
Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024
 VOL. 33, NO. 2, 20

 1042 Kokilavani V et al 1042-1053

Utilizing Python for Neutrosophic Theory: A Study of
Neutrosophic Crisp Sets and Topological Spaces

Kokilavani V1, Tharani K2*
1Associate Professor and Head, Department of Mathematics, Kongunadu Arts and Science College,

G.N.Mills, Coimbatore-641 029, Tamil Nadu,India, Email: vanikasc@yahoo.co.in
2*PG and Research Department of Mathematics, Kongunadu Arts and Science College, G.N.Mills,

Coimbatore-641029, TamilNadu, India, Email: tharanitopo23@gmail.com
*Corresponding Author

 Received: 17.07.2024 Revised: 18.08.2024 Accepted: 20.09.2024

ABSTRACT
Python programming is a fundamental component of modern research that greatly reduces the
workload for human resources. Researchers all throughout the world find that encoding their
data into code gives them rapid computational power. Python's efficiency and adaptability are
vital for enhancing research activities in mathematics, especially in areas like topology. In a
world characterized by indeterminacy, traditional crisp sets, with their rigid boundaries of
truth and falsehood, fail to accurately reflect reality. Consequently, neutrosophic theory has
emerged in contemporary research as an alternative way to represent the real world. In this
paper, finding the Neutrosophic Crisp Set(NCS), Neutrosophic Crisp Topological space(NCTS)
utilizing Python programming.

Keywords: NCS, NCTS, NCOS, NCCS

1. INTRODUCTION
Several mathematical techniques have been created for illustrating and resolving issues in our
day-to-day life. The idea of the fuzzy set(FS), first presented by Zadeh (1965)[1], has drawn a
lot of attention for problems including imprecision, ambiguity, and uncertainty because of its
capacity to approximate human utilize vocabulary to aid in perception and thought. Later, a
number of hypotheses were presented in various forms with the goal of resolving the
impreciseness issue. Recently, the neutrosophic theory was put out as a better solution since
intuitionistic fuzzy sets(IFS’s) and FS’s were unable to handle information indeterminacy, and
FS’s and fuzzy logic couldn’t convey false membership information. This is because the
information is uncertain and imprecise, usually including against and neutral information.
A recent development in philosophy is the field of neutrosophic, which examines the nature,
origin, and extent of neutralizes as well as their relationships between various additional
spectra. Finding an idea’s three sides: truth, falsity and indeterminacy and combining or
reversing them is the first step in neutralizing it. Neutrosophic set(NS) is a generalization of FS
and IFS. IFS was established by Atanassov [2] in 1983. Coker[3] introduced the notion of
intuitionistic fuzzy topological space(IFTS). Florentin Smarandache et.al.,[4][5][6] presented
the NS. In that, they introduced the neutrosophic components T, I, and F which represent the
membership, indeterminacy and non-membership values respectively, where] −0, 1+ [is the
non- standard unit
interval. The notion of neutrosophic topological spaces was first proposed by A. A Salama and
S. A. Alblowi[7]. A. A. Salama et. al.,[8] propose the idea of NCTS. M. Vivek Prabu and M.
Rahini[9]using the Python program to design the efficiently handle topologies with varying set
sizes. In this article, we have constructed a Python program to examine the properties of
Neutrosophic crisp sets in Neutrosophic crisp topological spaces. By reducing the manpower
required for complex and repetitive calculations and, more importantly, obtaining the results
of complex problems almost instantly, our Python program enhances the efficiency and
accuracy of examining Neutrosophic crisp sets in Neutrosophic crisp topological spaces.

2. Preliminaries
Definition 2.1. [10] The for loop in Python is iterator-based. It goes through the elements
in any ordered sequence list, i.e., string, lists, tuples, the keys of dictionary. A

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1043 Kokilavani V et al 1042-1053

value is assigned to a loop variable at each iteration step.

Fig.1 The for loop Syntax

Definition 2.2. [10] An if elif else statement is a control flow structure in programming that
allows you to execute different code blocks based on multiple conditions.
Structure:
if: Checks the first condition.
elif: Checks additional conditions if the previous ones are False.
else: Executes if none of the previous conditions are True.

Fig.2 if elif else Statement Syntax

Definition 2.3. [10] The while statement is used when you have a piece of code and you want to
repeat if ’n’ number of times or forever. With while loop, we have to give a conditional
statement that tells the interpreter when the loop will halt.

Fig.3 While Statement Syntax

Definition 2.4. [10] The break statement exits from the loop and transfers the execution from
the loop to the statement that is immediately following the loop.

Definition 2.5 [10] A Neutrosophic Crisp Set (NCS) is a mathematical concept it allows for
elements to have degrees of truth, indeterminacy and falsity. In theoretical terms, a
Neutrosophic Crisp Set is defined as follows:
A NCS A can be represented as A1, A2, A3 where A1, A2, and A3 are the subsets of the
universal set X.

(i) Type 1 NCS: A1 is disjoint with both A2 and A3. Furthermore A2, is disjoint with A3.

(ii) Type 2 NCS: This type is an extension of Type 1 with an additionally requires that the union
of A1, A2, and A3 equals the universal set X.

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1044 Kokilavani V et al 1042-1053

(iii) Type 3 NCS: The subsets A1, A2, and A3 are all disjoint and their union equals the universal
set X.

Definition 2.6 [10] Let X represent a non empty set and the NCS’s A and B be expressed as
A = A1, A2, A3 , B = B1, B2 , B3 , then subset A of B implies either one of the following forms,
(i) A1 is subset of B1, A2 is subset of B2 & B3 is subset of A3.
(ii) A1 is subset of B1, B2 is subset of A2 & B3 is subset of A3.

Definition 2.7 [10] Let X represent a non empty set and the NCS’s A and B be expressed as
A = A1, A2, A3 , B = B1 , B2, B3 , then the intersection of A and B can be obtained by any one of
the following forms,
(i) A1 intersect B1, A2 intersect B2 & A3 union B3.
(ii) A1 intersect B1, A2 union B2 & A3 union B3.

Definition 2.8 [10] Let X represent a non empty set and the NCS’s A and B be expressed as
A = A1, A2, A3 , B = B1, B2 , B3 , then the union of A and B can be obtained by any one of the
following forms,

(i) A1 union B1, A2 union B2 & A3 intersect B3.
(ii) A1 union B1, A2 intersect B2 & A3 intersect B3.

Definition 2.9 [10] Let A = A1, A2, A3 a NCS on X, then the complement of A (in short, Ac
)may be characterized in three distinct ways:
(i) Ac = A1

c , A2
c , A3

c
(ii) Ac = A3, A2, A1
(iii) Ac = A3, A2

c , A1

Definition 2.10 [10] A NCTS on a non empty set X is a family (Γ) of neutrosophic crisp subsets ∈
X which satisfy below:
(i) ϕ

N
, XN ∈ Γ, where ϕ

N
 can be in any one of the appropriates forms ϕ, ϕ, X or ϕ, X, X or ϕ, X, ϕ

or ϕ, ϕ, ϕ and XN can be in any one of the appropriates forms X, ϕ, ϕ or X, X, ϕ or X, ϕ, X or
 X, X, X

(ii) A1 ∩ A2 ∈ Γ for any A1, A2 ∈ Γ.
(iii) ∪ Aj ∈ Γ for any arbitrary family {Aj : j ∈ J } ⊆ (X, Γ) is known as NCTS and the objects in Γ is

namely neutrosophic crisp open set (NCOS) and complement of NCOS is neutrosophic crisp
closed set (NCCS).

3. Computation of Neutrosophic Crisp Topological Space

Algorithm 1 Process of finding subsets and combination of subsets

 1: DISPLAY: “Enter the elements of the set (e.g., {a,b}):”
 2: READ: user_input
 3: SET: user_set to parse_input(user_input)
 4: SET: input_sets to set(user_set)
 5: SET: result to powerset(user_set)
 6: DISPLAY: “Subsets of the given SET:”
 7: for subset in result do
 8: DISPLAY: subset or ‘[]’ if subset is empty
 9: end for
10: SET: set size to 3
11: SET: sets to generate_sets(result, set_size)
12: DISPLAY: “Combinations of subsets:”
13: for s in sets do
14: DISPLAY: s
15: end for

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1045 Kokilavani V et al 1042-1053

Algorithm 2 Process for Computing Neutrosophic Crisp Set

 1: DEFINE: value as an empty list
 2: for i from 0 to LENGTH of sets -1 do
 3: if N1 = = EMPTY SET AND N2 = = EMPTY SET AND N3 = = EMPTY
 SET then
 4: DISPLAY: “type 1 satisfied sets”, sets[i]
 5: APPEND: sets[i] to value
 6: end if
 7: if N1 = = EMPTY SET AND N2 = = EMPTY SET AND N3 = = EMPTY
 SET AND N4 = = input sets then
 8: DISPLAY: “type 2 satisfied sets”, sets[i]
 9: APPEND: sets[i] to value
10: end if
11: if N5 = = EMPTY SET AND N4 = = input sets then
12: DISPLAY: “type 3 satisfied sets”, sets[i]
13: APPEND: sets[i] to value
14: end if
15: end for

Algorithm 3 Process for Choosing the Empty and Whole neutrosophic crisp set

 1: DEFINE: X_N as (user_set, user_set, EMPTY LIST)
 2: DEFINE: ϕ_N as (EMPTY LIST, EMPTY LIST, user_set)
 3: DEFINE: X_N1 as (user_set, EMPTY LIST, EMPTY LIST)
 4: DEFINE: X_N2 as (user_set, EMPTY LIST, user_set)
 5: DEFINE: ϕ_N1 as (EMPTY LIST, user_set, user_set)
 6: DEFINE: ϕ_N2 as (EMPTY LIST, user_set, EMPTY LIST)
 7: DISPLAY: “Choose one whole and one empty neutrosophic crisp set:”
 8: DISPLAY: “Whole Neutrosophic Crisp Sets:”
 9: DISPLAY: “1. X_N:”, X_N
10: DISPLAY: “2. X_N1:”, X_N1
11: DISPLAY: “3. X_N2:”, X_N2
12: READ: whole_choice
13: SET: whole_crisp_set to corresponding set based on whole_choice
14: DISPLAY: “Empty Neutrosophic Crisp Sets:”
15: DISPLAY: “1. ϕ_N : ”, ϕ_N
16: DISPLAY: “2. ϕ_N1 : ”, ϕ_N1
17: DISPLAY: “3. ϕ_N2 : ”, ϕ_N2
18: READ: empty_choice
19: SET: empty_crisp_set to corresponding set based on empty_choice
20: REMOVE: unchosen sets from value list

Algorithm 4 Process for Computing the Tau(First and Second Condition)

 1: DISPLAY: “For example: [([], [], [’a’]),([], [], [’b’])]”
 2: while TRUE do
 3: DISPLAY: “Enter the Tau (whole and empty neutrosophic crisp sets should
 not be included):”
 4: READ: tau_input
 5: SET: tau_set to EVALUATE tau_input
 6: if tau_set contains duplicates then
 7: DISPLAY: “Invalid Tau. Duplicate subsets are not allowed.”
 8: else if tau_set contains whole crisp set or empty crisp set then
 9: DISPLAY: “Invalid Tau. The whole or empty neutrosophic crisp set

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1046 Kokilavani V et al 1042-1053

 should not be included.”
10: else if any subset in tau_set is not in value then
11: DISPLAY: “Invalid Tau. Please make sure all subsets are valid and from
 the value list.”
12: else
13: SET: tau_list to [empty crisp set, whole crisp set] + tau set
14: DISPLAY: “Tau list with chosen whole and empty neutrosophic crisp
 sets:”
15: for tau in tau list do
16: DISPLAY: tau
17: end for
18: DISPLAY: “First condition is satisfied”
19: BREAK
20: end if
21: end while
22: DISPLAY: “Choose the type of union:”
23: DISPLAY: “1. Union Type 1: [A1 ∪ B1, A2 ∪ B2, A3 ∩ B3]”
24: DISPLAY: “2. Union Type 2: [A1 ∪ B1, A2 ∩ B2, A3 ∩ B3]”
25: READ: union_type
26: SET: union_result to True
27: for i from 0 to LENGTH of Tau - 1 do
28: for j from 0 to LENGTH of Tau - 1 do
29: if union of subsets(Tau[i], Tau[j], union type) NOT IN Tau then
30: SET: union result to False
31: BREAK
32: end if
33: end for
34: if union result is False then
35: BREAK
36: end if
37: end for

Algorithm 5 Algorithm 5 Process for Computing the Tau(Third Condition and Complement)

 1: if union_result then

 2: DISPLAY: “Second condition is satisfied”
 3: DISPLAY: “Choose the type of intersection:”
 4: DISPLAY: “1. Intersection Type 1: [A1 ∩ B1, A2 ∩ B2, A3 ∪ B3]”
 5: DISPLAY: “2. Intersection Type 2: [A1 ∩ B1, A2 ∪ B2, A3 ∪ B3]”
 6: READ: intersection_type
 7: SET: intersection_result to True
 8: for i from 0 to LENGTH of Tau - 1 do
 9: for j from 0 to LENGTH of Tau - 1 do
10: if intersection_of_subsets(Tau[i], Tau[j], intersection_type) NOT IN Tau then
11: SET: intersection result to False
12: BREAK
13: end if
14: end for
15: if intersection result is False then
16: BREAK
17: end if
18: end for
19: if intersection_result then
20: DISPLAY: “Third condition is satisfied”
21: DISPLAY: “Choose the type of complement:”
22: DISPLAY: “1. Complement Type 1: ([complement of A1],
 [complement of A2], [complement of A3])”
23: DISPLAY: “2. Complement Type 2: ([A3], [A2], [A1])”

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1047 Kokilavani V et al 1042-1053

24: DISPLAY: “3. Complement Type 3: ([A3], [complement of A2], [A1])”
25: READ: complement_type
26: SET: Tau_complement to EMPTY LIST
27: for subset in Tau do
28: ADD: find_complement(subset, complement_type) to Tau_complement
29: end for
30: DISPLAY: “Complement of Tau:”
31: DISPLAY: Tau complement
32: else
33: DISPLAY: “Third condition is Not Satisfied”
34: end if
35: else
36: DISPLAY: “Second condition is Not Satisfied”
37: end if

Coding:

Fig. 4 Coding for Finding the Subsets and Combinations of the Subset

In Figure 4, We defined the set as X={a,b} and obtain the subsets of X. Then the combination of
[’a’],[’b’],[’a’,’b’],[] expressed in the form of triple subset.

Fig. 5 Coding for Computing Neutrosophic Crisp Set

In Figure 5, A NCS of Type1 if A1 ∩ A2 = ϕ, A1 ∩ A3= ϕ and A2 ∩ A3 = ϕ, NCS of Type2 if A1 ∩ A2 = ϕ, A1 ∩
A3 = ϕ and A2 ∩ A3 = ϕ and A1 ∪ A2 ∪ A3= X and NCS of Type3 if A1∩ A2 ∩ A3 = ϕ and A1 ∪ A2 ∪ A3= X

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1048 Kokilavani V et al 1042-1053

are defined.
InFigure5,ANCS

Fig. 6 Coding for Choosing the Empty and Whole Neutrosophic crisp set

In Figure 6, The user is prompted to choose one whole and one empty neutrosophic crisp set from the
provided options. The user’s choices are recorded, and the selected sets are identified. A list of all
possible sets is then compared to the chosen sets to determine which ones were not selected. These not
chosen sets are removed from the value list. After updating the value list, a counter is initialized, and the
function iterates through the remaining sets

.Fig. 7 Coding for User to enter Tau

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1049 Kokilavani V et al 1042-1053

Fig. 8 Coding for Computing the Tau

In Figure 7 and 8, The program proceeds to compute the union of all subsets in the list Tau based on
the selected union type. If it is satisfied, the program moves to the intersection condition. Next, the
program computes the intersection of all subsets in Tau based on the selected intersection type. If it

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1050 Kokilavani V et al 1042-1053

is satisfied, the program proceeds to compute the complement of Tau.

Working Process
The process begin with Users by inputting elements for a set. The power set is generated, showing all
possible subsets, which are then displayed. Combinations of three subsets are created. Each combination
is evaluated to check if it meets specific type conditions (Type 1, Type 2, Type 3), and satisfied sets are
identified and printed. Users then select a whole and an empty neutrosophic crisp set from predefined
options. Next, they input a Tau, ensuring it doesn’t include the chosen whole and empty neutrosophic
crisp sets and has no duplicates. The Tau list is formed, and the first axiom is checked and satisfied.
Users then select union and intersection types, and the conditions are checked and satisfied accordingly.
Lastly, users select a complement type, and the complement of Tau is calculated and displayed.

Output

Fig. 9 Output of Subsets and Combinations of the Subset

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1051 Kokilavani V et al 1042-1053

Fig. 10 Output of Satisfied the Type1, Type2 and Type3 of Neutrosophic Crisp Set

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1052 Kokilavani V et al 1042-1053

Fig. 11 Output of Finalized the Neutrosophic Crisp Sets

Journal of Computational Analysis and Applications VOL. 33, NO. 7, 2024 VOL. 33, NO. 2, 2024

 1053 Kokilavani V et al 1042-1053

Fig. 12 Output of Computing the Tau (Satisfying the three axioms)

CONCLUSION
In this article, the development of Python program marks a significant advancement in the study of
Neutrosophic crisp sets within Neutrosophic crisp topological spaces. Our program not only minimizes
the manpower required but also delivers results with remark able speed and accuracy. This tool enhances
the efficiency of research and practical applications, the way for more effective analysis and utilization of
Neutrosophic crisp sets in various scientific and mathematical fields.

Data Availability
I have not used any external data source forth is manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

REFERENCES
[1] Zadeh, L.: Fuzzy sets inform and control. Applied Science Periodical 8(4), 338–353 (2006)
[2] Atanassov,K.T.:Intuitionisticfuzzysets.FuzzySetsandSystems20(1),87–96 (1986)

https://doi.org/10.1016/S0165-0114(86)80034-3
[3] C¸oker,D.: An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems 88(1),

81–89(1997)https://doi.org/10.1016/S0165-0114(96)
[4] 00076-0
[5] Smarandache,F.: First international conference on neutrosophy, neutrosophic logic, set, probability

and statistics. Florentin Smarandache 4 (2001)
[6] Smarandache, F.: A unifying field in logics: Neutrosophic logic, neutrosophy, neutrosophic set,

neutrosophic probability. In: Philosophy, pp. 1–141. American Research Press, Rehoboth [N.M.]
(1998)

[7] Al-Omeri,W., Smarandache,F.: New neutrosophic sets via neutrosophic topological spaces. Infinite
Study2016, 1–15 (2016)

[8] Salama, A., Alblowi, S.: Neutrosophic set and neutrosophic topological spaces. IOSR Journal of
Mathematics 3, 31–35 (2012)

[9] Salama, A.A., Smarandache, F.: Neutrosophic Crisp Set Theory. Educational Publishers, Columbus,
OH, USA (2015)

[10] Prabhu, M.V., Rahini, M.: Developing a topology generator using python program. In: AIP Conference
Proceedings, vol. 2649 (2023). AIP Publishing

[11] Balagurusamy, E.: Introduction to computing & problem solving python. first edition, published by
McGraw Hill Education (India) Private Ltd (2016)

[12] Salama, A., Smarandache, F., Kroumov, V.: Neutrosophic crisp sets& neutrosophic crisp topological
spaces. Infinite Study (2014)

https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(96)00076-0
https://doi.org/10.1016/S0165-0114(96)00076-0

