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ABSTRACT 
In this paper, we have found a method to make use of some adaptive step size parameters to increase the 
algorithm’s efficiency and produce superior numerical results. We introduce and study a modified inertial 
Tseng’s algorithm with adaptive terms for solving the sum of two monotone inclusion problems in order 
to result in effective applications to solve image deblur- ring problems in the framework of realHilbert 
spaces. We achieve weak convergence to a zero point of the sum of two monotone operators by restricting 
the scalar control conditions, utilizing certain monotone operator properties, and using the identity 
associated with the norm square. Furthermore, a novel suggested algorithm is applied to image deblurring 
problems as part of the applications of this recently obtained theoretical knowledge. To illustrate the 
strong points and benefits of this recently suggested algorithm, we express some advantages in numerical 
tests on the signal-to-noise ratio (ISNR) and structural similarity index measure (SSIM) comparing with 
some previous related methods. 
 
Keywords: Tseng’s algorithm, adaptive parameter, monotone operator, monotone inclusion problem, 
image deblurring problem 
 
1. INTRODUCTION 

Throughout this paper,  ,  , 
m , 

k l , and I  denote, respectively, the set of all natural 

numbers, the set of all real numbers, the m -dimensional Euclidean space ( m ), the set of 

all k l  real matrices ( ,k l ), and the identity mapping. 

The process of eliminating blurry artifacts from an image to enhance its quality is known as 
image deblurring. The mathematical purpose of image deblurring is to reconstruct a blurred 

image y  to its original state x  as closely as possible. It can express the relationship between 
1lx   and 

1ky   in the form of a mathematical model as follows: 

 

,y Bx    

where the blur operator is 
k lB  , and the noise is 

1n  . To obtain the reconstructed 
image, one can solve the following least-squares problem: 

 

1

2

2 1

1
find arg min ,

2lx

x Bx y x


 
   

 

                             (1.1) 

where the usual norm, the regularization parameter, and the 1l  norm are denoted by 

2
 ,  , and 

1
 , respectively. Let 

1: l     be defined via 
2

2

1
( )

2
x Bx y    and let 

1: l     be defined via 
1

( )x x  . By defining Q  as the gradient of  , that is, 

 

mailto:purit.thammasiri@gmail.com
mailto:rabianw@nu.ac.th
mailto:kasamsuku@nu.ac.th


Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 783                                                        Purit Thammasiri et al 782-797 

2

2

1
: ( ) ( ( ) ),

2

TQ B y B B y
 

         
 

 

(
TB  is the transpose of B ) and R  as the sub differential of  , that is,  

 : ( ) ( ) ( ) , , ,R x z H w x z w x w H              

the monotone inclusion problem, which corresponds to the image deblurring problem 
(1.1), can be expressed by the following problem: 

1find such that 0 ( ) ,lx Q R x                                 (1.2) 

Many authors proposed several methods to demonstrate their algorithm performance of 
improvement in signal-to-noise ratio (ISNR) and the structural similarity index measure 
(SSIM). The goal was to obtain advantageous numerical results in various forms and/or that 
could be applied to image deblurring problems in order to obtain the good quality of the 
restored image, see, for instance [1-8]. 

Given a real Hilbert space H , its inner product ,  , and its induced norm 

,    , we let :Q H H  as a single-valued operator and : 2HR H   as a multi-

valued operator. Then Q  is said to be: 

1. firmly nonexpansive if  
2

, , , ,Q Q Q Q H              

a. or identically, if  

   
22 2
, ,Q Q I Q I Q H                 

2. Lipschitzor  Lipschitz continuous if there exists a constant 0L   such that 

, ,Q Q L H          . Specifically, Q  is called a nonexpansive operator 

in the case of 1L  . 

The graph of R  is represented by   ( ) : ,G R H H R        and the set of all zero 

points of R  is written by    1: (0) | 0zer R R z H Rz    . Next, R  is said to be: 

1. monotone if      , 0, , , , G R               (It can be reduced to  

, 0, ,R R H           if R  is single-value.); 

2.   cocoercive (or    inverse strongly monotone) if there is 0   such that  

     
2

, , , , , G R                     (It can be reduced to  

2
, , ,R R R R H               if R  is single-value.); 

3. maximally monotone if R  is monotone and  G R  is not properly contained in any 

graph of other multi-valued monotone operator, that is, if ˆ : 2HR H   is a multi-

valued monotone operator such that   ˆ( )G R G R , then   ˆ( )G R G R . 

Note that 
1( )R

rJ I rR    for some 0r   represents the resolvent of the multi-valued 

operator : 2HR H  . It is widely known that ( )R

rD J H  (where ( )R

rD J  is the domain of 

R

rJ ) and :R

rJ H H  is a single-valued and firmly nonexpansive operator if R  is 

maximally monotone and 0r  . For further information, see [9-13]. 

Assume we have a single-valued operator :Q H H  and a multi-valued operator 

: 2HR H  . Next, the following is the expression of the inclusion problemfor the sum of 

these two operators: 

find such that ( )( 0 ( ) ).z H z zer Q R Q R z                          (1.3) 

The mathematical problem (1.3) is of significant interest because it is the general form 
of (1.2) and it has implications for many real-world applications, such as image 
restoration, signal processing, computer vision, convex minimization, fixed point 
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problems, variational inequality, and more; see, for example 
[1-3, 6, 7, 14-16]. Notice that the representation of the fixed-point problem for the 

operator :S H H  is as follows: 

find such that ( ),p H p Fix S                                     (1.4) 

where  ( ) : .Fix S x H Sx x    Additionally, Lemma 2.2in the next section illustrates 

the strong connection between (1.3) and (1.4). 
Several authors have been inspired to create and enhance several methods to solve the 
problem of (1.3) due to the interest in its broad variety of applications. One popular 
method is the well-known forward-backward splitting method (FBSM), which was 
introduced in the following manner by Passty[2] and Lions and Mercier [1]: 

1

1 ( ) ( )( ),n n n nu I R I Q u 

                                          (1.5) 

where ( )nI Q  is the forward step and 
1( )nI R   is the backward step. The weak 

convergence of (1.5) to a solution of (1.3) was shown by them under some suitable 

assumptions of  n . On the other hand, the concept of inertial extrapolation term 

1( )n n nu u   was introduced by Polyak[5] in 1964 as a way to accelerate convergence. 

As may be seen, for instance, in [4, 6, 7, 17-26], authors have since given the inertial 
extrapolation approach a significant deal of attention and have explored and improved it 
widely. 
An inertial proximal technique was presented in 2001 by Alvarez and Attouch[4] for 

estimating ( )z zer R , where : 2HR H   is a maximally monotone operator. The 

procedure works as follows: 
1

1 1( ) ( ( )),n n n n n nu I R u u u 

                                      (1.6) 

where 0n   and [0,1)n   meet certain suitable assumptions. Under the following 

condition  

2

1

1

,n n n

n

u u






                                               (1.7) 

they can show that (1.6) converges weakly to a point ( )z zer R . 

Using an inertial extrapolation term, Moudafi and Oliny[7] developed the following 
method in 2003 to solve (1.3): 

1

1

1

( ),

( ) ( ),

n n n n n

n n n n n

v u u u

u I R v Qu



 







  


  
                                      (1.8) 

where Q  and R  are maximally monotone operators with Q  is  -cocoercive. The weak 

convergence of (1.8) is achieved under some useful conditions, such as 2n  , (1.7), 

and further on. In addition, since Q  maps the vector nu , we can conclude that (1.8) is not 

organized in a forward-backward manner. 
In 2015, Lorenz and Pock [6] presented a new method for solving (1.3) that combined 
the inertial technique and the forward-backward method. Their iterative process is 
established as follows: 

1

1

1

( ),
( )

( ) ( )( ),

n n n n n

n n n n

v u u u

u I R I Q v



 







  


  
LP2015                                  (1.9) 

where 0 1n    , , : 2HQ R H   are maximally monotone with Q  is single-valued 

and cocoercive. They verified the weak convergence of (1.9) to a solution of (1.3) under 

certain assumptions, such as 0n  , (1.7), and so forth. In addition, they employed (1.9) 

to address image processing problems and produced outcomes that were numerically 
superior to those reported in earlier studies. 
Alternatively, Tseng [3] introduced the creation of (1.5), which provides a step and 
enables them to achieve convergence under less constrained assumptions than the 
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original method (1.5). The Tseng algorithm is expressed as follows: 
1

1

( ) ( )( ),

( ),

n n n n

n n n n n

w I R I Q v

u w Qw Qv

 







   


  
                                   (1.10) 

It is not difficult to notice that (1.10) can be written in the new form as: 

  1

1 ( )( ) ( ) .n n n n nu I Q I R I Q Q v  

                              (1.11) 

(1.11) can be called as forward–backward–forward algorithm. 
In 2018, Gibali and Thong [27] presented an interesting idea that uses a new step size 
parameter to make convergence more efficient. Their new step size parameter can be 
expressed as follows: 

1

min , , if ,

otherw, ise

n n

n n n

n n n

n

w v
Qw Qv

Qw Qv










   
 





   



 

where 
1 0   and  0,1  . 

An inertial technique was applied to (1.10) by Padcharoen et al. [8] in 2021, and they 
produced superior numerical results than those of the earlier research. The definition of 
the iterative process they employed is: 

1

1

1

( ),

( ) ( ) ( )( ),

( ),

n n n n n

n n n n

n n n n n

v u u u

w I R I Q v

u w Qw Qv



 









  


  
   

PKKK2021                                  (1.12) 

where :Q H H  is a Lipschitz monotone operator and : 2HR H   is a maximally 

monotone operator. They can show that (1.12) converges weakly to an element in 

( )zer Q R  with certain suitable assumptions on { }n , { }n , and any other related 

conditions. 
Inspired by the above research works in this direction, our goal in this study is to 
introduce and investigate a modified inertial Tseng's algorithm with adaptive terms for 
solving the sum of two monotone inclusion problems in order to result in some effective 
applications to solve image deblurring problems in the framework of real Hilbert spaces. 
This method can be viewed as a more broadly applicable theoretical expansion. This 
novel technique can be used to solve deblurring problems for images within the Hilbert 
space framework. Additionally, we can produce numerical tests to demonstrate some of 
the new algorithm's advantageous behaviors and to contrast the numerical outcomes 
with those of the earlier, related algorithms in terms of improvement in the structural 
similarity index measure (SSIM) and signal-to-noise ratio (ISNR). 

 
2. Preliminaries 
This section collects a number of useful tools that are essential for proving the main 
theorem within the setting of real Hilbert spaces. These tools will be ” will be used 
throughout thisused in the next section. The symbols “ ” and “ study to denote weak 
convergence and strong convergence, respectively. 

Lemma2.1([11, 12]).Let H be a real Hilbert space. Then, 

1. 
2 2 2 2 2

2 , 2 , , , ,x y x x y y x y y x y x y H           

2. 
2 2 2 2

(1 ) (1 ) (1 ) , and ,r x ry r x r y r r x y r x y H            . 

Lemma 2.2.Let :Q H H   be an operator on H  and : 2HR H   be a maximally monotone 

operator. Define    
1

:S I R I Q  


   , 0  . Then we have 

  ( ), 0.Fix S zer Q R      

Proof. Refer to [8, Lemma 1.], for instance. 

Lemma 2.3.([28]).Let :Q H H  be a Lipschitz continuous and monotone operator and 
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: 2HR H   be a maximally monotone operator. Then the operator Q R  is a maximally 

monotone operator. 

Lemma 2.4.([29]).Suppose that        , , 0,n n n   ò  satisfy the following assumptions 

 1 1

1

, 1, ,n n n n n n n

n

n    


 



       ò ò  

where 0 1n     for all n . Then the following results hold true: 

1.  11 n nn
 



 
   , where    : max ,0t t


 , 

2. there is  * 0,    such that 
*lim n

n
 


 . 

The next lemma has significance for applying to the main theorem's proof. However, first let 
us focus on the following set, which is defined by 

    ( ) : such that  
k kw n n n nu z u u u z     . This is the set of all weak sequential cluster 

points of  nu . 

Lemma2.5([30]).Suppose that C H   and { }nu H  satisfy the following two properties: 

1. for every u C , lim n
n

u u


  exists, 

2. any weak sequential cluster point of { }nu  is in C , that is, ( )w nu C  . 

Then { }nu  weakly converges to a point in C . 

 

Lemma 2.6.Let :Q H H  be an operator and : 2HR H   be a maximally monotone operator. 

Then, for any ,v w H  together with 0  , it will lead to the following equivalence: 

  1 1
( ) ( ) such that .w I R I Q v q Rw q v w Qv  



          

Proof.    Let us consider the following equivalence, which can be expressed as follows: 

 

 

1( ) ( )

1

1
such that .

w I R I Q v v Qv w Rw

v w Qv Rw

q Rw q v w Qv

   







      

   

     

 

This completes the proof.         
  
 

Lemma2.7.Let :Q H H   be a Lipschitz continuous and monotone operator and : 2HR H   

be a maximally monotone operator where H  is a real Hilbert space. Then, for any ,v w H  

together with 0   such that 
1( ) ( )w I R I Q v     and ( )z zer Q R  , the following in 

equality holds: 

  , 0.v w Qv Qw w z      

Proof.Since 
1( ) ( )w I R I Q v    , so by Lemma 2.6, there exists q Rw  such that 

 
1

q v w Qv


   . On the other hand, since 0 ( )Q R z   and ( )Qw q Qw Rw Q R w     . 

Thus, by Lemma 2.3, we get that  

( ) 0, 0.Qw q w z                      (2.1) 

Note that 
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1 1

( ) .Qw q Qw v w Qv v w Qv Qw 
 

            (2.2) 

It follows from (2.1) and (2.2) that 

1
( ), 0.v w Qv Qw w z


         (2.3) 

Now, by multiplying both sides of (2.3) by  , we obtain 

 

( ), 0.v w Qv Qw w z      

This completes the proof.         
  
 
Convergence Analysis 
Condition3.1.The solution set of the inclusion problem (1.3) is non empty, that is,

( ) .zer Q R   

Condition3.2.Theoperator :Q H H are Lipschitz monotone operator with the Lipschitz 

constant L , and : 2HR H  are maximally monotone operators. 

 
Weak convergence 
In this subsection, we present and study a modified inertial Tseng algorithm with adaptive 
parameters for finding a zero point of the sum of two monotone operators as follows: 

 
Algorithm 1 

Initialization: Given 
1 0  ,  0,1  ,  { } 0,1nc  ,    

1
{ } , , 0,n a b a b

L
 

 
     

 
,  where 

 lim asn n
n

n   


   , see more details from Lemma 3.3 and      0, 0,1n   .  Let 

0 1,u u H  be arbitrary.  

Iterative Steps: Given the current iterates 
1,n nu u H  ,  calculate the next iterate as follows: 

Compute 

1

1

1

( ),

( ( ) ) ( ( ) ) ,

( )( ),

n n n n n

n n n n n n n n

n n n n n n n

v u u u

w I c R I c Q v

u w c Qw Qv



   

 







  


    
    

 

Update 

1

min , , if ,

,otherwise.

n n

n n n

n n n

n

w v
Qw Qv

Qw Qv










   
  

    



 

              Set : 1n n  . 

 

Lemma3.3The generated sequence  n  is monotonically nonincreasing and bounded from below by 

1min ,
L




 
 
 

. 

Proof.It is clear from the definition of  n  that it is monotonically nonincreasing, that is, 1n n    for 

all n . Since Q  is a Lipschitz operator with Lipschitz’s constant L , for 
n nQw Qv , we have: 

n n

n n

w v

Qw Qv L
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Therefore, it is not hard to see that 
1min ,

L




 
 
 

 is the lower bound of { }n .    

Remark3.4 By Lemma 3.3, the update in Algorithm 1 is well defined and 

1 .n n n n nQw Qv w v      

Lemma3.5 Assume that Condition 1and Condition 2 hold and let { }nu  be the sequence generated by 

Algorithm 1. Then, for any ( )z zer Q R  , there exists 0n   such that 

2 2

01 ( ) 0,n b L n n      

and the following inequality holds: 

 
0

2 2 22 2

1 01 ( ) , .n n n n nu z v z b L w v n n            (3.1) 

Proof.For any ( )z zer Q R  , we can apply Lemma 2.1(1) and Lemma (2.7) that will allow us to obtain 

the following inequality 
2

1

2

2 22

2 22 2

2 2

2 2

( )( )

2( ) , ( )

( ) ( ) 2( ) , ( )

2 , 2( ) ,

( )

n

n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n n n n n

n n n n n n n n n n n n

n n n

u z

w z c Qw Qv

w z c w z Qw Qv c Qw Qv

v z w v c Qv Qw w z c L w v

v z w v w v w z c Qv Qw w z

c L w

 

   

   

 

 

 

    

        

          

          

 

 

2

2 2

22 2

2 ( ) ,

( )

n n

n n n n n n n n n n n

n n n

v

v z w v v w c Qv Qw w z

b L w v

 





         

  

 

 
2 22 21 ( ) .n n n nv z b L w v                       

(3.2) 

Since n   as n  and 
1

b
L

   , so 
0n   such that 

2 2

01 ( ) 0,n b L n n      and 

(3.2) holds for all 0n n . In particular, since { }n  is monotonically decreasing, so 
0 0,n n n n     

and then 

 

 
0

2 2 22 2

1

2 22 2

0

1 ( )

1 ( ) , .

n n n n n

n n n n

u z v z b L w v

v z b L w v n n





       

       
 

This completes the proof.         
  

Lemma3.6 Suppose that Condition 1 and Condition 2 hold. Let    ,n nw v  be the sequences generated 

by Algorithm 1. If lim 0n n
n

v w


   and   
knw  converge weakly to z H , then ( ).z zer Q R   

Proof.Suppose that lim 0n n
n

v w


  . Then, it follows from the definition of Algorithm 1 that  

  
1( ( ) ) ( ( ) ) ,

k k k k k k k kn n n n n n n nw I c R I c Q v         

andso it follows from the implications of Lemma 2.6and cause the following 

 
1

( ) .
( ) k k k k k k k

k k k

n n n n n n n

n n n

v w c Qv Rw
c

 
 

   


 

Let ( , ) ( )x y G Q R  . Then, ( )y Q R x  , that is, y Qx Rx  . And by monotonicity of R , it allows 
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that 

   
1

, ( ) 0.
( )k k k k k k k

k k k

n n n n n n n

n n n

x w y Qx v w c Qv
c

 
 

      


   

(3.3) 
We can write (3.3) to be the new form as follows 

 

 

 

 

1
, , ( )

( )

1
, ,

( )

, ,

1
,
( )

1
, , .

( )

k k k k k k k k

k k k

k k k k k

k k k

k k k k k

k k k

k k k

k k k k k k

k k k

n n n n n n n n

n n n

n n n n n

n n n

n n n n n

n n n

n n n

n n n n n n

n n n

x w y x w Qx v w c Qv
c

x w Qx Qv x w v w
c

x w Qx Qw x w Qw Qv

x w v w
c

x w Qw Qv x w v w
c

 
 

 

 

 

      


     


     

  


     


 

Since lim 0n n
n

v w


   and Q  is a Lipschitz operator, we obtain lim 0
k kn n

k
Qw Qv


   and since 

( )n n nc   is bounded, we have  

, 0 , lim , 0.
kn

n
x z y x z y x w y


        

By the virtue of Lemma 2.3, we can conclude that 0 ( )Q R z  , that is, ( ).z zer Q R    

Theorem3.7 Suppose that Condition1 and Condition2 hold. Let 0n  be a natural number that comes 

from Lemma3.5 and let  n  be a nondecreasing sequence such that 

 
1 8 1 2

0 ,
2(1 )

n

 
 



  
  


        (3.4) 

where 0

0

1 ( )
.

1 ( )

n

n

b L

b L






 


 
 Then, the sequence  nu  generated by Algorithm 1 converges weakly to 

( ).z zer Q R   

Proof.Let ( )z zer R Q   and for any 0n n . Then, let us consider the inequality below 

1 ( )( ) ( ) .n n n n n n n n n n n n n nu w w c Qw Qv w c L w v               (3.5) 

By connecting (3.5) to the following inequality, we obtain 
 

 

 
0

1 1 1 ( )

1 ( ) ,

n n n n n n n n n n n

n n n

u v u w w v c L w v

b L w v

 



         

   
 

which implies 

 
0

2 2

12

1
.

1 ( )
n n n n

n

w v u v
b L

    
 

     (3.6) 

Multiplying both sides of (3.6) by 
0

2 21 ( )n b L   and then connecting with (3.1) it yields that 
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0

0

0

0

0

2 2 22 2

1

2 2

2 2

12

2 2

1

1 ( )

1 ( )

1 ( )

1 ( )

1 ( )

n n n n n

n

n n n

n

n

n n n

n

u z v z b L w v

b L
v z u v

b L

b L
v z u v

b L

















      

 
   

 

 
   

 

 

2 2

1 ,n n nv z u v           (3.7) 

where 0

0

1 ( )
:

1 ( )

n

n

b L

b L






 


 
. By the definition of ,nv  and using Lemma 2.1(2.), we obtain the following 

equation 
2 2

1(1 )( ) ( )n n n n nv z u z u z         

   
2 2 2

1 11 1 .n n n n n n n nu z u z u u             (3.8) 

 
It follows from (3.7) and (3.8) that 

   

2 2 2

1 1

2 2 2 2

1 1 11 1

n n n n

n n n n n n n n n n

u z v z u v

u z u z u u u v



    

 

  

    

         
 

   
2 2 2

1 11 1 .n n n n n n n nu z u z u u                (3.9) 

On the other hand, by employing Lemma 2.1(1.), Cauchy–Schwarz inequality, and AM-GM inequality, we 
achieve the following result 

2 2

1 1 1

2 22

1 1 1 1

2 22

1 1 1 1

( )

2 ,

2

n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

u v u u u u

u u u u u u u u

u u u u u u u u



 

 

  

   

   

    

      

      

 

 
2 22

1 1(1 ) .n n n n n n nu u u u                      (3.10) 

Combining (3.8), (3.9) and (3.10) we obtain 

 

2 2 2

1 1

2 2 2

1 1

2 22

1 1

2 2 2

1 1

22

1

2 2

1

(1 ) (1 )

(1 ) ( )

(1 ) (1 )

(1 ) ( )

(1 )

n n n n
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2 2

1 1 ,n n n n n nu u u u                   (3.11) 

where : (1 )n n     and  
2: (1 ) ( ) 0n n n n n          . Then we set 

2 2 2

1 1: .n n n n n n nu z u z u u          

Changing the writing style of (3.11) allows us to get that 
2 2 2 2 2 2

1 1 1 1 .n n n n n n n n n n n nu z u z u z u z u u u u                  (3.12) 
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By adding 
2

1 1n n nu u     on both sides of (3.12), we have 
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Since { }n  is nondecreasing, we get 
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which yields 
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It follows from 
10 n n      that 
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2(1 ) (1 2 ) .               (3.14) 

By merging (3.13) and (3.14), we obtain 
2

1 1 ,n n n nu u           (3.15) 

where 
2: (1 ) (1 2 ) .            By using condition (3.4) and solving the quadratic inequality it is 

not difficult to show that 0.   Therefore 

1 0.n n    

Thusthe sequence  n   is nonincreasing. It can be observed that 
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We also have 
2 2 2

1 1 1 1 1 n n n n n n nu z u z u u             

2

1 .n nu z               (3.17) 

From (3.16) and (3.17), we obtain 
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  (3.18) 

By using (3.15) and (3.18), along with some simple calculations, we get that 
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  . This implies 
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    and therefore 

1lim 0.n n
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u u


       (3.19) 

On the otherhand we have 
2 2 22

1 1 1 1 12 ,n n n n n n n n n n n nu v u u u u u u u u             , 

and then get 1 0n nu v    as n . By (3.19) and Lemma 2.4, we have 

2
lim ,n
n

u z l


                  (3.20) 

and by (3.8), we obtain 

   
2 2 2 2 2

1 11 .n n n n n n n n nv z u z u z u z u u                   (3.21) 

Letting n  in (3.21) and then (3.19) and (3.20) ensure that 
2

lim .n
n

v z l


       (3.22) 

Moreover, it can be observed that 1 10 n n n n n nu v u u u v        for all n  and by letting 

n , it will lead to 

lim 0.n n
n

u v


       (3.23) 

On the other hand, as a consequence of (3.1) we obtain that 

 
0

2 2 22 2

11 ( ) .n n n n nb L w v v z u z           (3.24) 

Letting n  in (3.24) and then (3.20) and (3.22) guarantee that 

lim 0.n n
n

w v


       (3.25) 

Finally, we will prove that 
nu z  for some ( ).z zer Q R   Notice that the following statement “1) For 

every ( ),z zer Q R 
2

lim n
n

u z


   exists” is true via (3.20). Next, we let ( )w nz u  then there exists 

   
kn nu u  such that 

knu z . Then, it is not hard to verify by using (3.23) that 
knv z . Then, by 

applying (3.25) and Lemma 3.6, we can conclude that ( )z zer Q R  . This means that “2) 

( ) ( )w nu zer Q R   ”. Therefore, by 1), 2) and Lemma 2.5 we conclude that 
nu z  for some 

( ).z zer Q R   This completes the proof.      

Corollary 3.8 ([8, Theorem 1]). Let :Q H H  be a Lipschitz monotone operator,  : 2HR H   be 

a maximally monotone operator and ( ) .zer Q R   Suppose that      1, 0,n L
a b   , 

     0, 0,1n    is nondecreasing such that 
1 8 1 2

2(1 )
0 ,n

 


    


    where 1

1
bL
bL

 


 . Let 

0 1,u u H  and the sequence  nu  be defined by 
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Then the sequence  nu  converges weakly to an element of ( ).zer Q R  

Proof.In Algorithm 1, if we set 
1 0   and set 1nc   for all n , then 0n   for all n . 

Therefore, Theorem 3.7can be reduced to Corollary 3.8as required.     
 
Applications to image deblurring problems and their numerical experiments 
In this part, our goal is to recover an image using the suggested algorithm, tackling tasks 
such as image deblurring and denoising through a degradation model that effectively 

captures real-world difficulties in image restoration. We set the following: ( )Q   , and 

( )R    . Here, 
21

2 2
( )x Bx y   , 

1
( )x x  , and 0.001  . Given this setup, it follows 

that ( ) ( )Tx B Bx y   , where the transpose of B  is denoted as 
TB . We initiated the 

problem-solving process by selecting images and applying various blurring techniques to 

them. We solve (1.1) by applying Algorithm 1, given the following condition: 0.9,n 

150
1000 100

0.5 ,n
n n



  0.9nc   and 1 1  .We compare our proposed algorithm with the 

algorithm (LP2015) presented in [6], and the algorithm (PKKK2021) introduced by 

Padcharoen et al. [8].For the LP2015, We select parameter values as follows: 0.9,n   and 

150
1000 100

0.5 n
n n



  . Concerning the PKKK2021, we select the following parameter values: 

0.9n   and 150
1000 100

0.5 n
n n



  . To evaluate the quality of the reconstructed image, we 

measure it by the structural similarity index measure (SSIM) [31] and the improvement in 
signal-to-noise ratio (ISNR) for images, which is defined as follows: 

2

2
10 2

2

( ) 10log ,

n

x y
n

x x





ISNR  

where x , y  and nx  represent the original image, degraded image and the restored image at iteration n , 

respectively. The numerical results corresponding to the selections mentioned above are displayed in the 
following figures. 
 

 
Figure 1: (a) shows the original ‘Pirate’ image, while (b) displays the images degraded by motion blur. 
The reconstructed images are depicted in (c), (d), and (e), corresponding to the results obtained using 

LP2015 [6], PKKK2021 [8], and Algorithm 1, respectively. 
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Figure 2: The figures illustrate the improvement in signal-to-noise ratio (ISNR) and structural similarity 

index measure (SSIM) performance for the three algorithms shown in Figure 1. 
 
 

 
Figure 3: (a) shows the original ‘Cameraman’ image, while (b) displays the images degraded by average 

blur. The reconstructed images are depicted in (c), (d), and (e), corresponding to the results obtained 
using LP2015 [6], PKKK2021 [8], and Algorithm 1, respectively. 
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Figure 4: The figures illustrate the improvement in signal-to-noise ratio (ISNR) and structural similarity 

index measure (SSIM) performance for the three algorithms shown in Figure 3. 
 
 
Table 1:The improvement in signal‑to‑noise ratio (ISNR) and structural similarity index measure (SSIM) 

are evaluated for“Pirate”images to assess their performance. 
(n)  ISNR   SSIM  

 Algorithm 1 PKKK2021 LP2015 Algorithm 1 PKKK2021 LP2015 

1 ‑20.7242 ‑15.4578 ‑13.8862 0.4970 0.6198 0.6453 

10 ‑10.6439 ‑8.1584 ‑0.07185 0.6229 0.6275 0.6784 
50 7.4501 6.4280 6.4293 0.8985 0.8789 0.8789 
100 8.8444 8.2244 8.2234 0.9211 0.9131 0.9131 
150 9.1277 8.8521 8.8506 0.9245 0.9215 0.9214 

 
Table 2: The improvement in signal‑to‑noise ratio (ISNR) and structural similarity index measure (SSIM) 

are evaluated for“Cameraman”images to assess their performance. 
(n)  ISNR   SSIM  

 Algorithm1 PKKK2021 LP2015 Algorithm 1 PKKK2021 LP2015 

1 ‑19.1237 ‑13.9653 ‑12.4295 0.5424 0.6770 0.7041 

10 ‑9.0430 ‑6.6542 1.7200 0.6471 0.7002 0.7547 

50 5.5467 5.3170 5.3190 0.8394 0.8356 0.8357 

100 5.9991 5.7303 5.7307 0.8456 0.8431 0.8431 

150 6.2623 5.9927 5.9927 0.8475 0.8457 0.8457 

 
The experimental results confirm that our algorithm has outperformedother methods, show‑casing 
exceptional performance in image deblurring. 
 
CONCLUSION 
We created and investigated a modified inertial Tseng’s algorithm with adaptive parameters for solving 
monotone inclusion problems with efficient applications to image deblurring problems, as appeared in 
Algorithm 1. We succeed in proving the weak convergence of Algorithm 1 by imposing some favorable 
conditions on the scalar terms and adaptive step size parameters, as well as the favorable property of 
monotone operators, as shown in Theorem 3.7. Furthermore, Algorithm 1 was utilized to address the 
image deblurring problem (1.1). Additionally, we conducted numerical experiments to evaluate the 
performance and demonstrated the bene- fits of Algorithm 1, specifically the enhancement in 
signal-to-noise ratio (ISNR) and structural similarity index measure (SSIM) measurements in contrast to 
certain other related algorithms that have been published previously. The higher performance of our 
method in the numerical tests reported in Section 4 clearly indicates that it has substantial advantages 
over some prior algorithms. 
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