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ABSTRACT 
Credit scoring, a cornerstone of modern finance, plays a pivotal role in assessing the creditworthiness of 
individuals and businesses. The primary motivation driving this review paper is to scrutinize the 
suitability and efficacy of algorithms in the context of credit scoring. This comprehensive review delves 
into the evolving landscape of credit risk assessment and explores the transformative impact of 
algorithmic decision making on reducing bias, overfitting and enhancing predictive accuracy. Over time, 
the accuracy of credit scoring models has seen substantial improvements, reflecting advancements in 
computational capabilities and data availability. By focusing on a spectrum of algorithms, from classical 
statistical methods to state-of-the-art machine learning and neural network approaches, this paper 
provides a comparative analysis of their strengths and limitations in the realm of credit scoring. The 
discussion encompasses considerations of interpretability, predictive accuracy, scalability, and fairness, 
shedding light on the trade-offs involved in algorithm selection. 
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1. INTRODUCTION 
The world of credit scoring has undergone a remarkable transformation over the years, evolving from 
rudimentary systems of trust and collateral to sophisticated analytical methodologies that underpin 
financial decision-making on a global scale. This review paper begins with a comprehensive exploration 
of the historical evolution, contemporary issues, breakthroughs, and current trends in credit scoring 
analysis techniques. 
 
A. A Brief History of Credit Scoring 
The concept of credit scoring can be traced back to ancient civilizations where interpersonal trust served 
as the sole determinant for lending and borrowing. In the early 20th century, personal relationships gave 
way to more data-driven methods, exemplified by the birth of the credit bureaus. It wasn't until the mid-
20th century that statistical models and computer technology began to play a pivotal role in credit 
scoring, making the process more objective and efficient. The advent of FICO [1] scores in 1956 marked a 
significant milestone in this journey, setting a standard for creditworthiness assessment. 
 
B. Issues in Credit Scoring 
However, as credit scoring became more complex, it brought with it an array of challenges. 
Discrimination, bias, and data privacy concerns emerged as critical issues [2]. Financial institutions faced 
dilemmas in reconciling their fiduciary duty to shareholders with societal expectations of equitable access 
to credit. Traditional scoring methods faced criticism for excluding individuals with limited credit 
histories or unconventional financial behaviors. These problems underscored the need for a new 
generation of credit scoring techniques that are not only more accurate but also fair and inclusive. 
Furthermore, interpretability and explainability of "black box" models raised the question of 
transparency [3]. 
 
C. Breakthroughs in Credit Score Techniques 
The 21st century ushered in a wave of innovations that have revolutionized credit scoring. Machine 
learning algorithms, big data analytics, and alternative data sources have enabled the development of 
more robust and predictive models. Explainable AI and fairness-aware algorithms have been introduced 
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to mitigate biases and enhance transparency. Additionally, lending platforms and fintech companies have 
disrupted the traditional lending landscape, pushing the boundaries of credit scoring even further. 
 
D. Current Ongoing Research 
In the ever-evolving field of credit scoring, research is at the forefront of addressing the challenges and 
opportunities. Ongoing studies explore advanced modeling techniques, incorporating non-traditional data 
sources such as social media, and the use of blockchain for secure and transparent credit assessment. 
Furthermore, the ongoing discourse around regulatory frameworks, particularly in the context of data 
privacy and consumer protection, continues to shape the credit scoring landscape. 
This review paper aims to delve into the various techniques involved in modern credit scoring, with a 
focus on algorithms that are flexible and accurate. The paper is divided into the following sections, 
Section II is a discussion of a subset of Machine Learning approaches.Section III proposes the 
methodology carried out by the authors as the various research steps in the implementation.Section IV is 
a comparative analysis of a few algorithms as applied on two standard datasets. These datasets will be 
described in the section alongwith the results obtained. Concluding remarks are discussed as well.Section 
V discusses potential future work and improvements. 
 
2. LITERATURE REVIEW 
In this study an overview of the primary computational techniques are employed in credit analysis, that 
belong to eitherof statistical learning, machine learning, and deep learning. Each of these techniques 
possesses distinct characteristics and shares some common principles. Statistical methods have 
traditionally been used to assess the credit behavior of customers or businesses. However, with the rapid 
advancement of artificial intelligence, machine learning and deep learning have gradually supplanted 
traditional statistical analysis. This evolution reflects the academic progression of the field and offers 
context for our study and the subsequent comparison of our findings. 
 
A. Discriminant Analysis 
Discriminant Analysis (DA) [4] is a multivariate statistical method used to predict group memberships 
and enhance separability among recognized clusters. It allows the classification of dataset classes by 
constructing linear functions that involve the explanatory variables. Nevertheless, critiques regarding its 
use in business, finance, and economics have arisen. One criticism, as indicated in [5], highlights the 
assumption that variables describing group members must adhere to a multivariate normal distribution. 
However, a counter-argument presented in [6] suggests that this assumption is a common misconception, 
asserting that if variables conform to a multivariate ellipsoidal distribution (of which normal distribution 
is a specialized case), the linear discriminant rule remains optimal. Furthermore, it has been contested 
whether DA can be successfully applied to discrete and identifiable groups, as opposed to continuous 
variables. Research presented in [7] demonstrates that the discriminant function, obtained by dividing a 
multivariate normal distribution into two classes, aligns with the optimal discriminant function, 
challenging the notion that DA works exclusively for discrete groups. 
 

 
Fig 1. Representation of Individual Class Boundaries in Feature Space. 

Source: Created by authors 
 
Figure 1 depicts how DA might separate classes in the feature space. Additionally, Linear Discriminant 
Analysis (LDA) [4], was initially introduced by Fisher for taxonomic classification in the field of biology 
and has found versatile applications in the realm of credit scoring. The central premise of DA is that the 
factors explaining each category of the target variable adhere to a multivariate normal distribution 
with a shared variance-covariance matrix. DA's primary goal is to enhance the distinction among diverse 
groups while reducing the internal variation within each group, providing a noteworthy alternative to 
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logistic regression in the context of credit scoring and similar domains. LDA is mathematically 
represented by the equation [8], 

d =   μ1 − μ2 
′ d

λ
 Σ−1 μ1 − μ2 = k ⋅ δ#(1)  

where k is a scalar. 
Logistic Regression (LR) and Discriminant Analysis (DA) are two methods for credit risk assessment, each 
with its strengths under different conditions. Logistic regression performs exceptionally well when the 
dependent variable exhibits a binary or dichotomous nature, such as 'yes'/'no' or 'correct'/'incorrect' 
outcomes. In contrast, DA tends to deliver superior results when the dependent variable is multi-
categorical, making it a preferred choice for assessing creditworthiness in such cases. 
 
B. Regression 
1. Linear Regression:  
Linear regression analysis is frequently employed in credit scoring applications and is noteworthy for its 
applicability even when dealing with a twoclass response variable. This technique establishes a linear 

connection between the borrower attributes, represented as X =  X1 , … , Xp , and the target variable Y. 

The relationship is expressed as [9]: 
Y = β

0
+ β

1
X1 + β

2
X2 +⋯+ β

p
Xp + ϵ#(2)  

where ϵ represents random error and is independent of X. The conventional approach for estimating the 

coefficients β = β
0
, … , β

p
 involves using ordinary least squares, represented as β . When dealing with a 

binary response variable Y, the conditional expectation E(Y ∣ X) = x′β is utilized to classify borrowers 

into 'good' or 'bad' categories. However, due to the range of −∞ < x′β < ∞, the model's output cannot be 
interpreted as a probability. Linear regression has found applications in credit scoring, as indicated in [9] 
by various researchers. 
2. Logistic Regression:  
Logistic regression (LR) is a fundamental statistical model employed in the domain of classification and 
predictive analytics, proving particularly valuable when dealing with categorical target variables, making 
it a well-suited choice for binary classification tasks as noted in [10]. In this context, LR utilizes a linear 
model based on the sigmoid, also referred to as the logistic function, to estimate the probability of a 
binary variable, effectively determining the likelihood of a specific event occurring. Significantly, the 
outcome of this estimation is a probability, constraining the dependent variable to a range between 0 and 
1 [11]. 
LR posits that a suitable function of the predicted event probability is linearly related to the observed 
values of the 
 
 

 
Fig 2. Linear Regression. 

Source: Created by authors available explanatory variables, as discussed in [12]. 
 
One of its key advantages is its capacity to produce a straightforward probabilistic classification formula, 
allowing for individual examination of each feature and its corresponding coefficient. This enables a clear 
understanding of the factors contributing to the differentiation between creditworthy and 
noncreditworthy customers [10]. The LR model is mathematically defined as: 

P(y = +1 ∣ x) =
1

1 + exp⁡ α0 + αTx 
#(3)  

and 
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P(y = −1 ∣ x) = 1 − P(y = +1 ∣ x) =
exp⁡ α0 + αTx 

1 + exp⁡ α0 + αTx 
#(4)  

Here, x ∈ Rn  represents the feature vector, P(y = +1 ∣ x) denotes the probability of classifying x as a 
creditworthy borrower, P(y = −1 ∣ x) stands for the probability of classifying x as a non-creditworthy 
borrower, and the model parameters,  α0 ,α , are estimated through techniques like maximum likelihood 
estimation on the training dataset, as detailed in [13]. 
After estimating the model parameters, the decision pertaining to an input feature vector x is made in 
favor of y = +1 if P(y = +1 ∣ x) ≥ P(y = −1 ∣ x), which is equivalent to the following decision rule [14] : 

y =  +1  for 1 ≥ exp⁡ α0 + αTx 

−1  otherwise 
 #(5)  

However, LR does have its limitations. It is particularly effective for linearly separable problems but may 
struggle when faced with non-linear complexities or interactive effects of explanatory variables [15]. 
Despite these shortcomings, LR remains a prevalent choice due to its ease of use and satisfactory 
predictive accuracy. Unlike other methods, it is highly interpretable, allowing for human-readable 
insights, and it is widely adopted for its simplicity and practicality. 
 
 

 
Fig 3. Logistic Regression. Source: Created by authors 

 
C. Naive Bayes 
The Bayesian classification algorithm, rooted in Bayesian theorem, is a statistical method for probabilistic 
classification that make effective use of Bayes' theorem, incorporating the "naive" assumption of 
conditional independence between all pairs of features given the class variable [16]. This approach 
facilitates the classification of data by establishing a probabilistic model rooted in the structure of 
Bayesian networks, which elucidate the conditional dependence relationships among a series of random 
variables, while adhering to Bayes' theorem. 
One of the notable features of Naive Bayes is its applicability to both continuous and categorical data, 
making it a versatile tool for classification tasks [17]. During the learning process, Naive Bayes constructs 
a decision tree from training samples, which are labeled with their respective classes. In this model, 
"observations" are characterized as "conjunctions of features," while "corresponding target values" are 
represented as "leaf nodes." Notably, Naive Bayes with standard entropy criteria is employed to 
categorize continuous attributes as categorical, differing from a traditional approach where only a single 
class is considered [12]. 
Naive Bayesian classification, among the simplest and most widely used Bayesian classifiers as stated in 
[16], offers a straightforward approach to construct a probability model for estimating the posterior 
probability, P(y ∣ x), with the goal of classifying testing samples, denoted as x. It is termed "naïve" because 
the Bayesian classifier rests on the most basic and simplistic assumptions: that the features of samples 
are independent. This assumption, is mathematically expressed as 

P Ck ∣ x =
P x ∣ Ck ⋅ P Ck 

P(x)
#(6)  

D. Linear Programming 
As described in [18], one of the advantages of utilizing Linear Programming (LP) methods in credit 
scoring is their adaptability in incorporating domain expertise or pre-existing biases by introducing 
supplementary constraints. A very popular formulation goes as follows [19]: 

min
w,g

   

N

i=1

 ξ2

 subject to wTxi ≥ c − ξ yi = +1

wTxi ≤ c + ξ yi = −1

ξ ≥ 0, i = 1,… , N

#(7)  
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whereby 𝐧 represents the vector of xi  values. In the first set of inequalities, an effort is made to 
distinguish positive cases, and in the second set, negative cases, by assigning them a score denoted as 
wTxi  that surpasses or falls below a predefined threshold value, such as c = 1. To address potential 
misclassifications, positive slack variables xi  are introduced. The primary aim is to minimize the count of 
misclassifications by reducing the total sum of these slack variables xi  [18]. It is worth noting that 
variations of this approach have been proposed in existing literature. For instance, Glen's work [20] 
introduced a mixed-integer programming method for classification. A notable advantage of applying 
Linear Programming (LP) techniques in credit scoring is their versatility in accommodating domain-
specific knowledge or a priori biases through the inclusion of extra constraints [19]. 

 

 
Fig 4. Linear Programming [21]. 

 
E. Decision Trees 
Decision Trees (DT) are tree-structured classifiers widely used for classification and regression tasks 
[11], a classification method that constructs decision rules from historical data, forming tree-like 
structures. The primary objective is to establish a set of if-then logical conditions for predictive or 
classification purposes [9]. They are built fast and are easy to interpret [22] and their computational 
complexity is low [16]. 
They employ "if" statement-like branches to split datasets based on their ability to classify data 
accurately. The tree comprises internal nodes, branches, and leaf nodes, representing dataset features, 
decision rules, and outcomes or classes, respectively. At each node, the classifier selects the feature that 
best separates the data into classes, akin to an "if" statement. To prevent overfitting, tree depth is 
typically limited [23]. Decision trees offer a powerful and interpretable supervised learning approach, 
with each internal node corresponding to an input attribute and each leaf node assigned a class or 
probability distribution [11]. 
Three commonly employed tree algorithms are the chisquare automatic interaction detector CHAID, 
classification and regression tree CART, and C5, which vary based on the tree construction criterion. 
CART employs the Gini index as the splitting criterion, while C3, C4, C5 use entropy, and CHAID relies on 
the chi-square test for tree construction, as discussed in [9]. Among these, C4.5 stands out as one of the 
most popular, as noted in [16]. It is defined as: 

E(S) = −  

c

i=1

 pi log2⁡pi#(8)  

Where E(S) represents the entropy of a set S, c is the number of classes in the dataset and pi  is the 
proportion of instances in class i within set S. 

Gain(S, A) = E(S) −   

v∈V

 
 Sv 

|S|
E Sv #(9)  

Where Gain(S, A) is the gain achieved by splitting set S using attribute A, E(S) is the entropy of set S, Sv  is a 
subset of S for each value v of attribute A and |S| is the total number of instances in set S. 

GainRatio(S, A) =
Gain(S, A)

SplitInformation(S, A)
#(10)  

Here, GainRatio(S, A) represents the gain ratio for attribute A on set S, Gain(S, A) denotes the gain 
resulting from splitting set S using attribute A, and SplitInformation(S, A) quantifies the potential 
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information generated by the split involving attribute A. In the context of 𝐂𝟒. 𝟓, it prioritizes splits with 
the highest Gain-Ratio, subject to the condition that the information gain must be at least as significant as 
the average gain observed across all examined splits, as outlined in [18]. 
 
 

 
Fig 5. Simple Decision Tree. Source: Created by authors 

 
F. Support Vector Machines 
The Support Vector Machine (SVM) is a statistical classification approach that aims to identify an optimal 
hyperplane for separating binary classified data, with the objective of minimizing the margin between the 
hyperplane and the classes. In SVM construction, a hyperplane or a set of hyperplanes can be employed 
for various tasks, including classification and regression, especially in high-dimensional or infinite 
dimensional scenarios, as discussed in [16], [13], [24], [9], and [11]. 
For a given training set comprising l sample points, denoted as  1, x1, y1 ,  2, x2 , y2 , … ,  l, xl , yl , where xi  
represents an input vector with m-dimensional features, and yi ∈ −1,1 is the corresponding class label, 
SVM seeks a classification mapping y(x) = sgn(w ⋅ x + b) by solving a quadratic programming problem: 

minimize
1

2
wTw+ C  

l

i=1

 ξ
i
2

 such that yi fw
Txi + b ≥ 1 − ξ

i
, i = 1,2, … , l

ξ
i
≥ 0, i = 1,2, … , l

#(11)  

The parameter pair (w, b) comprises the weight vector and the bias term, while non-negative variables ξ
i
 

are introduced to account for cases where data points are not linearly separable, as indicated in [24]. 
However, conventional SVMs still exhibit several limitations, including high computational complexity, 
sensitivity to outliers, and interpretability challenges. The standard SVM model assumes that all features 
contribute equally to the final classification, which does not align with the reality that different features 
have varying impacts on data classification, as discussed in [24]. 
 

 
Fig 6. SVM representation in two dimensions. 

Source: [25] 
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G. K-Nearest Neighbors 
K-Nearest Neighbor (KNN) classifier calculates the similarity between the new data and its neighboring k 
data points [23]. It is a versatile and widely applied supervised machine learning technique capable of 
resolving both classification and regression tasks. This method operates on the principle of learning by 
analogy, searching for the K-nearest data points to an unknown sample within the pattern space based on 
a specified distance metric, typically Euclidean distance. Subsequently, the majority class among these K-
neighbors determines the class of the unknown data point. KNN is celebrated for its simplicity, theoretical 
transparency, and nonparametric nature, making it suitable for scenarios with categorical variables, 
though numerical variables are often normalized to eliminate scale disparities [11]. 
KNN classifier’s function memory-based, demanding no model establishment before classification. One of 
the primary advantages of KNN is its capacity to operate without the need for a pre-defined predictive 
model. However, it does not provide a straightforward classification probability formula. The predictive 
accuracy of KNN is notably influenced by the choice of distance metric and the cardinality of the 
neighborhood, K, which affects the accuracy of majority voting [26]. Despite these considerations, KNN 
remains a widely employed technique in various domains, from genetics to recommendation systems, 
owing to its adaptability and straightforward implementation. 
 
H. Artificial Neural Networks 
An Artificial Neural Network (ANN) is inspired by biological neural networks in animal brains except that 
the information-processing units in a neural network are artificial [19] [27] [28]. These artificial neurons 
are connected through edges, similar to synapses in biological brains, enabling the transmission of signals 
between them. An artificial neuron receives incoming signals, processes them, and can, in turn, send 
signals to connected neurons. These signals are represented as reals, and each neuronal output is 
determined through a nonlinear function applied to the sum of its inputs. Neurons and edges possess 
weights that are adjusted as the network learns, affecting the strength of signal transmission. 
Additionally, neurons may have a threshold, ensuring a signal is only sent if the cumulative signal 
surpasses this threshold. 
In typical neural networks, neurons are organized into layers, each potentially performing unique 
transformations on their inputs. Signals originate from the input layer, traverse through intermediary 
layers, and ultimately reach the output layer, potentially undergoing multiple iterations through the 
layers. The network's design allows for complex data transformations and learning patterns through the 
adjustment of weights and signal thresholds. The application of ANN in credit scoring was first introduced 
by [29]. 
For a given input feature vector 𝐱, a three-layer ANN computes the output y  according to: 

y = a2 a1 α(1)𝐱 + α0
(1)

 α(2) + α0
(2)

 #(12)  

where α0
(1)
,α(1),α0

(2)
,α(2) are weights, and a1, a2 are activation functions between the input and hidden 

layer, and between the hidden layer and the output layer, respectively. The parameters are learned 
through a training set. The ANN makes the final decision by applying a decision function, such as Soft-
Max, to y  [13]. One needs to be careful about Neural networks with too many weights will overfit the data 
at the global minimum of the error and generalization will not be good [15]. 
An overall approach of this type of model is shown in Fig. 7. The model consists of several input values 
connected to hidden nodes through weighing factors. The hidden nodes sum the input values using 
weighing factors that are determined during the training step. The weighing factors imitate the strength 
of the neural connections. Each hidden node can be biased by an activating signal such that it produces an 
output only if the sum of the input signals exceeds a pre-set threshold condition. 

 

 
Fig 7. Structure of an ANN. Source: [30] 
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I. Ensemble Methods 
The process of merging predictions from multiple classifiers to create a single, more accurate classifier is 
referred to as ensemble learning. Both theoretical analyses and practical experiments have demonstrated 
that a well-constructed ensemble outperforms individual classifiers. This is primarily because ensembles 
effectively leverage the diversity of errors exhibited by individual classifiers across different regions of 
the input space. In a manner akin to human decision-making, where we consider and weigh various 
opinions before arriving at a decision, ensembles harness the strengths of multiple classifiers to enhance 
predictive accuracy [31] [32]. Common ensemble types include the Bayes optimal classifier, Bootstrap 
aggregating (bagging) [33], Boosting [34], Stacking, Voting, each with its own unique characteristics and 
applications. To mitigate the risk of overfitting, diversity is introduced into the process through 
randomness. This diversity is achieved in two main ways. Firstly, each decision tree is created using 
a process called "bootstrapping," which involves presenting each tree with a random sample of the 
training set. Secondly, additional randomness is introduced by randomly selecting which inputs each tree 
considers during training, especially at the stage of partitioning. The essential aspect of this approach lies 
in the differences among the resulting decision trees and their collective performance as individual base 
models. This diversity, introduced by bootstrapping and random input selection, plays a crucial role in the 
ensemble's effectiveness [35]. 

 

 
Fig 8. Flowchart of Parallel and Sequential ensemble [16]. 

 
1. Bagging 
This approach is commonly referred to as Bootstrap AGGregatING. Bagging involves generating M 
samples, denoted as S1, … , Sm , which are randomly selected from the original training set with 
replacement. Each sample Si , where 1 ≤ i ≤ M, matches the size of the original set. Consequently, within 
each sample Si , some instances may appear more than once, while others may not appear at all. A distinct 
classifier Ci  is trained using each sample Si , for all i = 1, … ,M. As each classifier is constructed from a 
different training set, the learners often exhibit variability. To classify an instance, the predictions 
generated by the classifiers are combined through a majority voting mechanism, as discussed in [36]. 
As demonstrated in [33], Bagging proves to be effective when applied to "unstable learning algorithms," 
where minor alterations in the training set lead to significant fluctuations in predictions. 
2. Random Forest 
A Random Forest (RF) is an ensemble of decision trees for classification and regression, incorporating 
randomness to select the best feature subsets rather than making arbitrary choices. The Random Forest 
classifier constructs multiple trees using a randomization technique.It gathers decision trees through 
random data selection and determines classification based on majority votes, effectively reducing 
overfitting and enhancing overall accuracy. 
To make an overall classification, RF employs a majority vote based on the decision trees' outputs [13]. 
The RF method, proposed by [37], involves multiple decision trees generated through bagging and 
random-subspace methods. Each decision tree contributes a vote to predict the test set, and the majority 
voting strategy combines the results. RF offers various benefits, including the ability to handle high-
dimensional data, maintaining some interpretability through feature importance analysis, and low 
computational cost. It can be adapted to parallel computing, making it a valuable ensemble method [38]. 
 

http://technique.it/
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Fig 9. Random Forest Approach. Source: Created by authors 

 
RF outperforms Decision Trees by employing an ensemble of decision trees through majority voting, 
which enhances its predictive accuracy while simultaneously mitigating the issue of overfitting [12]. RF 
constructs this ensemble using the bagging method and decision trees as base classifiers. This approach 
bolsters robustness by altering data samples and randomly selecting input features, enabling it to deliver 
a collective decision based on votes from the ensemble of classifiers [12]. Furthermore, RF excels when 
dealing with high-dimensional data, thanks to its ability to operate on data subsets. It boasts faster 
training than Decision Trees, focusing on a subset of features [23]. The effectiveness of Random Forest 
depends on the strength and interdependence of each classifier, with each tree contributing to the final 
prediction based on dataset-specific characteristics [11]. 
3. Boosting 
Boosting is a machine learning technique that iteratively trains models, giving greater emphasis to data 
points that were misclassified by earlier models. It operates by sequentially constructing multiple models 
and adjusting the weights of data instances. The process initiates with a less robust model, frequently a 
shallow decision tree, and subsequently constructs an improved model that rectifies the mistakes of the 
preceding model. Instances inaccurately categorized by the prior model receive heightened emphasis in 
the subsequent stages. Initially, all data points are assigned equal weight D1 and used to create a base 
model M1. Data points that M1 misclassifies are then assigned higher weights, creating a boosted dataset 
D2, which is used to train a second base model M2, and so on. Inferences are made by combining the 
predictions through a voting process. A widely used boosting technique is Adaptive Boosting (Ada-boost). 
a. AdaBoost: Adaptive Boosting (AdaBoost), a widelyused variant of the Boosting algorithm, was 
introduced by Freund and Schapire [34]. AdaBoost, particularly known for its use of the exponential loss 
function and forward stage-wise additive modeling, leads to significant performance improvements for 
several reasons [16]. 
Firstly, AdaBoost effectively reduces the misclassification rate of the final classifier by combining multiple 
base classifiers, even if individual base classifiers exhibit high misclassification rates. Secondly, the 
ensemble generated by AdaBoost maintains a substantially lower variance compared to that of weak base 
learners. Despite these advantages, AdaBoost may sometimes fail to enhance the base inducer's 
performance, and this is typically attributed to overfitting [32]. 
To counter overfitting, it is crucial to select weak classifiers that maximize the diversity within the 
ensemble. If two weak learners produce highly similar outputs, it can be beneficial to remove one of them 
and increase the weight of the remaining weak learner [39]. 
In this context, the problem involves a collection of m labeled training examples, represented as 
 x1, y1 , … ,  xm , ym , with the xi  belonging to a specific domain X, and the labels yi  taking values in the set 
{−1,1}. For each iteration within the range of t = 1,2, … , T, a distribution Dt  is established over the m 
training examples. Subsequently, a given weak learner or weak learning algorithm is employed to 
determine a weak hypothesis ht: X → {−1,1}. The primary goal of the weak learner is to identify a weak 
hypothesis with a low weighted error ϵt  concerning Dt ," as elucidated in [40]. 
The final or combined hypothesis H calculates the sign of a weighted combination of weak hypotheses, 
given by: 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 867                                                             Pradnya Patil et al 858-870 

F(x) =   

T

t=1

αtht(x) 

This can be equivalently expressed as asserting that H is computed as a weighted majority vote among 
the weak hypotheses ht , with each hypothesis being assigned a weight αt . 
An advantageous characteristic of AdaBoost is its capacity to detect outliers, which are examples that may 
either be mislabeled in the training data or inherently ambiguous and challenging to categorize, as noted 
in [34]. 

 

 
Fig 10. AdaBoost Sequential Model Execution 

 
b. XGBoost: XGBoost [41], an abbreviation for "extreme gradient boosting," is widely recognized for its 
exceptional processing speed and performance [13]. While it shares similarities with gradient boosting, 
XGBoost distinguishes itself by constructing decision trees in parallel, as opposed to the sequential 
construction of trees [42]. It employs gradient descent to iteratively enhance the performance of weak 
treebased learners, amalgamating numerous decision tree models into a highly effective composite model 
[23]. A key advantage of XGBoost lies in its ability to perform parallel computations on a single machine, 
rendering it a favorable choice for constructing accurate models on extensive datasets without 
necessitating access to extensive computational resources. In comparison to Gradient Boosting, XGBoost 
excels in both performance and speed, achieving this optimization through distributed implementation 
that focuses on an objective function encompassing a loss function and regularization term [38]. 
 

 
Fig 11. XGBoost Sequential Model Execution. 

Source: Authors 
 
3. Comparative Analysis and Proposed Methodology 
A. Empirical Design 
In order to perform a fair evaluation of the effectiveness of five distinct algorithms, specifically Logistic 
Regression, Support Vector Machine (SVM), Naive Bayes, Random Forest, and XGBoost, the complete 
experiment was implemented using Python 3.6 on Google Colab with a T4 GPU on a Windows-based 
system. 
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Datasets Used:Credit datasets from both Australia and Germany, which are frequently encountered in the 
field of credit scoring research and are readily accessible from the UC Irvine (UCI) Machine Learning 
Repository. 
Implementation: Commonly used Python libraries, such as XGBClassifier for XGBoost, and scikit-learn 
(sklearn) for all other algorithms, were employed in the study. In the subsequent phase, the model 
development endeavor took center stage. We embarked on an exploration of various machine learning 
algorithms to uncover their predictive potential. Logistic Regression, a model well-suited for binary 
classification tasks, was harnessed to kick off our analysis. An in-depth investigation into its parameters 
and fine-tuning enabled us to attain an accuracy rate of 86.67%, signifying its efficacy in the context of 
this problem. Parallelly, the KNN algorithm 
 

Table 1: Results for Australian Dataset 
Models/Indicator Accuracy Precision Recall F1-Score 
Logistic 0.8623 0.8076 0.8235 0.8155 
SVM 0.8406 0.7377 0.8823 0.8036 
Naive Bayes 0.8261 0.8649 0.6275 0.7273 
RF 0.8768 0.84 0.8235 0.8317 
XGBoost 0.8551 0.8039 0.8039 0.8039 

 
Table 2: Results for German Dataset 

Models/Indicator Accuracy Precision Recall F1-Score 
Logistic 0.775 0.6458 0.5254 0.5794 
SVM 0.77 0.6066 0.6271 0.6167 
Naive Bayes 0.735 0.5385 0.7119 0.6131 
RF 0.775 0.7692 0.339 0.4706 
XGBoost 0.805 0.7174 0.5593 0.6286 

 
was enlisted, with a keen focus on identifying the optimal value of ' K,' representing the number of 
neighbors considered for classification. This meticulous approach led to an accuracy rate of 84.44%, 
further bolstering this study’s repository of predictive tools. SVM, a robust classifier, entered the fray, 
flexing its classification muscles with an accuracy of 84.44%. The kernel choice, an RBF kernel, played a 
pivotal role in shaping the model's performance. Naive Bayes, both Categorical and Gaussian variations, 
were subjected to scrutiny. Categorical Naive Bayes emerged as a robust performer with an accuracy of 
84.44%, while Gaussian Naive Bayes exhibited reasonable predictive power with a 71.11% accuracy. 
A decision tree model, dynamically optimized for maximum leaf nodes, yielded a commendable accuracy 
of 84.44%. Simultaneously, RF, a collection of decision trees, displayed its prowess, attaining an accuracy 
of 86.67%. The iterative manipulation of leaf nodes and the incorporation of 1000 estimators were key 
contributors to its success. Lastly, Gradient Boosting, a boosted ensemble technique, was unveiled. 
Leveraging Randomized Search optimization, the model reached an accuracy of 77.78%. This panorama 
of machine learning models, with their respective accuracies, offered a comprehensive view of the 
landscape, providing valuable insights for prospective model selection. In the denouement of this phase, a 
meticulous comparison of these models unveiled Logistic Regression and RF as front-runners, each 
clocking an accuracy of 86.67%. These findings underscore the pivotal role of judicious data 
preprocessing and algorithmic selection in the realm of loan approval prediction. 
Four comprehensive evaluation model indicators were used to evaluate the model performance, namely 
Accuracy, Precision, Recall, F1 Score. They are summarized in I and II 
 
4. CONCLUSION 
In conclusion, the comparative analysis of five credit scoring models on both the Australian and German 
datasets has provided valuable insights into their performance. On the 
Australian dataset, the Random Forest model exhibited the highest accuracy ( 88% ), while Naive Bayes 
showed the best precision ( 86% ) and F1 score ( 83% ). Support Vector Machine displayed the highest 
recall ( 88% ). However, on the German dataset, XGBoost stood out with the highest accuracy ( 80.5% ), 
while Random Forest achieved the best precision (76.9%) and F1 score (62.8%). Support Vector Machine 
demonstrated the highest recall (62.7%). These findings underscore the variations in performance 
specific to each model when applied to diverse datasets, underscoring the significance of meticulously 
choosing the right model for credit scoring applications, taking into account the unique characteristics of 
the dataset and the preferred evaluation metrics. Additionally, this research enhances comprehension of 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 869                                                             Pradnya Patil et al 858-870 

the pros and cons of different machine learning models within the realm of credit risk assessment, 
providing valuable insights for financial institutions and lending platforms to inform their decision-
making processes. 
 
5. Future Scope 
In the complex landscape of loan applications, ambiguity surrounding approval or rejection decisions 
breeds frustration and mistrust among applicants. To address this issue, this solution envisions a fusion 
of BigQuery, H2O Driverless AI, and PaLM from Google AI. BigQuery serves as the foundation, creating a 
robust repository for diverse loan denial data. H2O AI takes centre stage, utilizing algorithms like logistic 
regression and gradient boosting to meticulously analyse the dataset, predicting approvals and denials 
with remarkable precision. The key innovation lies in transparency, as H 2 O AI's Explainability feature 
unveils the inner workings of the model, providing crystal-clear explanations for application outcomes. 
Integrating seamlessly with BigQuery, this  system enables real-time predictions and explanations, 
empowering users with immediate insights. PaLM, the linguistic prodigy, refines explanations through 
natural language processing, identifying patterns and biases. This triad aims to revolutionize loan 
decisions, fostering trust, financial literacy, and a more equitable financial landscape. 
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