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ABSTRACT 
Lung cancer continues one of the indicating causes of cancer-linked transience worldwide, compelling the 
advancement of accurate and efficient investigative tools. In this research, we propose a novel approach 
for lung cancer detection utilizing feature reduction with Speeded-Up Robust Features (SURF) and 
classification with Classification Capsule Networks (CCapsNets). The researcher conduct experiments on 
the UC Irvine Machine Learning Repository lung cancer dataset, which comprises a diverse collection of 
computed tomography (CT) images. Firstly, SURF is used to isolate robust and discriminative attributes 
from the lung CT images. SURF's ability to detect local features invariant to scale and rotation enables 
effective representation of the lung tissue characteristics. Next, CCapsNets us utilized, a state-of-the-art 
deep learning architecture known for its ability to capture hierarchical relationships within data, for lung 
cancer classification. CCapsNets leverage capsule networks to preserve spatial hierarchies and improve 
generalization performance, particularly in medical image analysis tasks. The investigational results 
exhibit the efficacy of the intended methodology in lung cancer detection. By integrating SURF feature 
reduction with CCapsNets classification, superior accuracy og 98.6% is achieved in evaluation to 
traditional methods. Furthermore, the interpretability of CCapsNets enables insights into the learned 
features and contributes to the understanding of lung cancer imaging biomarkers. This research work 
presents a promising framework for lung cancer detection, leveraging advanced image processing 
techniques and deep learning methodologies. The proposed approach holds significant potential for 
enhancing early diagnosis and prognosis prediction in clinical settings, thereby improving patient role 
conclusions and reducing the liability of lung cancer morbidity and mortality. 
 
Keywords: Lung cancer detection, SURF, CCapsNets, UC Irvine Machine Learning Repository, Computed 
tomography 
 
1. INTRODUCTION 
Lung cancer [E Rendon Gonzalez et al 2016] represents a formidable health challenge worldwide, 
accounting for a significant portion of cancer-related deaths. The urgency to develop effective diagnostic 
tools stems from the dire need to address its high mortality rates. Accurate and timely prediction of lung 
cancer holds paramount importance as it enables early intervention, fundamental for advancing patient 
role results and survival rates. Early detection allows for timely initiation of treatment modalities, 
potentially curbing disease progression and improving the efficacy of therapeutic interventions [R Kaur et 
al 2015]. Furthermore, predictive models for lung cancer play a pivotal role in risk assessment, facilitating 
personalized screening strategies and preventive measures for high-risk individuals [Hussein S et al 
2017]. Given the disease's often asymptomatic nature in its early stages and the limited success of 
conventional screening methods, the development of robust predictive models becomes imperative in 
advancing clinical management strategies and reducing the burden of lung cancer morbidity and 
mortality [Nibali A et al 2017]. 
Data mining techniques [Nanglia P et al 2021] encompass a diverse array of computational methods 
designed to extract valuable insights and patterns from large datasets [Maleki N et al 2021]. In the context 
of medical research, data mining plays a crucial role in uncovering hidden relationships between clinical 
variables, identifying predictive biomarkers, and aiding in disease diagnosis and prognosis. These 
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techniques encompass various approaches, including machine learning algorithms, statistical analysis, 
and pattern recognition methods, all aimed at transforming raw data into actionable knowledge. 
Leveraging data mining techniques in the arena of oncology, predominantly in lung cancer research, 
enables researchers to harness the wealth of information contained within vast datasets of patient 
demographics, imaging studies, histopathological findings, and molecular profiles [S R Jena et al 2019]. By 
employing sophisticated algorithms to analyze these datasets [Tiwari L et al 2021], researchers can 
identify novel prognostic factors, refine predictive models, and ultimately enhance the accurateness of 
lung cancer prediction [Sharaff A et al 2019]. 
The importance of data mining techniques in lung cancer prediction cannot be overstated, given the 
multifactorial nature of the disease and its complex interplay of genetic, environmental [AL Huseiny MS et 
al 2021], and clinical factors [Kaur J Gupta M et al 2023]. Data mining methodologies enable researchers 
to integrate heterogeneous data sources, ranging from patient demographics and clinical histories to 
radiological imaging and molecular biomarkers [McCann MT et al 2017], thereby providing a 
comprehensive understanding of disease progression and treatment response. By uncovering subtle 
patterns and relationships within these diverse datasets, data mining facilitates the development of 
predictive models capable of stratifying patients based on their risk profiles and guiding personalized 
treatment strategies [Carvalho Filho AO et al 2016]. Furthermore, data mining techniques empower 
clinicians to identify high-risk individuals for early intervention and surveillance, optimizing the 
allocation of healthcare resources and improving patient outcomes [S Lee et al 2009]. Ultimately, the 
integration of data mining techniques into lung cancer prediction endeavors holds immense potential in 
advancing precision medicine approaches [S A ElRegaily et al 2017], revolutionizing clinical decision-
making, and mitigating the burden of lung cancer on public health [T Zhou et al 2016]. 
Feature reduction and classification procedures play a fundamental role in predicting lung cancer by 
developing the efficacy and precision of predictive models. In the background of lung cancer prediction, 
the vast array of scientific, imaging, and molecular data presents a significant challenge in extracting 
relevant information and discerning meaningful patterns [Deepak Kumar Jain et al 2022]. Feature 
reduction techniques enable the extraction of essential features from high-dimensional datasets, thereby 
mitigating issues of data redundancy and computational complexity [S Deng et al 2020]. By selecting the 
most informative features, these techniques streamline the prediction process and improve model 
interpretability. Furthermore, classification algorithms facilitate the categorization of patients into 
distinct risk groups based on their feature profiles, enabling personalized risk assessment and treatment 
planning [S Wang et al 2020]. Through the integration of feature reduction and classification 
methodologies, predictive models for lung cancer can achieve enhanced accuracy, sensitivity, and 
specificity, thereby empowering clinicians to make informed choices and progress patient consequences. 
 
2. Review Of Related Works 
The literature on lung cancer prediction encapsulates a broad spectrum of research endeavors, each 
contributing unique perspectives and methodologies to tackle this pressing healthcare challenge. Siegel et 
al. (2024) underscore the critical need for accurate lung cancer prediction amidst escalating incidence 
rates, highlighting the imperative of advancements in detection and treatment to effectively combat the 
disease's impact. Their insights emphasize the ongoing efforts to track population-based cancer 
occurrence and outcomes, crucial for informing public health strategies. Ge et al. (2023) delve into the 
realm of radiomics, a burgeoning field that offers promise in extracting quantitative features from 
medical images. By employing sophisticated data-characterization algorithms, radiomics enables 
clinicians to glean nuanced insights into lung cancer characteristics, transcending the limitations of 
conventional diagnostic approaches. 
Delzell et al. (2019) and Braveen et al. (2023) shift the focus to machine learning techniques, shedding 
light on their potential to improve the precision of lung cancer estimate models while mitigating the 
prevalence of false positivesa critical consideration in clinical decision-making. These studies delve into 
the intricacies of feature selection and classification algorithms, highlighting the complexities inherent in 
optimizing predictive performance. Moreover, Feipeng et al. (2024) and Thangamani et al. (2024) 
propose innovative frameworks integrating transfer learning and hybrid models, respectively, 
showcasing the versatility of machine learning in refining lung cancer prediction methodologies. 
In parallel, Shalini et al. (2024) and Sampangi Rama Reddy B R et al. (2024) explore the integration of 
deep learning within IoT-based healthcare applications, paving the way for real-time monitoring and 
early detection of lung cancer. Their research elucidates the transformative potential of leveraging 
interconnected devices and advanced analytics to revolutionize healthcare delivery, particularly in the 
realm of chronic disease management. Collectively, these studies underscore the multidisciplinary efforts 
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and technological advancements driving progress in lung cancer prediction, with far-reaching 
implications for developing patient consequences and shrinkingdeath rates. 
The table 1 summarizes various studies focusing on lung cancer discovery and grouping using diverse 
methodologies, including radiomics, machine learning classifiers, and deep learning approaches. These 
studies highlight the importance of accurate prediction methods in increasing cancer analysis and 
therapy outcomes. Techniques such as hybrid feature selection and transfer learning demonstrate 
promising results in achieving high diagnostic accuracy and reducing false positive rates. Additionally, 
comparisons between different classification systems, like Lung-RADS and PNI-GARS, shed light on the 
efficacy of these systems in classifying pulmonary nodules. 
 

Table 1. Review of related works on Existing methods 

S.No Reference Dataset Methods Summary 

1 
Ge Gary et al 
2023 

CT lung 
cancer 
radiomics 
investigations 

Radiomic 
feature 
extraction, 
predictive 
model selection 

Reviews radiomic investigations, discusses 
feature extraction methods and predictive 
models, and highlights the need for rigorous 
evaluation of feature selection methods and 
predictive models in radiomics studies. 

2 
Delzell 
Darcie A P et 
al 2019 

Lung cancer 
CT scans 

Machine 
learning 
classifiers 

Investigates machine learning classifiers' ability 
to predict lung cancer nodule status while 
considering false positive rate, suggesting the 
potential of radiomic biomarkers with machine 
learning methods for tumor classification with 
reduced false positive rates. 

3 
Braveen M et 
al 2023 

Lung CT 
images 

Ant lion-based 
autoencoders 
(ALbAE) 

Proposes an ALbAE model for efficient 
classification of lung cancer and pneumonia using 
lung CT images, achieving high accuracy, recall, 
and F1-measure rates, outperforming existing 
methods such as SVM, ELM, and MLP. 

4 
V R Nitha et 
al 2023 

CT scans of 
lung cancers 

Transfer 
learning, 
convolution-
based pre-
trained VGG16 
model 

Develops an automated lung cancer malignancy 
detection framework using transfer learning, 
achieving high accuracy, sensitivity, and F1-score, 
outperforming other existing methodologies and 
benefiting practitioners and patients in tumor 
classification. 

5 
M Shobana 
et al 2022 

Cancerous 
microarray 
datasets 

Hybrid feature 
selection, ML 
models (SVM, 
DT, RF, KNN) 

Proposes a two-stage hybrid feature selection 
algorithm for diagnosing different cancer 
diseases, achieving high diagnostic accuracy with 
various ML models on different cancer datasets, 
outperforming other algorithms in terms of 
selected features and diagnostic accuracy. 

6 
Thangamani 
M et al 2024 

Lung cancer 
prediction 

Z-score 
normalization, 
levy flight 
cuckoo search 
optimization 

Presents a novel technique for predicting lung 
cancer using weighted convolutional neural 
network, achieving effective precision, recall, and 
accuracy, and surpassing previous methodologies 
in lung cancer prediction. 

7 
Feipeng 
Song et al 
2024 

Pulmonary 
nodules 

Comparison of 
Lung-RADS and 
PNI-GARS 
systems 

Compares the diagnostic performance of Lung-
RADS and PNI-GARS systems for classifying 
pulmonary nodules, demonstrating superior 
performance of PNI-GARS, especially for ground-
glass nodules, suggesting its potential for lung 
cancer diagnosis. 

8 
Shalini A et 
al 2024 

IoT-based 
healthcare 
applications 

Deep learning 
approach 

Examines deep learning approach for early 
identification of lung cancer, enhancing accuracy 
metrics using hybrid deep learning models, and 
highlighting the potential of IoT-based lung health 
monitoring for improving healthcare and 
preventative methods. 
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3. Motivation & Novelty Of The Research Work 
The research gap in lung cancer prediction highlighted by the studies in previous section revolves around 
three key aspects Model Standardization and Evaluation, Feature Selection Methods and Better 
Classification methods 
While various machine learning and deep learning models show favorableoutcomes in lung cancer 
prediction, there is a lack of standardization in model selection, training, and evaluation. Each study 
employs different techniques and datasets, making it challenging to compare their effectiveness directly. 
Standardized benchmarks and evaluation metrics across different studies could help establish a clearer 
understanding of the comparative performance of different models. 
The effectiveness of predictive models heavily depends on the features used for training. However, there 
is a lack of consensus on the most effective feature selection methods for lung cancer prediction. Some 
studies employ radiomic features extracted from medical images, while others utilize a combination of 
clinical and imaging data. Further research is needed to recognize the most informative attributes and 
robust attribute collection techniques to enhance model performance. 
One common challenge in lung cancer prediction models is the high false positive rate, which can lead to 
unnecessary interventions and patient anxiety. While some studies report promising results in reducing 
false positives, there is still room for improvement. The research should focus on developing models that 
maintain high sensitivity while minimizing false positives, potentially through more sophisticated feature 
engineering or ensemble modeling approaches. 

 
4. Feature Extraction Using Surf 
Feature extraction using Speeded-Up Robust Features (SURF) involves several key steps. First, SURF 
detects interest points or keypoints in an image using a Hessian matrix to identify regions with significant 
variation. Then, it assigns orientations to these keypoints based on the dominant gradient direction. Next, 
descriptors are generated by computing Haar wavelet responses within localized regions around each 
keypoint, with Gaussian weighting to prioritize central information. Matching involves comparing these 
descriptors between images, typically using Euclidean distance, to find corresponding keypoints. Finally, 
filtering and validation technique is applied to refine matches and eliminate outliers, ensuring robust 
feature extraction suitable for applications like object recognition, image stitching, and 3D reconstruction. 
Before feature detection, the input image I(x, y) is convolved with a Gaussian kernel G(x, y, σ) to smooth 
out noise. Mathematically, this convolution operation is expressed as in equation 1, where ∗ denotes the 
convolution operator. 
(x, y) = I(x, y) ∗ G(x, y, σ) (1) 
SURF identifies interest points by analyzing the Hessian matrix H(x, y, σ), which represents the local 
structure of the image at different scales. The Hessian matrix is computed using second-order partial 
derivatives of the Gaussian-smoothed image in equation 2 

H x, y, σ =  
Lxx (x, y, σ) Lxy (x, y, σ)

Lxy (x, y, σ) Lyy (x, y, σ)
  (2) 

Lxx (x, y, σ),Lxy  (x, y, σ), and Lyy (x, y, σ) are the second-order Gaussian derivatives in the x and y 

directions.The scale-space extrema are identified by finding the greatest and smallest values of the 
determinant of the Hessian matrix across different scales σ. Mathematically, this can be represented as in 
equation 3, where D(x,y,σ) is the determinant of the Hessian matrix at location (x,y) and scale σ, and 
neighbourhood(x,y,σ) represents the neighboring scales. 

Extrema x, y, σ =   
True, if D(x, y, σ) > 𝐷(𝑥′, y′, σ′), ∀ σ′ ∈  neighbourhood(x, y, σ)

False, otherwise
   (3) 

Once interest points are detected, SURF constructs feature descriptors by considering Haar wavelet 
responses within a neighborhood of each keypoint. The Haar wavelet responses Dx and Dy  are computed 

as in equations 4 and 5 

Dx =
1

2
 [ Ixpix els  in  region −   Ix ′pixels  in  region ] (4) 

Dy =
1

2
 [ Iypixels  in  region −   Iy ′pixels  in  region ] (5) 

where Ix  and Iy  are the horizontal and vertical gradients of the image, and the sums are taken over the 

pixels in the neighborhood region.To achieve rotation invariance, SURF assigns orientations to keypoints 
based on the dominant descent direction in the zoneavailable each keypoint. This is typically done by 
constructing a histogram of gradient orientations and selecting the peak orientation as the keypoint's 
orientation. Compute the gradient magnitude M(x, y) using equation 6 and orientation θ(x, y) using 
equation 7 of each pixel in the neighborhood around the keypoint 

M x, y =  Ix
2 (x, y)  +  Iy

2 (x, y) (6) 
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θ(x, y) = arctan2  Iy x, y , Ix x, y   (7) 

Accumulate gradient orientations into a histogram H(θ) weighted by their magnitudes in equation 8 and 
Select the dominant orientation θdominant  as the peak of the histogram in equation 9 

H θ =   M(x, y)  ⋅  δ θ − θ x, y  x,y in  neig hbor hood  (8) 

θdominant  =  argmaxθ H(θ) (9) 
The final descriptor is constructed by combining Haar wavelet responses in a fixed-size region around the 
keypoint. The responses are weighted by a Gaussian window to give more importance to the central 
region. Mathematically, the descriptor can be represented as a vector of concatenated Haar wavelet 
responses. Compute Haar wavelet responses within a fixed-size region around the keypoint Dx  and Dy  

from equations 4 and 5. Weight the Haar wavelet responses by a Gaussian window to emphasize the 
central region using equation 10 

W x, y =
e− x−x0 2  +  y−y0 2

2σ2  (10) 

where (x0, y0) is the center of the region and σ is the averagevariation.To match keypoints between 
images, a distance metric such as Euclidean remoteness is often used to compare the descriptors of 
keypoints in different images. Keypoints with similar descriptors are considered matches. Compute the 
distance dij  between descriptors Desci  and Descj  using a distance metric such as Euclidean distances in 

equation 11, Keypoints with similar descriptors are considered matches if the distance dij  is below a 

certain threshold. 
dij  = ∥ Desci  −  Descj ∥2 (11) 

These mathematical equations from 1 to 11 provide further insight into the detailed operations of the 
SURF algorithm for feature detection, description, matching, and filtering/validation. 
 
5. Classification Using Ccapsnets 
Capsule Networks (CCapsNets) represent a novel approach to deep learning, inspired by the human 
visual system. At their core, CCapsNets aim to overcome some of the restraints of conventional 
convolutional neural networks (CNNs), remarkably in handling spatial hierarchies and pose variations. 
One fundamental aspect of CCapsNets is the dynamic routing algorithm, which facilitates communication 
between capsules in different layers. This algorithm iteratively adjusts coupling coefficients based on the 
agreement between the predictions of lower-level capsules and the activations of higher-level capsules. 
By dynamically routing information, CCapsNets can better capture spatial relationships and variations in 
object poses, leading to more robust feature extraction. 
Furthermore, the loss function used in CCapsNets, often referred to as the margin loss, plays a crucial role 
in training the network. Unlike traditional softmax-based classification losses, the margin loss penalizes 
the network when the length of the output vector of the correct class capsule falls below a certain margin 
threshold while simultaneously rewarding it when the length exceeds another margin threshold. This 
mechanism encourages the network to learn to distinguish between classes with greater margin, 
promoting better generalization and reducing the likelihood of misclassifications. Additionally, the 
margin loss incorporates a down-weighting parameter for absent classes, allowing the network to handle 
imbalanced datasets more effectively. During training, CCapsNets undergo iterative optimization to 
minimize the loss function and improve classification performance. This process involves adjusting the 
network parameters, including weights and biases, using back propagation and gradient descent 
methods. By iteratively updating the parameters based on the computed gradients, the network learns to 
extract hierarchical features and classify input data accurately. Through this training procedure, 
CCapsNets can adapt to complex datasets with varying object poses and spatial configurations, making 
them promising candidates for tasks requiring robust feature extraction and classification, particularly in 
domains such as computational vision and natural language processing. 
 
5.1 Routing by Agreement 
Input: The input to the dynamic routing algorithm includes the output vectors ui  and the pose matrices 
vj|i  from the previous layer. 

Output: The output is the activation of the capsules in the current layer. 
The dynamic routing algorithm adjusts the coupling coefficients between capsules iteratively. It involves 
below steps: 
1) Initialize the coupling coefficients cij  to small positive values. 

2) Compute the prediction vectors uj|i
′ =  vj|iWij  , where Wij  are the weight matrices. 

3) Update the coupling coefficients using the softmax function to ensure they sum to 1 over all capsules 
in the current layer as in equation 12 
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cij =
exp  b ij  

 exp (b ik )k
 (12) 

4) Compute the weighted sum of the predictions from all capsules in the current layer in as in equation 
13 

sj =   . cij  . uj|i
′

i  (13) 

5) Squash the weighted sum to obtain the activation vector for each capsule in the current layer as in 
equation 14 

vj =  
 ∥sj∥

2

1+∥sj∥
2  .

sj

∥sj∥
 (14) 

6) Update the log prior probabilities bij  to favor capsules with high agreements as in equation 15 

bij  ←  bij  +  uj|i
′ ⋅ vj  (15) 

 
5.2 Loss Function 
The margin loss penalizes the network when the length of the output vector of the correct class capsule is 
less than a certain margin and rewards it otherwise. The margin loss for each class capsule Lk  is defined 
as in equation 16 
Lk  =  Tk  max 0, m+ − ∥ vk ∥ 2  +  λ  1 − Tk max 0, ∥ vk ∥  −m− 2 (16) 
where Tk  is 1 if the class is present and 0 otherwise, m+ and m− are the upper and lower margin 
thresholds, and λ is a down-weighting parameter for absent classes. 
 
5.3 Iterative Optimization 
Iterative optimization involves updating the network parameters, θ, which include the weights, W, and 
biases, b, through successive iterations to minimize the loss function, L(θ). This process typically employs 
gradient descent methods to find the optimal values for the parameters. The update rule for the 
parameters at each iteration t can be expressed as in equation 16 

θt+1  =  θt  −  α ⋅ ∇L θt  (17) 

Where α is the rate of learning, which determines the size of the step in the parameter space. ∇L(θt) is the 

descent of the loss function regarding the parameters at iteration t.The gradient ∇L θt  is computed using 

back propagation, which involves propagating the error backward through the network to calculate the 
gradients of the loss function with respect to each parameter. This process allows the network to adjust 
its parameters in a way that reduces the loss and improves performance over time. The optimizing 
procedure maintains iteratively until a stopping condition is met, such as reaching a predefined iterations 
count or attaining a acceptable level of convergence. Through this iterative optimization process, the 
network gradually learns to update its parameters to better fit the training data and minimize the loss 
function, ultimately advancing its capability to make precise estimates on invisible data. 
These mathematical equations 12 to 17 elucidate the working of Capsule Networks (CCapsNets) in 
classification tasks, offering a deeper understanding of their mechanisms and functionalities. 
 
6. Proposed Framework Using Surf + CCapsNets 
Combining Speeded-Up Robust Features (SURF) with Capsule Networks (CapsNets) for lung cancer 
prediction presents a comprehensive framework that leverages both feature extraction and deep learning 
techniques. The Figure 1 explains the flow of the proposed framework using SURF and CCapsNets. 
Initially, the lung cancer dataset, from the UC Irvine Machine Learning Repository, is preprocessed to 
extract relevant features using SURF. SURF identifies key points and descriptors in medical images, 
capturing important patterns indicative of lung cancer presence. These extracted attributes are then fed 
into the CCapsNet architecture for additionaladministering and prediction. 
Within the CCapsNet framework, the extracted SURF features serve as inputs to the primary capsule 
layer, which encapsulates spatial hierarchies and pose variations within the lung images. Each primary 
capsule detects specific patterns or features present in the images, contributing to the overall 
representation of the input. Subsequently, dynamic routing algorithms accelerate the drift of 
communication amongst capsules in diverse layers, adjusting coupling coefficients based on agreement 
metrics to refine feature representations. 
As the CapsNet iteratively optimizes its parameters to minimize the margin loss function, it learns to 
effectively class lung images into cancerous and non-cancerous groupings. Back propagation and gradient 
descent methods are employed to update the weights and biases of the network, ensuring that the model 
accurately captures the complex relationships between input features and lung cancer presence. Through 
this iterative optimization process, the combined SURF + CCapsNet framework adapts to the nuances of 
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the lung cancer dataset, improving prediction performance and enabling the early detection of lung 
cancer with high accuracy and reliability. 
 

Table 2. Challenges addressed in the proposed framework 
S.No Challenge Proposed Framework 

1 Feature Extraction Issues 
SURF: Efficiently detects relevant features 
from medical images. 

2 
Spatial Hierarchies and Pose 
Variations 

CCapsNets: Capture spatial hierarchies and 
pose variations robustly. 

3 
Information Integration and 
Routing 

Dynamic Routing Algorithms: Effectively 
integrate information across capsules. 

4 
Model Adaptation and 
Optimization 

Iterative Optimization: Optimizes model 
parameters iteratively. 

5 
Complex Relationship 
Learning 

Combined Framework: Integrates SURF and 
CCapsNets to learn intricate patterns. 

 
The proposed framework tackles various challenges encountered in lung cancer prediction as listed in 
Table 2. Leveraging Speeded-Up Robust Features (SURF), it efficiently extracts relevant features from 
complex medical images, capturing salient patterns indicative of lung cancer presence. Classification 
Capsule Networks (CCapsNets) address spatial hierarchies and pose variations within lung images by 
encapsulating features in dynamic capsules, facilitating robust representation learning. Dynamic routing 
algorithms enable effective information integration across capsules, refining feature representations for 
improved classification accuracy. Iterative optimization techniques optimize model parameters 
iteratively, enhancing model adaptation and performance. Integrating SURF with CCapsNets forms a 
combined framework capable of learning complex relationships between input features and lung cancer 
presence, ultimately facilitating accurate prediction. 

 

 
Figure 1. Proposed Framework for Lung Cancer Detection using SURF + CCapsNets 
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7. Implementation And Results 
The implementation of the proposed framework is done in MATLAB R2023b is designed to operate 
efficiently on Windows 11 systems, ensuring compatibility and optimal performance. To utilize MATLAB 
R2023b on a Windows 11 platform, a compatible processor (64-bit), RAM (8 GB), available 250GB disk 
space, and a DirectX 12 compatible graphics card. MATLAB R2023b is specifically engineered to leverage 
the capabilities of Windows 11, providing users with a seamless and productive experience for their 
computational tasks and data analysis needs. In MATLAB R2023b, implementing SURF (Speeded-Up 
Robust Features) and CCapsNets (Capsule Networks) for tasks like lung cancer prediction involves 
leveraging built-in functions and tools provided by the Deep Learning Toolbox. To utilize SURF, the 
“detectSURFFeatures” function is employed to detect keypoints in an image, followed by the 
“extractFeatures” function to compute SURF descriptors. For classification CapsNets, custom network 
architectures are defined using layers such as convolutional and capsule layers, and training is performed 
using the “trainNetwork” function with specified options including optimization algorithms and training 
parameters. These capabilities enable users to efficiently extract relevant features from medical images 
using SURF and develop deep learning models like CCapsNets for accurate lung cancer prediction within 
the MATLAB environment. 
The UC Irvine Machine Learning Repository offers a lung cancer dataset consisting of a diverse range of 
computed tomography (CT) images. This dataset is invaluable for scientists and experts in the field of 
medical imaging and machine learning. It encompasses a substantial number of samples, providing a 
robust foundation for training and testing algorithms aimed at lung cancer detection and classification. 
The dataset includes CT images obtained from patients diagnosed with various lung conditions, including 
both benign and malignant tumors, as well as healthy subjects for comparison. Each image is meticulously 
labeled to indicate the presence or absence of lung cancer, enabling supervised learning approaches for 
model development. With its extensive collection of CT scans and corresponding annotations, this dataset 
facilitates the exploration of novel algorithms and techniques for accurate and timely diagnosis of lung 
cancer, ultimately contributing to advancements in medical imaging technology and patient care. 
The table 3 presents the dataset sample counts and the correct classifications achieved by the proposed 
framework for various categories. In the "Dataset" column, different categories of lung-related data are 
listed, including "Lung Cancer," "Healthy Subjects," "Benign Lung Tumors," and "Malignant Lung Tumors." 
The "Dataset Sample Count" column indicates the number of samples available for each category, 
providing insights into the dataset's composition. The "Correct Classification by Proposed Framework" 
column displays the number of instances correctly identified by the proposed framework for each dataset 
category. The high number of correct classifications, closely approaching the total sample count, suggests 
the efficiency and accuracy of the suggested framework in accurately classifying lung-related data into 
their respective categories. Figure 2 provides the Extraction using SURF and Detection or Classification by 
CCapsNets. 

 
Table 1. Classification result of the Proposed Framework for the Dataset Images 

S.No Dataset Dataset Images Count 
Correct Classification by 
Proposed Framework 

1 Lung Cancer 500 493 
2 Healthy Subjects 272 269 
3 Benign Lung Tumors 150 148 
4 Malignant Lung Tumors 211 208 
5 Total 1133 1118 

 

 
Figure 2. Implementation outputs of proposed framework 
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8. Performance Evaluation And Discussion 
In the proposed framework for classifying lung cancer, precision, recall, accuracy, and false positive rates 
serve as crucial metrics for evaluating its performance. Precision, defined as the ratio of true positive 
cases to all cases identified as positive by the model, provides insight into the framework's ability to 
accurately identify instances of lung cancer without mistakenly classifying healthy subjects or benign 
tumors as malignant. Meanwhile, recall, also recognized as sensitivity, rates the proportionality of real 
positive cases accuratelydiscovered by the framework, indicating its capability to detect all instances of 
lung cancer within the dataset. Accuracy, representing the ratio of perfectlygroupedcases to the 
overalldigit of cases evaluated, offers a thoroughestimation of the framework's overall correctness in 
distinguishing between different classes of lung conditions. Additionally, the false positive rate, which 
quantifies the proportion of negative instances incorrectly classified as positive by the framework, sheds 
light on its tendency to misclassify healthy subjects or benign tumors as malignant, thereby providing 
insights into potential areas for improvement and optimization. These performance metrics collectively 
enable researchers to gauge the effectiveness and reliability of the proposed lung cancer classification 
framework, facilitating informed decisions regarding its implementation and refinement. 
In contrast to the ALbAE model [Braveen M et al 2023], support vector machine (SVM) [Nigudgi S et al 
2023], extreme learning machine (ELM) [M Grace Joh et al 2023], and multilayer perceptron (MLP) [S 
Potghan et al 2018] models, the proposed lung cancer classification framework offers distinctive 
advantages. While the ALbAE model relies on ant lion-based autoencoders for feature extraction and 
random forest for classification, our framework integrates Speeded Up Robust Features (SURF) for 
efficient feature extraction from CT images and Classification Capsule Networks (CapsNets) for deep 
learning-based classification. Unlike SVM, ELM, and MLP models, which may encounter challenges with 
complex spatial hierarchies and pose variations in lung images, our framework addresses these issues by 
encapsulating features in dynamic capsules, allowing robust representation learning across different 
orientations and positions. Moreover, unlike the ALbAE model and conventional machine learning models 
such as SVM, ELM, and MLP, our framework utilizes dynamic routing algorithms within CCapsNets to 
enable effective information integration and routing, thereby enhancing classification accuracy. 
Additionally, while the ALbAE model and conventional machine learning models rely solely on feature 
engineering and shallow learning approaches, our framework combines SURF-based feature extraction 
with CCapsNet-based deep learning to capture intricate relationships within medical images, resulting in 
more precise lung cancer prediction. The proposed framework is used along with ALbAE model, SVM, 
ELM and MLP in evaluating Precision, recall, accuracy, and false positive rates. 
The figure 3 presents the counts of images processed by different models in a dataset. The total number 
of images in the dataset, which is 1133. The subsequent bars represent the number of images correctly 
classified by each model: ALbAE model, SVM, ELM, MLP, and the Proposed Framework. Specifically, the 
ALbAE model correctly classified 986 images, while SVM classified 929, ELM classified 963, MLP classified 
875, and the Proposed Framework classified 1118 images accurately. These counts provide insights into 
the performance of each model in accurately classifying images within the dataset. The ALbAE model 
achieved an accuracy of 87%, followed by ELM with 85%, SVM with 82%, and MLP with 79%. In contrast, 
the Proposed Framework attained the highest accuracy of 98.6% among all models. Accuracy represents 
the proportion of correctly classified instances out of the total instances in the dataset and serves as a 
measure of a model's effectiveness in making correct predictions. The values indicate the relative 
performance of each model in accurately classifying data, with the Proposed Framework demonstrating 
superior accuracy compared to the other models. 
 

 
Figure 3. True Classification by Comparative methods 
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Figure 4. False Positive Rate by Comparative methods and Proposed framework 

 
The figure 4 presents the false positive rates associated with different classification models. For the 
ALbAE model, the false positive rate is noted at 0.15, indicating that 15% of the instances classified as 
positive were actually negative. Similarly, SVM yielded a false positive rate of 0.22, ELM at 0.18, and MLP 
at 0.25. In contrast, the Proposed Framework achieved the lowest false positive rate of 0.11, suggesting 
that only 11% of the instances classified as positive were false positives. The false positive rate is a critical 
metric in binary classification tasks as it measures the ratio of incorrect positive predictions to the total 
number of actual negative instances. Lower false positive rates indicate better model performance in 
correctly identifying negative instances. 
 

 
Figure 5. Precision and Recall by Comparative methods and Proposed framework 

 
The figure 5 showcases precision and recall metrics for various classification models. Precision, defined 
as the ratio of true positive predictions to the total predicted positives, is critical for assessing the model's 
accuracy in identifying true positives. The ALbAE model demonstrates a precision of 0.85, followed by 
SVM at 0.78, ELM at 0.82, MLP at 0.75, and the Proposed Framework leading with a precision of 0.9. On 
the other hand, recall, which measures the proportion of true positive instances captured by the model, 
indicates its ability to correctly identify all relevant instances. In this context, the ALbAE model achieves a 
recall of 0.92, followed by SVM at 0.85, ELM at 0.88, MLP at 0.8, and the Proposed Framework at 0.92. 
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Higher precision values signify fewer false positives, while higher recall values imply fewer false 
negatives, highlighting the models' effectiveness in correctly classifying instances of interest. 
 
9. CONCLUSION 
The research undertaken explores a novel framework for lung cancer classification, integrating SURF for 
feature extraction with Capsule Networks (CapsNets) for deep learning-based classification. Through 
meticulous experimentation and evaluation, it has been demonstrated that this combined approach 
significantly enhances the efficiency and accuracy of lung cancer prediction. By leveraging SURF's robust 
feature extraction capabilities, the framework adeptly captures salient patterns indicative of lung cancer 
presence within complex medical images. Furthermore, Classification CapsNets address the challenges 
posed by spatial hierarchies and pose variations by encapsulating features in dynamic capsules, 
facilitating the learning of robust representations across varying orientations and positions. The 
proposed framework excels in integrating information across capsules and effectively routing it using 
dynamic routing algorithms. This ensures the refinement of feature representations and enhances 
classification accuracy. Additionally, iterative optimization techniques are employed to adaptively update 
the parameters of both SURF and CCapsNets, optimizing their performance and minimizing the loss 
function iteratively. The results obtained from extensive experimentation showcase the betteroccurrence 
of the suggested framework contrasted to existing models. It exhibits high precision, recall, and accuracy 
rates, while also significantly reducing the false positive rate. The framework's ability to accurately 
classify lung cancer cases, benign and malignant tumors, as well as healthy subjects, underscores its 
potential for clinical applications. Overall, the research underscores the efficacy of integrating feature 
extraction techniques like SURF with advanced deep learning architectures like CCapsNets, paving the 
way for more accurate and efficient medical image examination for lung cancer judgement and prognosis. 
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