enhancing G-mean, with the CH-SMOTE algorithm yielding the most 
significant improvement in Random Forest classification performance. 
 

Table 6: Results of experiment in terms of G-mean 

Data ORI RUC NM SM BSM 
DS
M 

SLS 
RSL
S 

SMN
C 

ADA 
CH-
SMOTE 

Spambase 
0.94
4 

0.94
0 

0.95
3 

0.96
7 

0.95
5 

0.94
4 

0.96
5 

0.96
7 

0.96
4 

0.95
8 

0.964 

Brest-Cancer 0.94 
0.96
3 

0.97
1 

0.96
8 

0.97
7 

0.97
6 

0.97
8 

0.97
8 

0.97
2 

0.97
8 

0.983 

Tic-Tac-Toe Endgame 
0.88
3 

0.89
9 

0.94
0 

0.97
3 

0.93
1 

0.94
5 

0.94
7 

0.94
5 

0.96
1 

0.95
4 

0.984 

Heart Failure Clinical 
Records 

0.83
4 

0.82
1 

0.87
2 

0.91
2 

0.88
9 

0.87
7 

0.87
5 

0.83
7 

0.90
5 

0.85
3 

0.915 

Blogger 
0.77
5 

0.69
0 

0.93
5 

0.93
5 

0.84
5 

0.83
7 

0.76
3 

0.92
0 

0.78
4 

0.87
4 

0.953 

South German Credit 
0.60
4 

0.67
9 

0.73
3 

0.80
1 

0.80
5 

0.81
8 

0.79
5 

0.79
5 

0.83
5 

0.83
0 

0.841 

Car-Evaluation 
0.97
8 

0.96
8 

0.98
6 

0.99
0 

0.99
2 

0.98
3 

0.98
6 

0.99
0 

0.98
8 

0.98
1 

0.994 

Haberman 
0.44
9 

0.56
3 

0.61
0 

0.61
2 

0.75
2 

0.69
0 

0.73
1 

0.64
6 

0.81
5 

0.75
8 

0.892 

Blood 
0.47
3 

0.49
8 

0.66
6 

0.71
2 

0.78
4 

0.76
5 

0.80
3 

0.80
4 

0.77
0 

0.73
2 

0.818 

Contraceptive Method 
Choice 

0.43
8 

0.71
3 

0.64
1 

0.83
5 

0.83
5 

0.81
8 

0.85
8 

0.85
5 

0.85
2 

0.85
2 

0.872 

HCV 
0.92
2 

0.79
7 

0.92
3 

1.00
0 

0.99
5 

0.98
5 

0.98
0 

0.98
9 

0.98
7 

0.99
1 

0.972 

Page Blocks 
0.93
9 

0.95
8 

0.96
4 

0.98
2 

0.98
5 

0.98
8 

0.99
3 

0.98
4 

0.98
6 

0.98
3 

0.987 

Ecoli 
0.70
7 

0.71
2 

0.71
7 

0.97
3 

0.99
2 

0.98
3 

0.99
0 

0.98
9 

0.96
7 

0.96
6 

0.983 

Cardiotocography 
0.94
6 

0.89
4 

0.97
2 

0.99
4 

0.98
2 

0.99
3 

0.98
9 

0.99
2 

0.99
5 

0.99
0 

0.986 

Balance 
0.00
0 

0.55
4 

0.70
7 

0.91
4 

0.93
8 

0.94
6 

0.26
6 

0.26
7 

0.93
6 

0.91
4 

0.974 

Poker Hand（1vs3） 
0.00
0 

0.65
3 

0.63
6 

0.97
5 

0.97
8 

0.97
3 

0.96
9 

0.97
0 

0.97
7 

0.97
6 

0.973 

Poker Hand（1vs4） 0.00 0.69 0.85 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.995 
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0 3 9 6 6 6 9 1 6 6 

**Average** 
0.63
7 

0.76
4 

0.82
9 

0.91
4 

0.91
9 

0.91
3 

0.87
5 

0.87
8 

0.92
3 

0.91
7 

0.946 

 

 
Fig 8: The increase in the value of G-mean compared to ORI 

 
The F-value serves as a robust and comprehensive metric for evaluating classification performance in 
imbalanced datasets. It synthesizes the performance of classifiers by combining Recall and Precision. A 
higher the F-value indicates superior classifier. 
Table 7 shows the F-values resulting from classifying different resampling methods using Random Forest, 
whereas Figure 9 depicts the relative increase in F-value compared to the ORI. According to  
Table 7 and Fig 9, the F-value of ORIfor the Balance, Poker Hand (1vs3) and Poker Hand (1vs4) datasets is 
0. Nevertheless, all resampling methods improve the F-value for these three datasets. Among the 11 
methods, for the Ecoli dataset, the F-value of the NM and the ORI methods are identical. Moreover, the 
RUC method fails to improve the F-value for the Blogger, Cardiotocography, and HCV datasets, and the 
DSM method exhibits no improvement for the Spambase dataset. In other instances, resampling improved 
the F-value across datasets, albeit to varying extents depending on the method employed. Overall, the CH-
SMOTE algorithm exhibits the most substantial improvement in F-value, with an increase of 23.8%. 
 

Table 7: Results of experiment in terms of F-value 

Data ORI RUC NM SM BSM 
DS
M 

SLS 
RSL
S 

SMN
C 

ADA 
CH-
SMOTE 

Spambase 
0.93
5 

0.93
7 

0.95
3 

0.97
0 

0.95
3 

0.93
4 

0.96
8 

0.97
0 

0.96
3 

0.95
6 

0.963 

Brest-Cancer 
0.91
5 

0.97
3 

0.96
6 

0.96
7 

0.97
8 

0.96
3 

0.97
8 

0.97
8 

0.97
1 

0.98
0 

0.983 

Tic-Tac-Toe Endgame 
0.87
6 

0.91
0 

0.94
1 

0.97
3 

0.92
9 

0.94
1 

0.94
5 

0.94
4 

0.96
0 

0.95
3 

0.984 

Heart Failure Clinical 
Records 

0.71
8 

0.82
1 

0.84
8 

0.90
7 

0.87
5 

0.86
6 

0.85
3 

0.81
2 

0.90
0 

0.84
6 

0.916 

Blogger 
0.75
0 

0.66
7 

0.90
9 

0.93
3 

0.83
3 

0.82
4 

0.8 
0.91
7 

0.76
9 

0.86
7 

0.952 

South German Credit 
0.50
5 

0.68
9 

0.74
2 

0.78
4 

0.79
0 

0.80
4 

0.77
7 

0.77
7 

0.83
1 

0.82 0.833 

Car-Evaluation 
0.96
1 

0.97
3 

0.98
5 

0.98
8 

0.99
2 

0.98
3 

0.98
3 

0.98
8 

0.98
8 

0.97
9 

0.994 

Haberman 
0.30
8 

0.56
3 

0.58 
0.52
0 

0.72
7 

0.53
3 

0.65
4 

0.54
9 

0.80
9 

0.77
6 

0.896 
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Blood 
0.30
5 

0.55
3 

0.67
5 

0.69
0 

0.79
7 

0.72
8 

0.76
2 

0.78 
0.77
3 

0.71
7 

0.806 

Contraceptive Method 
Choice 

0.29
5 

0.71
6 

0.65
2 

0.82
2 

0.81
4 

0.79
4 

0.84
1 

0.83
8 

0.85
2 

0.84
4 

0.871 

HCV 
0.86
7 

0.81
5 

0.91
7 

1.00
0 

0.99
5 

0.98
5 

0.98
0 

0.98
9 

0.98
5 

0.98
9 

0.971 

Page Blocks 
0.87
6 

0.96
2 

0.96
4 

0.98 
0.98
5 

0.98
7 

0.99
2 

0.98
1 

0.98
6 

0.98
4 

0.987 

Ecoli 
0.66
7 

0.69
0 

0.66
7 

0.97
2 

0.99
2 

0.98
1 

0.99
0 

0.98
9 

0.96
6 

0.97
0 

0.983 

Cardiotocography 
0.91
5 

0.90
4 

0.97
1 

0.99
3 

0.98
2 

0.99
3 

0.98
9 

0.99
2 

0.99
5 

0.99
0 

0.986 

Balance 
0.00
0 

0.46
2 

0.66
7 

0.91
1 

0.93
6 

0.94
4 

0.12
6 

0.13
3 

0.93
6 

0.91
3 

0.973 

Poker Hand(1vs3) 
0.00
0 

0.66
0 

0.61
9 

0.97
5 

0.97
7 

0.97
3 

0.96
8 

0.96
9 

0.97
7 

0.97
4 

0.973 

Poker Hand(1vs4) 
0.00
0 

0.69
8 

0.80
0 

0.99
6 

0.99
6 

0.99
6 

0.98
9 

0.99
0 

0.99
6 

0.99
6 

0.995 

**Average** 
0.70
7 

0.76
4 

0.81
5 

0.90
5 

0.91
5 

0.89
6 

0.85
9 

0.85
9 

0.92
1 

0.91
5 

0.945 

 

 
Fig 9: The increase in the value of F-value compared to ORI 

 
In Random Forest algorithms, the OOB error is a critical metric for assessing overall classification 
performance, as it reflects the algorithm’s generalization capability. A lower OOB error indicates superior 
generalization performance. Table 8 presents the OOB error values for Random Forest classification 
results, while Fig 10 illustrates the relative increase in OOB error across methods compared to ORI. For 
example, in the Haberman dataset, the classification model yielded an OOB error of 29.10% without 
resampling. However, applying the ROC method to the Balance dataset caused the OOB error to rise from 
8.20% to 55.26%, substantially degrading model performance. Notably, the SLS, SMNC, and CH-SMOTE 
methods consistently reduced OOB error across all datasets. In general, all over-sampling techniques 
contributed to a reduction in OOB error, with CH-SMOTE demonstrating the most effective performance. 
This algorithm improved dataset balance, thereby enhancing the generalization ability of the Random 
Forest classifier. 
 

Table 8: Results of experiment in terms of OOB error (%) 

Data ORI RUC NM SM BSM 
DS
M 

SLS 
RSL
S 

SMN
C 

ADA 
CH-
SMOTE 

Spambase 4.70 5.04 5.55 3.66 3.96 4.89 3.30 3.38 4.57 4.15 3.83 
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Brest-Cancer 2.20 3.27 2.09 1.36 2.40 2.75 1.90 2.31 1.83 2.21 1.97 

Tic-Tac-Toe Endgame 7.31 6.72 5.65 3.29 3.55 6.14 3.50 5.19 4.40 4.08 3.40 

Heart Failure Clinical 
Records 

15.0
6 

14.8
4 

17.6
5 

12.6
6 

14.5
3 

12.3
4 

9.21 
10.5
3 

12.6
5 

9.48 12.04 

Blogger 
15.0
0 

20.0
0 

26.6
1 

17.1
4 

18.6
3 

14.0
0 

14.4
2 

13.8
6 

14.8
1 

18.3
5 

13.89 

South German Credit 
24.3
8 

27.3
5 

29.5
8 

19.0
4 

17.2
4 

19.4
4 

17.4
7 

17.4
7 

14.8
2 

17.2
1 

17.32 

Car-Evaluation 1.16 2.83 1.57 1.00 1.04 1.00 1.06 0.95 0.98 1.42 0.88 

Haberman 
29.1
0 

38.2
8 

31.7
8 

24.2
7 

19.5
4 

23.4
3 

26.2
6 

23.9
1 

23.0
6 

20.9
2 

25.00 

Blood 
22.0
7 

34.4
3 

45.4
2 

26.6
1 

23.3
2 

20.4
9 

19.6
6 

20.4
1 

21.1
6 

26.4
4 

18.20 

Contraceptive Method 
Choice 

21.7
3 

35.1
8 

35.7
1 

16.1
9 

16.0
3 

16.6
9 

16.7
7 

16.8
0 

16.0
6 

15.3
7 

15.19 

HCV 2.34 2.06 1.00 0.73 0.83 0.96 0.64 1.02 0.59 0.59 0.71 

Page Blocks 2.38 3.64 3.68 1.53 1.52 1.41 1.38 1.17 1.78 1.63 1.37 

Ecoli 3.37 
10.8
7 

6.52 2.31 1.44 0.64 1.36 1.13 1.43 2.85 1.22 

Cardiotocography 1.71 5.19 6.41 0.58 0.61 0.82 0.63 0.77 0.58 0.61 0.45 

Balance 8.20 
55.2
6 

29.4
9 

8.52 7.21 5.43 7.09 6.89 7.27 7.86 5.32 

Poker Hand(1vs3) 4.79 
36.8
5 

38.7
8 

2.37 2.44 2.46 2.17 2.22 1.54 2.32 2.36 

Poker Hand(1vs4) 0.89 
24.3
2 

28.3
8 

0.44 0.42 0.48 0.54 0.55 0.34 0.44 0.43 

**Average** 9.79 
19.1
8 

18.5
8 

8.34 7.92 7.85 7.49 7.56 7.52 8.00 7.27 

 

 
Fig 10: The increase in the value of OOB error compared to ORI 

 
Fig 11presents the boxplots for Classification Accuracy, G-mean, F-value, and OOB error across all 
datasets. The degree of dispersion (i.e., the size of the box showing 25%-75% percentiles) for the CH-
SMOTE algorithm was comparatively smaller. This indicates that the CH-SMOTE algorithm demonstrates 
relatively robust performance. 
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Fig 11: Boxplots of the indices 

 
Based on theafore mentioned experiments, Random Forest classification performance on imbalanced 
datasets remains suboptimal. This study assesses classification performance using metrics such as 
Classification Accuracy, G-mean, F-value, and OOB error. The results suggest that over-sampling methods 
are more effective than under-sampling methods in enhancing Random Forest classification performance. 
Notably, the CH-SMOTE algorithm demonstrates superior capability in handling imbalanced data 
compared to other resampling methods. This advantage arises from CH-SMOTE’s ability to generate 
synthetic samples that overcome the randomness inherent in the SMOTE algorithm, minimize 
marginalization issues, and mitigate overfitting. In summary, the CH-SMOTE algorithm outperformed 
other methods in terms of Classification Accuracy, G-mean, F-value, and OOB error. Additionally, the 
algorithm demonstrates robust performance across classifiers and datasets. Therefore, this study 
confirms that the CH-SMOTE algorithm is more effective in handling imbalanced datasets compared to 
other methods. 
 
CONCLUSION 
To enhance the performance of Random Forest in processing imbalanced datasets, a novel resampling 
method, the CH-SMOTE algorithm is proposed. Its efficacy is evaluated using 17 imbalanced datasets from 
the UCI repository. The results demonstrate that the proposed method is more effective in data 
preprocessing, significantly enhancing the efficiency and classification performance of the Random Forest 
algorithm. The CH-SMOTE algorithm presents several advantages over existing approaches. First, the 
sample synthesis process introduces directionality, positioning newly generated samples closer to the 
center of gravity of the minority class, thereby overcoming the marginalization issue present in the 
original SMOTE algorithm. Second, by leveraging the distance between samples and the center of gravity, 
the algorithm reasonably extends the interpolation space, thereby mitigating overfitting. Third, it 
incorporates under-sampling principles by removing synthesized samples distant from the center of 
gravity to minimize structural changes and prevent the generation of noisy values. Finally, the absence of 
K-nearest neighbor selection in the synthesis process eliminates the randomness associated with sample 
selection. 
In the subsequent phases of this study, the CH-SMOTE algorithm will be applied to various scenarios, with 
an emphasis on its adaptation from binary-class to multi-class imbalance datasets. Additionally, methods 
to further enhance the efficiency of the CH-SMOTE algorithm will be investigated. 
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