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ABSTRACT 
Water is the very essence and the most invaluable natural resource. Over the recent decades, the 
degradation of water quality has been notable, primarily attributed to pollution and various other 
challenges. This has created a pressing demand for a model capable of providing precise forecasts 
regarding water quality. This research paper introduces a novel methodology for water classification 
based on mineral content, leveraging the Particle Swarm Optimization-enhanced Back propagation 
Neural Network (PSOBPNN). The study focuses on accurately categorizing water samples into distinct 
classes by analyzing their mineral composition, aiming to contribute to the field of water quality 
assessment. The proposed PSOBPNN model is employed to effectively learn and discern patterns in the 
mineral composition of water samples. The integration of Particle Swarm Optimization with the Back 
propagation Neural Network enhances the model's optimization capabilities, facilitating accurate and 
efficient convergence to optimal solutions. The experimental results showcase the effectiveness of the 
PSOBPNN model in achieving a high level of accuracy in water classification based on mineral content. 
The study underscores the potential significance of this approach in environmental monitoring, 
emphasizing the importance of considering mineral composition as a key determinant of water quality. 
 
Keywords: Particle Swarm optimization, Back propagation, Neural Network, Mineral, Water quality 
  
1. INTRODUCTION  
Water, an indispensable resource upon which all life depends. The pollution of water degrades its quality, 
posing a threat to the well-being of marine organisms and consequently affecting humans who depend on 
them. Hence, it is imperative to monitor water quality diligently to safeguard the survival of aquatic life 
[1]. The availability of water holds a pivotal role in human existence and is currently recognized as a 
fundamental human entitlement. Goal 6 of the UN's 2015 SDGs, aiming for inclusive well-being, prioritizes 
ensuring everyone has safe drinking water[2]. Water quality pertains to the chemical, physical, and 
biological attributes of water, evaluated against established standards for its intended use [3][4]. 
Typically, it is gauged against a set of criteria to evaluate compliance, often achieved through water 
treatment. The prevalent standards for monitoring water quality serve as indicators of ecosystem health, 
safety for human interaction, the prevalence of water pollution, and the state of drinking water. The 
quality of water significantly influences water supply and frequently dictates the available supply 
alternatives [5]. 
Various water sources, such as rivers, streams, rain, and groundwater accessed through wells and 
boreholes, serve as crucial providers for both drinking and irrigation purposes. The characteristics of 
these water sources play a pivotal role in determining the composition of water samples gathered from 
them. Apart from natural influences, human activities like mining, crude oil extraction, and industrial 
discharges often introduce chemical pollutants into streams and rivers, altering the properties of the 
water. 
As these modified waters make their way into households or farms, they become integral to domestic 
activities, livestock hydration, and crop irrigation. Consumption of such contaminated water can lead to 
severe health repercussions, including fatal outcomes. Therefore, establishing a comprehensive 
monitoring process is essential to track the water quality from its origin to its final use. At each 
monitoring point along this journey, water samples must be collected and analyzed to evaluate their 
suitability for human and animal consumption, as well as for irrigation and various domestic or industrial 
applications. 
Water quality assessment is a critical aspect of environmental monitoring, as it directly influences the 
health of ecosystems and the well-being of human populations [6]. The increasing anthropogenic 
activities, urbanization, and industrialization have heightened concerns about water pollution and the 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                 805                                                                Pushparani S et al 804-818 

need for efficient methodologies to analyze and manage water quality[7]. In this context, the integration 
of advanced computational techniques with environmental science has emerged as a promising avenue 
for accurate and timely water quality monitoring. 
This research article explores the application of a novel methodology, combining Particle Swarm 
Optimization (PSO) and Neural Networks, to address the challenges in water quality analysis. The 
integration of PSO, a nature-inspired optimization algorithm, with a neural network model enhances the 
accuracy and efficiency of water quality prediction, providing a powerful tool for environmental 
researchers and policymakers. 
Traditional water quality monitoring methods often face limitations in terms of real-time data processing, 
adaptability to dynamic environmental changes, and the ability to handle complex datasets. The proposed 
PSO Neural Network approach aims to overcome these challenges by leveraging the optimization 
capabilities of PSO to enhance the training and fine-tuning processes of neural networks. This synergy 
offers a more robust and adaptive system for predicting water quality parameters, leading to improved 
decision-making in sustainable resource management. 
Throughout this article, we delve into the theoretical underpinnings of the PSO Neural Network model 
and showcase its application in real-world water quality datasets. We assess the model's performance 
against established benchmarks, highlighting its advantages in terms of accuracy, speed, and adaptability. 
Furthermore, we discuss the implications of our findings for water resource management, environmental 
policy, and the broader field of data-driven environmental science. 
The integration of PSO and Neural Networks represents a promising approach for advancing the field of 
water quality analysis. This research contributes to the ongoing efforts to develop innovative and 
effective tools for sustainable resource management, with the potential to positively impact both 
environmental conservation and human well-being. 
 
2. RELATED WORKS 
The prediction of river water quality has seen a great deal of recent investigation and use of machine 
learning technology [8]. When it comes to river water quality predictions, machine learning uses a wealth 
of historical data to create accurate prediction models that allow early warning systems. There are many 
benefits associated with this technique [9]. The main benefit of this is that it makes it possible to monitor 
and anticipate water quality in real-time and continuously, which improves the effectiveness and 
responsiveness of water quality management. Second, machine learning algorithms may learn and adapt 
on their own to complex relationships seen in water quality data, which can result in forecasts that are 
more accurate [10]. These models can also incorporate meteorological data and other environmental 
elements, improving the precision and dependability of water quality forecasts. 
Despite the benefits, machine learning systems encounter challenges and limitations in predicting river 
water quality. Factors like data quality and missing data can affect the performance of the model [11]. 
Additionally, the training process and parameter selection demand a certain level of expertise and 
experience. Moreover, the model's interpretability is insufficient, making it hard to comprehend the 
forecasted results. Consequently, further research and development efforts are necessary to enhance the 
effectiveness and reliability of machine learning in predicting river water quality. 
An information-theory-based technique used to assess the information's  and significance of 
characteristics is the entropy weighting method [12]. The purity and discriminability of these features 
can be evaluated by calculating their feature entropy values [13]. By combining the entropy weighting 
approach with the Pearson correlation coefficient, one can reduce dependence on a single feature 
selection criterion by taking into account both correlation and information content. By eliminating 
subjectivity and uncertainty, this integrated approach makes it easier to evaluate feature contribution 
and importance in greater detail. Finding a balance between many parameters makes it possible to 
choose features that have higher correlation and more information, which improves feature selection 
accuracy and stability. 
 

Table 1. Comparative evaluation of the classification methods employed in current studies 
Data size Method Accuracy (%) Reference 
370 ARIMA 74 18 
1912 PNN 82 20 
273 SVR 77 27 
896 ANFIS 81 28 

 
Both the entropy weighting method and the Pearson correlation coefficient are very simple and obvious 
procedures that are easy to understand [14]. When they are used in machine learning feature selection, 
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the results are more practical and easy to understand. This integration helps decision-makers understand 
the significance and contribution of features by improving the transparency and dependability of the 
feature-selection process. It enhances the interpretability and efficiency of the model at the same time 
[15].Top of Form 
Human activity in urban areas is a major culprit behind polluted water, with municipal and industrial 
wastewater being the main offenders [16]. This has led to a surge in research on using machine learning 
to predict and analyze surface water quality [17, 18]. As a result, various methods have been developed. 
Researchers are actively working to fine-tune these models and enhance their accuracy. 
Several researchers have investigated machine learning techniques for predicting water quality. Yafra 
Khan and Chai Soo See developed a model that combines Artificial Neural Networks with time series 
analysis, assessing its performance using metrics such as Mean Squared Error (MSE), Root Mean Squared 
Error (RMSE), and Regression Analysis [19]. Dao Nguyen Khoi et al. utilized 12 different machine learning 
models and evaluated them using metrics like R-squared (R2) and RMSE [20]. Umair Ahmed et al. 
employed supervised learning to estimate the Water Quality Index (WQI) [21]. Saber Kouadri et al. 
compared eight AI algorithms for WQI prediction, evaluating them with metrics such as R-squared (R), 
Mean Absolute Error (MAE), RMSE, Relative Absolute Error (RAE), and Relative Root Mean Squared Error 
(RRSE) [22]. Additionally, Jitha Nair and Vijaya MS explored various prediction models based on machine 
learning and big data techniques using sensor networks [23]. The application of machine learning in 
surface water quality research has garnered significant attention [28, 29]. Various methods have been 
devised for predicting and analyzing surface water quality. Considerable efforts have been devoted to 
refining machine learning models and improving their predictive accuracy. 
Previous research on water quality prediction utilized various machine learning models such as XGBoost, 
Random Forest, Decision Tree, AdaBoost, and SVC. Among these, XGBoost achieved the best performance 
with an accuracy of 83%.[24] 
 

Table 2. Data description 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. ARTIFICIAL NEURAL NETWORKS (ANNs): 
Artificial Neural Networks (ANNs) are one of the bio inspired computational models inspired by the 
structure and functioning of the neurons in the human brain. It is a mathematical model composed of 
interconnected nodes, called neurons or perceptrons, organized into layers. ANNs are capable of learning 
from data to approximate complex functions and make predictions or classifications. They are widely 
used in machine learning for tasks such as pattern recognition, classification, regression, and 
optimization. 
 

S.No Parameters Acceptable Limits 
1 aluminium 2.8 
2 ammonia 32.5 
3 arsenic 0.01 
4 barium 2 
5 cadmium 0.005 
6 chloramines 4 
7 chromium 0.1 
8 copper 1.3 
9 fluoride 1.5 
10 bacteria 0 
11 viruses 0 
12 lead 0.015 
13 nitrates 10 
14 nitrites 1 
15 mercury 0.002 
16 perchlorate 56 
17 radium 5 
18 selenium 0.5 
19 silver 0.1 
20 uranium 0.3 
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Figure 1. Artificial Neuron 

 
Neurons are the basic computational units in ANNs. Each neuron receives input signals, processes them 
using a defined activation function, and produces an output signal. In a typical ANN, neurons are 
organized into layers: input, hidden, and output layers. 
ANNs have three major types of layers: Input Layer: This layer gets the first input data. The number of 
neurons in this layer corresponds to the number of inputs. Hidden Layer(s): These layers process and 
transform input via weighted connections between neurons. The formula(1) defines the number of 
neurons in this layer.  
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In this equation, ηk represents the threshold for the output layer, while θj denotes the threshold of the 
hidden layer. The connection weight from the input layer to the hidden layer is denoted as Wij, and the 
connection weight from the hidden layer to the output layer is represented by Vjk. The activation function 
f0 corresponds to the Sigmoid function used in the hidden layer, while f1 refers to the linear function used 
in the output layer. 
Output Layer: This layer generates the final output or forecast. The number of neurons in this layer is 
determined by the no of categories in the data set. Figure 1 [27] depicts a visual representation of the 
applied Back Propagation Network. 
Connections between neurons in adjacent layers are established via weights, which dictate the 
connections' potency and are fine-tuned throughout the learning phase. Learning entails modifying these 
weights according to the network's performance on training data. The activation function governs a 
neuron's output by processing its weighted inputs. Typical activation functions comprise sigmoid, 
hyperbolic tangent (tanh), and rectified linear unit (ReLU). The selection of activation function impacts 
the network's capacity to grasp intricate relationships. 
Artificial Neural Networks (ANNs) acquire knowledge from data using a technique known as 
backpropagation. This iterative process aims to minimize the disparity between the predicted output and 
the desired target values by adjusting the network's weights. Within an ANN, each neuron is fed input 
signals (x1, x2, ..., xn), each multiplied by a respective weight (w1, w2, ..., wn). The resulting weighted sum of 
inputs undergoes processing through an activation function, represented as 'a' (e.g., sigmoid, tanh, ReLU). 
Mathematically, the output y of a neuron is calculated as  

                           ).(
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bxway i
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i i   
                                                             (2) 

where b is the bias term. 
In a feed forward neural network, the output from one layer acts as the input to the next layer. This 
progression through the network can be represented mathematically using matrix multiplication. Let X 
denote the input vector, W represent the weight matrix, b indicate the bias vector, and A signify the 
output after applying the activation function. The feedforward process for a layer is described by the 
equation: 

 A = a(W⋅X+b)                                                                             (3) 
This operation is iterated for every layer within the network, where the output from one layer becomes 
the input for the subsequent layer. 
The final layer in the network produces the output. For a classification task, the output is often passed 
through a soft max function to convert the raw scores into probabilities. 
Let Z be the output of the final layer before the softmax, and Y be the final output. The softmax function is 
defined as:  
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where zi is the input to the softmax function corresponding to class i, and K is the total number of classes. 
The function computes the probability distribution over multiple classes, ensuring that the output values 
are non-negative and sum up to 1. 

A loss function measures the difference between the projected output and the actual target. Mean 
squared error and cross-entropy are two common loss functions for regression and classification 
applications, respectively. 
In a classification problem, the cross-entropy loss between predicted probability  distribution Y and true 
distribution T is defined as:    

              i ii YTTYL )log(.),(                                                                     (5)  

Backpropagation is the algorithm utilized to adjust the weights of the network to minimize the loss. It 
computes the gradients of the loss concerning the weights using the chain rule of calculus, which are then 
utilized to update the weights through optimization algorithms such as gradient descent. 
The weight update for a given weight w is typically performed as:  
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  Where α is the learning rate. 
 
4. Particle Swarm Optimization (PSO) 
Particle Swarm Optimization (PSO) is a meta-heuristic algorithm widely utilized for addressing discrete, 
continuous, and combinatorial optimization challenges. It was initially introduced by Kennedy and 
Eberhart in 2001 [25], drawing inspiration from the flight patterns of bird flocks. In the context of PSO, an 
individual solution is termed a particle, while the aggregation of all solutions is known as a swarm. The 
core concept underlying PSO is that each particle possesses knowledge of its current velocity, its own best 

solution achieved in the past (pBest(
n

tx


)), and the global best solution currently observed by the entire 

swarm (gBest(
n

tg


)). During each iteration, every particle adjusts its velocity to steer closer to both its 

pBest and gBest [26]. The velocity of each particle, denoted as v, is adapted according to the following 
equation: 
 that its new position is closer to both its pBest and gBest.[26]. Each particle's velocity, v, is adjusted in 
accordance with the subsequent equation: 
                                  (7) 
In the given equation, v  represents the particle's velocity, x denotes its current position, w is a constant 
known as momentum that regulates the influence of the velocity from the previous time step on the 

current velocity, 1 and 2  are predefined 

constants, and r1 and r2 are random numbers 
in the range [0, 1]. Subsequently, the position of the ith particle is updated as follows 
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PSO is a stochastic optimization algorithm in which a group of particles collectively explores the solution 
space by adjusting their positions and velocities. This adjustment is guided by the best positions 
discovered by each particle individually, as well as those found by their neighboring particles. Through 
this swarm-based approach, PSO efficiently traverses complex solution spaces in pursuit of optimal 
solutions 
The Particle Swarm Optimization (PSO) algorithm, when integrated with a neural network, serves the 
purpose of optimizing the weights within the neural network architecture. This optimization process 
aims to enhance the neural network's capability to predict water quality accurately, utilizing provided 
data. 

 
5. METHODOLOGY 
Figure 2 illustrates the complete workflow of the proposed system, detailing the steps from gathering 
data to the training and testing stages, incorporating custom models as well as others. The dataset was 
split into training and testing sets to aid in the development and assessment of models. 
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Water has been classified using a number of cutting-edge classification models in recent years, mostly 
using statistical techniques. In order to classify water quality from CSV datasets, this study includes five 
pre-trained models and a unique PSO Neural Network model. This model includes nature inspired 
Particle Swarm Optimization for optimize the weight and bias of an Back propagation Artificial Neural 
Network to improve the accuracy of the classifier 

 
Figure 2.  Analysis Model 

 
6. PSOBPANN Model 
The proposed PSOBPANN model consists of three layers with softmax as the activation function. PSO is 
employed to optimize the weights and biases of a back propagation neural network because of its 
stochastic nature, which helps prevent premature convergence to suboptimal solutions. The random 
movements of particles enable the algorithm to escape local optima and explore a broader solution space. 
A particle in the PSO-BP algorithm is represented by a set of parameters, specifically the weights (W) and 
biases (B) of the neural network. Let xi  represent the position of particle i, where 

                  xi = [wi1,wi2,...,wij,bi1,bi2,...,bik].                                                   (9) 
Here the neural network consists of an input layer, a single hidden layer, and an output layer. Let X be the 
input data, H be the hidden layer output, and Y be the network output. 
A sigmoid activation function is applied to the output of each neuron in the output layer: 
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The hidden layer output (H) and the network output (Y) are calculated using the current particle's 
position (xi) as 
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where σ is the sigmoid activation function. 
The objective function to be minimized is the error function of the neural network is  
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The gradients of the objective function with respect to the weights(W) and biases(B) are computed using 
back propagation. Update the weights and biases are updated using gradient descent algorithm:  
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where η is the learning rate. 
particle positions are updated using the PSO equations (7) and (8) 
After updating the particle position,  the sigmoid activation function is applied to the hidden layer output 
again as 

).( hihi BWXH                                                                        (18) 

the fitness of the particle is evaluated using the updated position and the error function by 
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personal best positions( pi) and global best position (pg) are updated based on the current fitness. 
PSO is used to find the optimal weights for a neural network that can effectively predict water quality 
based on the given data. The PSO algorithm guides the search for the best set of weights in the solution 
space, and the neural network's performance is continuously improved throughout the iterations. The 
final trained neural network, with the optimized weights, is then evaluated on new data. 
 
7. RESULTS AND DISCUSSION 
This section provides a comprehensive examination of the dataset, experimental procedures, model 
training, and validation processes. Additionally, it presents a thorough performance comparison between 
the proposed technique and previous approaches 
a. Experimental Setup. 
The implementation of the proposed work was carried out in Google Colab notebooks, a cloud computing 
environment. Google Colab provides access to a free tensor processing unit (TPU) and graphics 
processing unit (GPU) for the development of neural learning models. The custom PSOBPNN was coded 
using the Python programming language. 
b. Data set 
This approach utilized data sourced from Kaggle's Water Quality Dataset, encompassing various metrics 
such as aluminium, ammonia, arsenic, barium, cadmium, chloramines, chromium, copper, fluoride, 
bacteria, viruses, lead, nitrates, nitrites, mercury, perchlorate, radium, selenium, silver, and uranium. The 
dataset comprises 7996 data points, with 7084 falling under the 'not safe' category and 912 classified as 
'safe'. Sample feature descriptions are outlined in Table 2, while Table 3 illustrates sample data. 
 

Table 3. Partial sample data 

lead nitrates nitrites mercury perchlorate radium selenium silver uranium is_safe 

0.054 16.08 1.13 0.007 37.75 6.78 0.08 0.34 0.02 1 

0.1 2.01 1.93 0.003 32.26 3.21 0.08 0.27 0.05 1 

0.078 14.16 1.11 0.006 50.28 7.07 0.07 0.44 0.01 0 

0.016 1.41 1.29 0.004 9.12 1.72 0.02 0.45 0.05 1 

0.117 6.74 1.11 0.003 16.9 2.41 0.02 0.06 0.02 1 

0.135 9.75 1.89 0.006 27.17 5.42 0.08 0.19 0.02 1 

0.021 18.6 1.78 0.007 45.34 2.84 0.1 0.24 0.08 0 
 

c. Data preprocessing 
The missing values in the data set are handled by Imputation, a statistical technique used to replace 
missing values in a dataset with estimated values. There are various imputation methods, and one 
common approach is to replace missing values with the mean of the observed values in the variable. 
Here's an explanation of handling missing data by mean imputation: 

The mean X  of the observed values in the variable with missing data is calculated using. 

n

X
X

n

i i  1                                                                                          (20) 

Where Xi  is the observed value, and n is the number of observed values. Then the missing values were 
replaced with calculated mean of the observations. 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                 811                                                                Pushparani S et al 804-818 

Preprocessing involves performing statistical calculations on the attributes of a dataset. These 
calculations encompass metrics like mean, standard deviation, minimum, maximum, and quartiles, 
offering insights into the distribution and characteristics of the data shown in Table 4 
The analysis involved examining the correlation matrix of the dataset features, as illustrated in Figure 3. 
This matrix delves into the connections between various features, aiding in the identification of 
noteworthy associations or dependencies among the variables. 
 

Table 4: Statistical calculation of the features 
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Figure 3.Visualization of feature correlations 

 

d. Data splitting 
The imputed data is randomly divided into distinct subsets for training and testing. The training dataset 
comprises 80% of the overall dataset, while the testing dataset constitutes the remaining 20%. In the 
process of building a machine learning model, a connection is established between independent and 
dependent parameters to make predictions or select alternatives. Subsequently, the effectiveness of the 
machine learning technique is assessed using the test data to determine its performance. 

 
Table 5: Algorithm parameters 

Particle size 20 
No of iterations 100 
Swarm size 20 
C1 1.5 
C2 2.5 

No of neurons in input layer 20 
No of neurons in hidden layer 5 
Epochs for evaluation 1000 

 

e. Hyper parameter optimization 
Grid search was employed to optimize hyperparameters in this model, specifically focusing on adjusting 
the inertia weight within the PSO (Particle Swarm Optimization) algorithm. These hyperparameters 
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influence the behavior of the PSO algorithm and can have a significant impact on its convergence and 
exploration-exploitation trade-off. 

 

f. Performance metrics 
Evaluation metrics are pivotal in determining the efficacy of a trained model. The PSOBPNN model's 
effectiveness was assessed using several key metrics, including precision, accuracy, F1-score, recall, and 
the analysis of a confusion matrix. The accuracy during testing was computed by predicting outcomes 
using the trained model on a designated test set. The confusion matrix provided insights into the model's 
performance across various classes. Testing accuracy was obtained by evaluating the model's predictions 
on the test set, which was segregated during the dataset partitioning phase. Equations (21) to (24) 
encapsulate the mathematical formulations for these evaluation metrics. 

           DCBA

BA
Accuracy




                                                      (21) 

BA

A
ecision


Pr                                                                  (22) 

                     
DA

A
call


Re                                                                     (23)                                                                

              
callecision

callecision
ScoreF

RePr

Re*Pr*2
1


                                             (24)                                                              

A denotes instances correctly classified as the positive class, while B represents instances correctly 
classified as the negative class. C signifies instances incorrectly classified as the positive class, and D 
denotes instances incorrectly classified as the negative class. True Positives (A) arise when the model 
accurately predicts the positive class, while True Negatives (B) occur when the model accurately predicts 
the negative class. False Positives (C) occur when the model erroneously predicts the positive class as 
negative, and False Negatives (D) happen when the model incorrectly predicts the negative class as 
positive. 
 
i. water classification  
Traditionally, water quality assessment relies on time-consuming laboratory analysis to obtain water 
quality criteria. In our study, diverse machine learning method for estimating water quality, drawing 
insights from existing research that employed these approaches. The model's performance was assessed 
based on mineral content of water. The following algorithm is used for implementing the model for water 
classification based on mineral content 
Algorithm 1:  Particle Swarm Optimization (PSO) for Water Quality Classification 
{ 

 Load the dataset 
  Preprocess the dataset 

Split the dataset into training and testing sets 
 Set PSO parameters 

                          Initialize particles 
   Initialize global best position and score 
# PSO algorithm 

Initialize particles 
For each particle: 
    Initialize position and velocity randomly 
    Evaluate fitness of the particle (accuracy of the neural network with current weights) 
   Initialize global best position and score 
For each iteration: 
    For each particle: 
        Update particle's velocity and position 
        Train neural network with current particle's position 
        Evaluate fitness of the particle (accuracy of the neural network with current weights) 
        Update particle's best position and global best position 
End of PSO iterations 
   Train final neural network with the global best position 
   Evaluate the performance of the final model on the test set          
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   Train final neural network with the global best position 
    Evaluate the performance of the final model on the test set 
} 
In the aforementioned algorithm, the parameters detailed in table 5 are employed to regulate the 
behavior of the PSO algorithm. The number of iterations determines the total iterations the algorithm will 
execute before deeming the optimization complete. The swarm size dictates the quantity of particles 
utilized by the PSO algorithm. The parameter Cg plays a pivotal role in governing the speed at which 
particles in the swarm converge towards the global best particle. The number of input neurons is 
contingent upon the variables present in the dataset. 
 
j. Performance Analysis 
By using Particle swarm optimization for optimizing Back propagation neural network for water analysis 
improves the classification accuracy .The confusion matrix for this work is given in table 6. PSOBPNN 
classifies 1369 data sets as True positive, 162 as true negative, 31 data sets as false-positive and 38 data 
sets as false negative which is close to 95.60% classification accuracy. Comparison of results shown in 
Figure 4. 
The results obtained from experiments comparing the performance of PSOBPNN against Random Forest 
(RFT), Decision Tree, Support Vector Classifier, K Nearest Neighbor Classifier, and Feed forward Neural 
Network Classifier highlight the effectiveness of PSOBPNN. The PSOBPNN model demonstrated superior 
performance compared to other classification models, achieving high recall and precision values. The 
values are computed from corresponding confusion matrix in Table 6, by using the equations (21) to (24) 
 
k. Comparison with other methods for water classification 
Table 1 compares the results of the PSOBPNN model with the other methods assessed on other datasets 
in recent years. In Ref [8], Autoregressive integrated moving average (ARIMA) models is used can 
accommodate less number of data and gives the accuracy 74%. Khoi etal[20] achieved accuracy of 82% 
by using Bayesian based Probabilistic neural network for water quality prediction, Tang, et al[27] 
employed Support Vector Regression and produced the accuracy of 77%. Tung et al[28] used an adaptive 
neuro-fuzzy inference system that predicts with 81% accuracy. Overall, the PSOBPNN model achieved the 
highest accuracy (95.6%) and performed better than other methods. 
 
l. Comparison with existing methods 
To assess the effectiveness of PSOBPNN classifier, we compared the performance metrics of various 
classifiers such as Random Forest (RF), Decision Tree, Support Vector Classifier, K-Nearest Neighbor 
classifier, and feed forward neural network classifier. We generated confusion matrices and classification 
reports for each classifier. Table 6 displays the confusion matrices and Table 7  shows the classification 
report.  
On this particular data set, PSOBPNN classifies with higher accuracy as compare with other methods used 
with the same data set. Figure 5 shows the accuracy and loss curves for both the training and validation 
sets. The training loss curve starts off high and then decreases rapidly. This suggests that the model is 
quickly learning the training data. However, the training loss starts to increase again after about 10 
epochs. The validation loss curve starts off high and then decreases slowly. This suggests that the model is 
slowly learning the training data. The training accuracy curve starts off low and then increases 
rapidly. This suggests that the model is quickly learning to classify the training data correctly.  The 
validation accuracy curve starts off low and then increases slowly. This suggests that the model is slowly 
learning to classify the validation data correctly. 
 

Table 6. confusion matrices of models on the data set 
Model Confusion matrix 
RANDOM FOREST 
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KNN 

 
FFNN 

 
SVM 

 
PSOBPNN 

 
 

 
Figure 4: The comparative metric of all classifiers 

 
 



Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 

                                                                                 816                                                                Pushparani S et al 804-818 

Table 7.Comparison of PSOBPNN with other models on the dataset 
Model Recall Precision Accuracy (%) F1-score 
Random forest 96 89.42 88 92.5 

KNN 88.9 98.47 86.25 93.4 

FFNN 95.76 89.8 88.13 92.7 

SVM 92.65 93.2 88 93 

PSOBPNN 
 

97.29 89.4 95.6 93.2 

 
 

 
Figure 5. The learning process of the PSOBPNN model is visualized through curves depicting the epochs, 

model loss, and model accuracy 
 

CONCLUSION 
This work has demonstrated the effectiveness of the Particle Swarm Optimization-enhanced 
Backpropagation Neural Network (PSOBPNN) in accurately classifying water samples based on their 
mineral content. The achieved accuracy of 95% reflects the robustness and reliability of the proposed 
model in distinguishing between different water classifications. The integration of PSO optimization with 
the backpropagation neural network has proven to enhance the model's ability to converge to optimal 
solutions and improve overall classification performance. 
The findings of this research contribute to the growing body of knowledge on water quality assessment, 
offering a reliable and accurate method for classifying water samples based on heavy metal content. The 
potential societal impact of such a model in safeguarding water resources underscores the significance of 
continued exploration and refinement of advanced computational techniques for environmental 
monitoring. 
In this study, the dataset comprises information on mineral content in water, for the classification of 
water as either safe or not safe. However, it is important to note that the absence of additional detailed 
features, such as Biological Oxygen Demand (BOD) and pH levels, may limit the classifier's predictive 
accuracy. Including these additional features in the dataset has the potential to significantly enhance the 
model's performance by providing a more comprehensive understanding of water quality parameters. 
Incorporating BOD and pH, among other relevant features, into the analysis could contribute valuable 
insights into the overall water quality assessment. BOD is a crucial parameter indicating the amount of 
dissolved oxygen required by microorganisms to break down organic matter in water, while pH levels 
offer insights into the acidity or alkalinity of the water. The inclusion of such features could offer a more 
holistic view of water quality, enabling the classifier to make more informed and accurate predictions. 
Future research endeavors may consider expanding the dataset to include a broader range of water 
quality parameters, thereby improving the model's ability to discern safe and unsafe water classifications. 
Additionally, exploring the synergies between heavy metal content and other features could lead to a 
more robust and reliable classification model, with potential applications in water resource management 
and public health. 
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