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ABSTRACT

In this paper, we investigate the existence of mild solutions for semilinear integro-differential equations with state-dependent
delay of order 0 < b< 1 and infinite delay in Fréchet spaces. We assume that the linear part possesses a resolvent operator. The
existence of mild solutions is established using Kuratowski’s measure of noncompactness and the generalized Darbo fixed point
theorem in Fréchet spaces. Finally, an example is provided for demonstration.
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INTRODUCTION

In recent years, researchers have shown considerable interest in integrodifferential equations(IDEs) because of their applications
in various fields, including physics, chemistry, and engineering. For further information, see the works by A.A. Kilbas et al. [19],
Paulo [25], and Grimmer et al.[14]. In this paper, we explore the existence of mild solutions for fractional integrodifferential
equations (FIDEs) of the form:

cDb
µ Y (µ) = AY (µ)+

∫
µ

0
K (µ − r)Y (r)dr+ f(µ,Yρ(µ,Yµ )),µ > 0 (1)

Y (µ) = φ(µ), µ ∈ (∞,0] (2)

where cDb
µ is Caputo fractional derivative (CFD) of order 0 < b< 1, A : D(A )⊂ E → E is closed linear operator on a Banach

space E, K (µ) is closed linear operator with domain D(A )⊂D(K ), f :R+×D →E is a given function, D = {ψ : (∞,0]→E,ψ
is continuous}, ρ : R+×D →R+ are suitable functions that satisfy appropriate conditions which will be described in the sequel.
We denote by Yµ the element of D defined by Yµ(θ) = Y (µ +θ), θ ∈ (∞,0]. Here Yµ represents the history up to the present
time t of the state Y (·). We assume that the histories Yµ belongs to some abstract phase D , to specified later, and φ ∈ D .

The structure of this paper is as follows: Section 2 covers preliminary concepts that will be utilized in subsequent sections.
Section 3 defines the mild solution for problem (1)-(2), drawing inspiration from the works [21], and includes the proof of our
main results. Lastly, Section presents an example.
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PRELIMINARY OUTCOME

1255To begin, we introduce some notations, definitions, and preliminary concepts.
Let E is a Banach space with norm denoted as ∥ · ∥.

• C be the Banach space of all continuous functions u fromJ := [0,b],b> 0, into E with the norm

∥u∥C (J,E) = sup
µ∈J

∥u(µ)∥

• L(E) represents the Banach space of all bounded linear operators from E into E and corresponding norm denoted by

∥M∥L(E) := sup
∥u∥=1

∥Mu∥

• L1[J,E] is the Banach space of measurable functions u : J−→ E which are Bochner integrable normed by

∥u∥L1 =
∫ b

0
∥u(µ)∥dµ

. • C (R+,E) be the Fréchet space of all continuous functions u from R+ into E, equipped with the family of seminorms

∥u∥n := sup
µ∈[0,n]

∥u∥;n ∈ N

and the distance

d(u1,u2) := ∑
1≤n

2−n ∥u1 −u2∥n

1+∥u1 −u2∥n
, u1,u2 ∈ C (R,E)

Definition 1. [19] The fractional integral operator Ib of order b> 0 of a continuous function f is defined by

Ibµ f (µ) :=
1

Γ (b)

∫
µ

0
(µ − r)b−1 f (r)dr

we can write Ibµ f (µ) = f (µ)∗ψb(µ), where ψb(µ) =
µb−1

Γ (b)
for µ > 0 and ψb(µ) = 0 for µ ≤ 0 and ψb(µ)−→ δ (µ) as b−→ 0.

Definition 2. [19] The Riemann-Liouville fractional derivative (RLFD) of order b of f is defined by

Db
a f (µ) =

1
Γ (n−b)

dn

drn

∫
µ

a
(µ − r)n−b−1 f (r)dr

where n = [b]+1 and [b] denotes the integer part of b.

Definition 3. [19] For a function f defined on the interval [a,b] , the Caputo fractional derivative (CFD) of order b of f , is
defined by

(c
0D

b
µ f )(µ) =

1
Γ (n−b)

∫
µ

0
(µ − r)n−b−1 f (n)(r)dr,

Where n = [b]+1
Therefore, for 0 < b< 1, n = [b]+1 = 1 and for a = 0, the Caputo’s fractional derivative for µ ∈ [0,b] is given by

(c
0D

b
µ f )(µ) =

1
Γ (1−b)

∫
µ

0
(µ − r)−b f

′
(r)dr
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Definition 4. The Laplace transform of the function f is the function f̂ of the variable s defined by

f̂ (r) =
∫

∞

0
e−rµ f (µ)dµ

.

Definition 5. The Laplace transform of the convolution,

f (µ)∗g(µ) =
∫

µ

o
f (µ − r)g(r)dr

of two functions f ,g which are equal to zero for µ < 0, is equal to the product of their Laplace transform

̂f (µ)∗g(µ) = f̂ (r)ĝ(r)

Definition 6. The Laplace transform of the fractional integral of ordre b with 0 < b< 1 of the function f is given by

Î b
µ f (µ) = ̂f (µ)∗ψb(µ) = f̂ (r)ψ̂b(r) = r−b f̂ (r)

where f̂ denotes the Laplace transform of f .

Definition 7. [25] A one-parameter family of bounded linear operators (Rb(µ))µ≥0 on E is called an b-resolvent operator of
the problem homogeneous

cDb
µ u(µ) = A u(µ)+

∫
µ

0
K (µ − r)u(r)dr,µ > 0 (3)

u(0) = φ(0), (4)

if the following conditions are verified:
• The function Rb(·) : [0,∞)−→ L(E) is strongly continuous and Rb(0)u = u for all u ∈ E and b ∈ (0,1).
• For u ∈ D(A ), Rb(·)u ∈ C ([0,∞), [D(A )])∩C b([0,∞),E), and

cDb
µ Rb(µ)u = A Rb(µ)u+

∫
µ

0
K (µ − r)Rb(r)udr, µ ≥ 0 (5)

cDb
µ Rb(µ)u = Rb(µ)A u+

∫
µ

0
Rb(µ − r)K (r)udr, µ ≥ 0 (6)

Definition 8. [9] An b-ROF (Rb(t))µ≥0 is called analytic, if the function Rb(·) : R+ −→ L(E) admits analytic extension to a
sector Σ(0,θ0) for some 0 < θ0 ≤ π

2 . An analytic b-ROF (Rb) is said to be of analyticity type (ω0,θ0) if for each θ < θ0 and
ω > ω0 there exists M1 = M1(ω,θ) such that ||Rb(z)|| ≤ M1eωRez for z ∈ Σ(0,θ) where Rez denotes the real part of z and
Σ(ω,θ) := {λ ∈ C : |arg(λ −ω)|< θ , ω,θ ∈ R}

Definition 9. [9] An b-ROF(Sb(µ))µ≥0 is called compact for µ > 0 if for every µ > 0, Rb(µ) is a compact operator.

Theorem 1. [9] Let Agenerate a compact analytic semigroup T (µ)µ≥0 then for any b it also generates a compact analytic
resolvent family (Rb(µ))µ≥0.

Lemma 1. [9] Assume that b-ROF(Rb(µ))µ≥0 is compact for t > 0 and analytic of type (ω0,θ0). Then the following assertions
hold:

1. limh7−→0 ∥Rb(µ +h)−Rb(µ)∥= 0, for µ > 0.
2. limh7−→0+ ∥Rb(µ +h)−Rb(µ)∥= 0, for µ > 0.
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Definition 10. [9] An b-ROF(Rb(t))t≥0 is said to be exponentially bounded if there exist constants M ≥ 1, ω ≥ 0 such that

∥Rb(µ)∥ ≤ Meωµ f or µ ≥ 0

in this case we write A ∈ Cb(M,ω).

Theorem 2. [25] Assume that the following hypotheses hold:

(H1) The operator A : D(A ) ⊆ E −→ E is is closed linear operator with [D(A )] dense in E, for some Φ ∈ (
π

2
,π) there is

positive constants C0 =C0(Φ) such that λ ∈ ρ(A)

Σ0,φ = {λ ∈ C|arg(λ )< φ} ⊂ ρ(A ),

and ∥R(λ ,A )∥ ≤ C0
|λ | for all λ ∈ Σ0,φ

(H2) For all 0 ≤ t, K (µ) : D(K (µ))⊆ E −→ E is closed linear operator and K (·)u is strongly measurable on (0,∞) For any
u ∈ D(A ), there exists ∥(·) ∈ L1

loc(R+) such that k̂(λ ) exists for Re(λ ) > 0 and ∥K (µ)u∥ ≤ ∥(µ)∥u∥ for all µ > 0 and
u ∈ D(A ).
Moreover, the operator-valued function K̂ has an analytical extension to Σ0,φ such that ∥K̂ (λ )u∥ ≤ ∥K̂ (λ )∥∥u∥ for all

u ∈ D(A ), and ∥K̂ (λ )∥= o(
1
|λ |

), |λ | −→ ∞.

(H3) There exists a subspace D ⊆ D(A ) dense in [D(A )] and positive constants C1, such that A (D) ⊆ D(A ),∥A K̂ (λ )u∥ ≤
C1∥u∥ for all u ∈ D(A ) and λ ∈ Σ0,φ ,
Then a resolvent operator exists the problem (3)− (4).

Definition 11. We define the following sets :

ρb(Gb) = {λ ∈ C : Gb(λ ) := λ
b−1(λbI −A − K̂ (λ ))−1 ∈ L(E)}

ρb(Fb) = {λ ∈ C : Fb(λ ) := (λbI −A − K̂ (λ ))−1 ∈ L(E)}
Γ

1
r,θ = {µeiθ : µ ≥ r}

Γ
2

r,θ = {reiζ : −θ ≤ ζ ≤ θ}

Γ
3

r,θ = {µe−iθ : µ ≥ r}

Γr,θ = ∪3
i=1Γ

i
r,θ

Definition 12. We define the opeartor family (Rb(µ))µ≥0 by

Rb(µ) :=
1

2πi

∫
Γr,θ

eλ µ Gb(λ )dλ ,µ ≥ 0 (7)

and the auxiliary resolvent opearator family (Sb(µ))t≥0 by

Sb(µ) :=
µ1−b

2πi

∫
Γr,θ

eλ µ Fb(λ )dλ ,µ ≥ 0 (8)

Theorem 3. [25]Assume that hypotheses (H1)− (H3) holds. The operator function Rb(·) which defined by (7) is :

(i) Exponentially bounded in L(E).

(ii) Exponentially bounded in L[D(A )]).
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(iii) Strongly continuous on [0,∞) and uniformly continuous on [0,∞).

(iv) Strongly continuous on [0,∞) in L([D(A )]).

Lemma 2. [25]For every λ ∈ C with Re(λ )> max{0,r}, R̂b(λ ) = Gb(λ ) and ̂µ1−bSb(µ)(λ ) = Fb(λ ).

Theorem 4. [25]Assume that hypotheses (H1)− (H3) holds. The function Rb(·) which defined by (7) is a b-resolvent operator
for the system (3)- (4).

Proof. Let u ∈ D(A ). From3, for Re(λ )> max{0,r},

R̂b(λ )[λ
1−b(λbI −A − K̂ (λ ))]u = u,

which implies
λ R̂b(λ )u−u = λ

1−bR̂b(λ )A u+λ
1−bR̂b(λ )K̂ (λ )u,

we get
λ
bR̂b(λ )u−λ

b−1u = R̂b(λ )A u+ R̂b(λ )K̂ (λ )u,

So
ĉDb

µ Rb(λ )u = R̂b(λ )A u+(R̂b ∗K )(λ )u,

By the uniqueness of the Laplace transform we get

cDb
µ Rb(µ)u = Rb(µ)Au+

∫
µ

0
Rb(µ − r)K (r)udr.

Arguing as abrove but using the equality [λ 1−b(λbI −A − K̂ (λ ))]R̂b(λ )u = u, we obtain that 5 holds. The proof is now
completed.

Theorem 5. [25]Assume that hypotheses (H1)− (H3) holds. A continuous function u is a mild solution of

cDb
µ u(µ) = A u(µ)+

∫
µ

0
K (µ − r)u(r)dr+ f (µ,u(µ)) µ > 0 (9)

u(0) = φ(0), (10)

where f : [0,∞)−→ E is a continuous function. If

u(µ) = Rb(µ)φ(0)+
∫

µ

0
(µ − r)b−1Sb(µ − r) f (r,u(r))dr ,µ ∈ (0,∞)

Proof. Let the probem (9)-(10) and Rb(µ),Sb(µ) the b-resolvent operator and auxiliary resolvent operator defined by (7), (8)
respectively.
Let u(µ) continous function satisfying (9) - (10). Then applying I b

µ at both sides of equation (9) we have

u(µ) = φ(0)+I b
µ A u(µ)+I b

µ (K (µ)∗u(µ))+I b
µ f (µ,u(µ))

= φ(0)+ψb(µ)∗A u(µ)+ψb(µ)∗ (K (µ)∗u(µ))+ψb(µ)∗ f (µ,u(µ)).

Now assuming that this function is of exponential type and is locally integrable, we apply that Laplace transform os both sides
we obtain

û(λ ) =
φ(0)

λ
+

A û(λ )
λb

+
K̂ (λ )û(λ )

λb
+

f̂ (u)(λ )
λb

,
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where f̂ (u)(λ ) is a Laplace transform of f (t,u(t)). We infer

û(λ ) = λ
b−1(λbI −A − K̂ (λ ))−1 f̂ (u)(λ )

= Gb(λ )φ(0)+Fb(λ ) f̂ (u)(λ )

= R̂b(µ)φ(0)+ ̂tb−1Sb(µ) f̂ (u)(λ )

= R̂b(µ)φ(0)+µ
b−1 ̂Sb(µ)∗ f (µ,u(µ)).

Finally applying the inverse of the Laplace transform, we find the formula

u(µ) = Rb(µ)φ(0)+
∫

µ

0
(µ − r)b−1Sb(µ − r) f (r,u(r))dr

We recall the following definition of the notion of a sequence of measures of noncompactness:

Definition 13. The Kuratowski measure of noncompactness ν(·) define for a bounded subset D of Banach space E is given by

ν(D) := inf{ε > 0 : D = ∪k
i=1Di and diam(Di)≤ ε}

Theorem 6. [25] Let DF be the family of all non-empty and bounded subsets of a Fréchet space F . A family of function (Θn)n∈N
where Θn : DF −→ [0,+∞) is said to be a family of measure of noncompactness in the real Fréchet space F if it satisfies the
following conditions for D1,D2 ∈ DF :

(a) D1 is pre-compact if only if Θn(D1) = 0 for all n ∈ N.

(b) Θn(D1)≤Θn(D2) where D1 ⊂ D2 for all n ∈ N.

(c) Θn(D) =Θn(coD) =Θn(D) for all n ∈ IN, where D, coD are the closure and convex hull of D, respectively.

(d) If {Di}∞
i=1 is a sequence of closed sets of DF such that Di+1 ⊂ Di, i = 1, ..., and if limi−→Θn(Di) = 0 for each n ∈N, then the

intersection set D∞ = ∩∞
i=1Di is nonempty.

Lemma 3. [25] If D is a bounded subset of a Banach space E, then for each ε > 0 there is sequence {vk}k≥1 ⊂ D such that

ν(D)≤ 2ν({vk}k≥1)+ ε

Lemma 4. [25] If {vk}k≥1 ⊂ L1(R+,F ) is uniformly integrable, then ν({vk((·)}k≥1) is measurable and

ν({
∫

µ

0
vk((r)dr}k≥1)≤ 2

∫
µ

0
ν({vk(r)}k≥1)dr, µ ≥ 0

where ν is a Kuratawski measure noncompactness on F

Definition 14. [5] Let D be a nonempty subset of Fréchet space W and let N : D −→ W be a continuous operator which
transforms bounded subsets into bounded ones. One says N satisfies the Darbo condition with constants {qn : n ∈ N } with
respect to a family of measure of noncompactness (Θn)n∈N, if

Θn(N(D))≤ qnΘn(D)

for each bounded set D ⊂ D and n ∈ N. If qn < 1,n ∈ N then N is called a contraction with respect to (Θn)n∈N.

The following generalization of the classical Darbo fixed point theorem for Fréchet space plays an important role in proving the
main result.
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Theorem 7. [5] Let D be a nonempty, bounded, closed, and convex subset of a Fréchet space F and let N : D −→ D be
continuous mapping. Suppose that N is a contraction concerning a family of measures of noncompactness (Θn)n∈N. Then N has
at least one fixed point in the set D.

Lemma 5. Let Set R(ρ−) = {ρ(r,ϕ) : (r,ϕ) ∈ J×D ,ρ(r,ϕ)≤ 0}, such that
ρ : J ×D → (∞,b] is continuous. If Y : (∞,b]−→ E is a function such that Y0 = φ , then

∥Yµ∥D ≤ (Mb +Lφ )∥φ∥D +Kb sup{|Y (r)|;r ∈ [0,max{0,µ}]}

where Mb = supµ∈J M(µ), Kb = supµ∈J K(µ) and Lφ = supµ∈R(ρ−) Lφ (µ).

MAIN RESULT

In this section, we establish and prove the existence of a mild solution for our problem (1)-(2). First, we give its definition.

Definition 15. A function Y ∈ C (R,E) is called the mild solution for the problem (1)-(2), if Y (µ) = φ(µ), for all µ ∈ R− and
Y (µ) satisfies the following integral equation :

Y (µ) = Rb(µ)φ(0)+
∫

µ

0
(µ − r)b−1Sb(µ − r)f(r,Yρ(r,Yr))dr, µ ≥ 0

In this work, we will work under the following assumptions:

(A1) There exist constant M0 > 1 such that ∥Rb(µ)∥L(E) ≤ M0 for every µ ∈ R+.

(A2)(i) The function µ 7−→ f(µ,Y ) is continuous on E for a.e.t ∈ R+.

(ii) There exists a function P ∈ L1(R+,R+) and a continuous nondecreasing function Ψ : R+ −→ R+ such that

f(µ,Y )≤ P(µ)Ψ(∥Y ∥) f ora.eµ ∈ R+ and each Y ∈ E

(iii) For each bounded set D ⊂ E and for each µ ∈ [0,n], n ∈ N, we have

ν(f(µ,D)≤ sup
r≤0

µ(D(r)),

where ν is a measure of noncompactness on the Banach space E.

(A3) For each n ∈ N, there exists qn > 0 such that

M0[∥φ(0)∥+Ψ([Mb +Lφ ]∥φ∥+Kb[∥φ(0)∥+qn]) f n]≤ qn,

where for n ∈ N
f n := sup

µ∈[0,n]
P(µ)

(Hϕ) The function µ → ϕµ is continuous from R(ρ−) into D and there exists a continuous and bounded function Lφ : R(ρ−)→
(0,∞) such that

∥φµ∥D ≤ Lφ (µ)∥φ∥D , for every µ ∈ R(ρ−)

Theorem 8. Assume that (H1)− (H3), (Hϕ), (A1)− (A4) hold and for each n ∈ N,

M0∥φ(0)∥ f n <
1
4

Then the problem (1)-(2) has at least one mild solution.
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Proof. Let the Frechet space C (R,E), equipped with the family of seminorms

∥u∥n := sup
µ∈[o,n]

∥u∥;n ∈ N

Let the family of measure of noncompactness given by

µn(D) := ω
n
0 (D)+ sup

µ∈[−n,n]
µ(D(µ))

where

ω
n(D,ε) := sup{ω

n(Y ,ε) : z ∈ D}
ω

n(y,ε) := sup{∥Y (µ)−Y (r)∥ : µ,r ∈ [0,n], |µ − r| ≤ ε}
ω

n
0 (D) := lim

ε→0
ω

n(D,ε)

D(µ) := {Y (µ) ∈ E,y ∈ D}, µ ∈ [−n,n]

We consider the operator N on C(R,E) define by

NY (µ) =

{
φ(µ), µ ≤ 0
Rb(µ)φ(0)+

∫ µ

0 (µ − r)b−1Sb(µ − r)f(r,Yρ(r,Yr))dr, µ > 0

Let x(·) : R−→ E, be the function defined by

x(µ) =
{

φ(µ), µ ≤ 0
0, µ > 0

z(µ) =
{

0 µ ≤ 0
Rb(µ)φ(0)+

∫ µ

0 (µ − r)b−1Sb(µ − r)f(r,Yρ(r,Yr))dr, µ > 0

On decompose Y (mu) at Y (µ) = x(µ)+ z(µ) , µ ∈ R+, which implies Yµ = zµ + xµ for every 0 ⪇ µ and the function z(·)
satisfies

z(µ) =
{

0 µ ≤ 0
z(µ) µ > 0

where

z(µ) = Rb(µ)φ(0)+
∫

µ

0
(µ − r)b−1Sb(µ − r)f(r,xρ(r,xr+zr)+ zρ(r,xr+zr))dr, (11)

Transform the problem (11) into a fixed point problem. Consider the operators G

Gz(µ) = Rb(µ)φ(0)+
∫

µ

0
(µ − r)b−1Sb(µ − r)f(r,xρ(r,xr+zr)+ zρ(r,xr+zr))dr

We define the ball
Bqn := B(0,qn) = {z ∈C(R,E) : ∥z∥n ≤ qn}

∥z∥n = ∥z0∥+ sup{∥z(µ)∥ : −n ⪇ µ ⪇ n}
= sup{∥z(t)∥ : 0 ⪇ µ ⪇ n}
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Step 1:G(Bqn)⊂ Bqn :
Let z ∈ Bqn and µ ∈ [0,n]

∥Gz(µ))∥ ≤ ∥Rb(µ)φ(0)∥+
∫ t

0
∥(µ − r)b−1Sb(µ − r)∥|f(r,xρ(r,xr+zr)+ zρ(r,xr+zr))|dr

≤ M0∥φ(0)∥+M0

∫
µ

0
|f(r,xρ(r,xr+zr)+ zρ(r,xr+zr))|dr

≤ M0∥φ(0)∥+M0

∫
µ

0
p(r)Ψ(∥xρ(r,xr+zr)+ zρ(r,xr+zr∥)dr

Since

∥xρ(r,xµ+zµ )+ zρ(µ,xµ+zµ
)∥ ≤ ∥xρ(µ,xµ+zµ )∥+∥zρ(µ,xµ+zµ

)∥

≤ (Mb +Lφ )∥φ∥+Kb∥φ(0)∥+Kbqn

We have

∥G(Bqn)(µ)∥ ≤ M0∥φ(0)∥+M0

∫
µ

0
P(r)Ψ((Mb +Lφ )∥φ∥+Kb∥φ(0)∥+Kbqn)dr

≤ M0∥φ(0)∥+M0Ψ((Mb +Lφ )∥φ∥+Kb∥φ(0)∥+Kbqn)
∫ n

0
P(r)dr

≤ M0∥φ(0)∥+M0Ψ((Mb +Lφ )∥φ∥+Kb∥φ(0)∥+Kbqn) f n

≤ M0[∥φ(0)∥+Ψ([Mb +Lφ ]∥φ∥+Kb[∥φ(0)∥+qn]) f n]

≤ qn

This proves that G transforms the ball Bqn into Bqn . We complete the proof in the following steps.

Step 1: G(Bqn) is bounded .

Since G(Bqn)⊂ Bqn qnd Bqn is bounded, then G(Bqn)⊂ Bqn is bounded.

Step 2: G is continuous.

Let {z j} j∈IN be a sequence such that z j −→ z in Bqn . Then for each t ∈ [−n,n], we have

∥G(z j)(µ)−G(z)(µ)∥ ≤
∫

µ

0
∥(µ − r)b−1Sb(µ − r)

∥[|f(r,x
ρ(r,xr+z j

r)
+ z j

ρ(r,xr+z j
r
)− f(r,xρ(r,xr+zr)+ zρ(r,xr+zr))|]dr

≤ M0

∫
µ

0
|f(r,x

ρ(r,xr+z j
r)
+ z j

ρ(r,xr+z j
r
)− f(r,xρ(r,xr+zr)+ zρ(r,xr+zr))|]dr

Since z j −→ z as j −→ ∞, the Lebesgue dominated convergence theorem implies that

∥G(z j)(µ)−G(z)(µ)∥ −→ 0 as j −→+∞

Thus G is continuous.

Step 3: For each equicontinuous subset K of Bqn , νn(G(k))≤ Knνn(K) .
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From lemmas 3 and 3, for any equicontinuous set K ⊂ Bqn and ε > 0, there exists a sequence {zk}k∈N ⊂ K, such that for all
µ ∈ [−n,n], we have

ν(G(k)) = ν({Rb(µ)φ(0)+
∫

µ

0
(µ − r)b−1Sb(µ − r)f(r,xρ(r,xr+zr)+ zρ(r,xr+zr)dr) : z ∈ K})

≤ ν({Rb(ν)φ(0)})+ν({
∫

µ

0
(µ − r)b−1Sb(µ − r)f(r,xρ(r,xr+zr)+ zρ(r,xr+zr)dr : z ∈ K}

≤ M0∥φ(0)∥+4
∫

µ

0
ν(∥(µ − r)b−1Sb(µ − r)∥{f(r,x

ρ(r,xr+zk
r)
+ zk

ρ(r,xr+zk
r
)})dr+ ε

≤ M0∥φ(0)∥+4M0

∫
µ

0
P(r)ν({x

ρ(r,xr+zk
r)
+ zk

ρ(r,xr+zk
r
)}k∈N)dr+ ε

≤ M0∥φ(0)∥+4M0

∫
µ

0
P(r)ν({x

ρ(r,xr+zk
r)
}k∈N)dr+4M0

∫
µ

0
P(r)ν({zk

ρ(r,xr+zk
r
}k∈N)dr+ ε

≤ M0∥φ(0)∥+4M0 f n sup
|r|≤n

µ({φ(µ)})+4M0 f nνn(K)+ ε

Since ε > 0 is arbitrary, then
ν(G(k))≤ 4M0 f nνn(K)

Thus
νn(G(k))≤ 4M0 f nνn(K)

From Setp 1 to 3, together with Theorem 8, we can conclude that G has at least one fixed point in Bqn , which is a mild solution
of problem (1)-(2).

APPLICATION

In this section, an example is provided to illustrate the obtained theory. We consider the following fractional integrodifferential
equation with a state-dependent form:

Db
µ z(µ,x) =

∂ 2z(µ,x)
∂x2 +

∫ t

0
µK (µ − r)[

∂ 2z(r,x)
∂x2 ]ds+g(µ)|z(1−ρ(z(µ,x),x)|,

(µ,x) ∈ (0,∞]× [0,π],0 < b< 1, (12)

z(µ,0) = z(µ,π) = 0, µ ∈∈ (0,∞], (13)

z(µ,x) = φ(µ,x), µ ∈ (∞,0] (14)

WhereK : R+ → R is bounded uniformly continuous, continuously differentiable and K ′ is bounded uniformly continuous,
ρ ∈ C (R, [0,r]) , g(·) is a continuous function from R+ to R and φ ∈ D = {ψ : (∞,0]× [0,π]−→ R;ψ .

Set E = L2([0,π],R) and let D(A )⊂ E → E be the operator A z = z′′ with the domain with domain

D(A ) = {z ∈ E,z,z′ are absolutely continuous, z′′ ∈ E,z(0) = z(π) = 0}.

Then

A z =
∞

∑
n=1

n2 < z,en > en, z ∈ D(A )

where<,> is inner product in L2 and en(z) =

√
2
π

sin(nz),z ∈ [0,π],n = 1,2, ... is the orthonormal set of eigenvectors of A.

It is well known that A is the infinitesimal generator of analytic semigroup T (µ)µ ̸=0 in E which is given by

T (µ)z =
∞

∑
n=1

e−n2µ < z,en > en, z ∈ D(A ).
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From the theorem 1, the operator A also generates an b-resolvent family which is compact for µ > 0, and there exists a constant
M ≥ 1 such that ∥Sb(µ)∥ ≤ M

Let Y (µ) : D(A )→ E be the operator defined by Y (µ)l = K (µ)A l for µ ̸= 0. Set

Y (µ)x = z(µ,x) (µ,x) ∈ (0,∞)× [0,π],

f(µ,ψ)(x) = g(µ)|ψ(x)|, x ∈ [0,π],ψ ∈ E,

Y (µ)x = φ(µ,x), µ ∈ (∞,0].

So, we can check that the assumptions of theorem 8hold. Consequently, the (12)-(14) has at least one mild solution on R.
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tions with state-dependent nonlocal conditions in Fréchet spaces, AIMS Mathematics,Vol. 5, No. 1, (2019), 15-25.
[5] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces. Lect.Notes Pure Appl.Math.60, Marcel Dekker,New

York,(1980).
[6] D.Bothe, Multivalued perturbation of m-accretive differential inclusions, Isr.J.Math., 108 (1998),109-138.
[7] L. Byszewski, Theorem sabout the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy prob-

lem, J.Math.Anal.Appl. Vol.162, No. 2, (1991),494-505.
[8] L. Byszewski, Application of properties of therighth and sides of evolution equations to aninvestigation of nonlocal evolu-

tion problems,Nonlinear, Anal. Vol.33, No. 5, (1998),413-426.
[9] H. Chen, S. Meng and Y. Cui, Monotone iterative technique for conformable fractional differential equations with deviating

arguments, Discrete Dyn. Nat. Soc. 2018 (2018), 9 pages.
[10] M.A. Diop, M.Dieye, H. Hmoyed, K. Ezzinbi,On the existence of mild solutions for nonlocal impulsive partial integro-

differential equations in Banach spaces., Le Matematiche, Vol. 74, No. 1, (2019),13-34.
[11] M.A. Diop, K.H. Bete, R. Kakpo, C. Ogouyandjou , Existence results for some integro-differential equations with state-
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