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ABSTRACT 
The time-fractional Black-Scholes equation has a significant impact on market anomalies and 
irregularities, which offer long-range dependence and heavy-tailed distributions, which led to a more 
precise depiction of financial markets, particularly in predicting extreme events and in the valuation of 
derivatives. The primary goal of this work is to examine Black-Scholes equations of arbitrary order with 
the assistance of the Caputo fractional derivative. Here, we apply an effective semi-analytical technique 
called an approximate analytical method. We briefly introduce the Black-Scholes equation, its history, and 
its applications in the field of economics. The aforementioned equation in financial problems is addressed 
by employing the analytical method, and this concept is used to assess the value of the option (buy or sell 
an asset) without a transaction cost. Solutions from the proposed method are obtained in series form, 
which converges swiftly and also carries out numerical simulations by comparing to different methods. 
The obtained outcomes are discussed through the 3D plots and graphs with the minimum error that 
expresses the physical representation of the considered equation. The preferred method to examine 
fractional Black-Scholes equations is efficient, reliable, and robust. 
 
Keywords: Fractional Black-Scholes equation; Riemann-Liouville fractional integral; Caputo-Fractional 
derivative; Approximate Analytical method. 
 
1. INTRODUCTION  
The theory of fractional calculus (FC) is a firmly established and continuously evolving subject in the area 
of mathematics. FC is a branch of calculus that is concerned with integrals and derivatives of arbitrary 
order which came into existence around 300 years ago and it has become an efficient mathematical tool 
with a wide variety of applications in the field of science and technology. The concept of FC was 
introduced by German mathematicians Leibniz and L’Hospital in 1695 and the most fascinating work in 
scientific and engineering applications has been found using FC in the past few years [1–4]. The glorious 
developments envisioned in FC and their most significant applications lie in biology [5, 6], fluid mechanics 
[7, 8], biochemistry [9], human diseases [10], physics [11], plasma physics [12], and so on [13–22]. The 
main advantage of FC is that we can find the arbitrary derivative of a function, which is somewhat 
restricted to the integer-order in classical calculus. Due to the non-local property of FC, it is easy to 
analyze memory effects and the hereditary property of the considered problem and it also captures the 
significant effects and provides more details about the corresponding phenomena. Compared to classical 
calculus, it has more applications in various fields as it gives solutions in between the intervals. Using this 
theory, one can examine the behaviour of a wide variety of physical systems in real-world phenomena 
and it has been used in analyzing and solving problems related to natural phenomena with complex 
systems, long-range waves, genetic characteristics and so on. 
For understanding and modelling the linear and non-linear systems that arise in various scientific and 
technological sectors, fractional differential equations (FDE) serve a crucial and significant role. 
Numerous researchers have defined fractional operators such as Riemann-Liouvelli, Caputo, Caputo-
Fabrizio, Atangana-Baleanu, Hadamard, Grunwald-Letnikov, Reisz, and Hilfer etc. Each operator has its 
own limitations for instance, the Riemann-Liouville operator is unable to prove that the derivative of a 
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constant function is zero. When using this operator, we cannot make assumptions about the starting 
solution in classical form. FDEs may successfully replicate physical phenomena that are dependent on 
both current and historical events. The solutions obtained from solving FDE using these operators help to 
describe the nature of complex systems that emerge in our daily lives. Finding the solutions and attaining 
the exact and approximate solutions of these equations is challenging due to the complexity produced by 
the arbitrary-order derivatives and integrals. Various numerical and approximating techniques have been 
suggested in the literature to solve the physical and biological systems of fractional order and determine 
their outcomes. These systems have been solved by many authors, who have proposed different 
techniques to evaluate their results. Namely, Veeresha et al. [23] have presented the coupled fractional 
reduced differential transform method (RDTM) to find the numerical solution for Jaulent-Miodek 
equations of fractional order.  
The work on financial markets has indeed gained more recognition in the field of mathematical research. 
Nowadays, fractional partial differential equations (FPDE) have been introduced in financial theory. In 
1973, Fischer Black and Myron Scholes introduced a renowned theoretical model for option valuation 
[24]. After introducing the B-S equation, the currently accessible research results primarily focus on two 
areas: first, they provide option values using more powerful analytical and numerical techniques, and 
second, they develop new option pricing models. An option is a type of security that permits the buying or 
selling of an asset within a certain time frame, subject to certain conditions [25,26]. American options and 
European options are the two main types of options in the financial market. American options can be 
exercised at any time until the expiration date, while European options can only be used on a specific 
future date [27]. The primary objective of the B-S equation aims to create a risk-free portfolio, using a 
combination of bonds (cash), underlying stock, and options. In this paper we study the time-fractional B-S 
equation is given by [28] 
∂αv

∂tα +
1

2
σ2s2 ∂2v

∂s2 + rs
∂v

∂s
− rv = 0,  x, t ϵR+ ×  0. T            0 < α ≤ 1.                           (1) 

where r denotes the risk free interest rate, ζ is a function of stock price, v is a call price of the option, σ be 
the volaticity of the stock and time t subjected to the condition 
v =  x − E, 0 ,    x ∈ R+,          v 0, t = 0.                                                                        (2) 
where E is the expiration price [29]. Many researchers used various methodologies to examine the 
existence of solutions to the Black-Scholes(B-S) equation. B-S models have been extensively studied in the 
paper and the references therein [30–32]. The ease and clarity with which the price of the option can be 
obtained through the B-S equation has led to a significant increase in trading activity. The estimation of 
stock options is the primary use of the B-S equation. Over the last couple of decades, there has been an 
increasing interest in this equation due to its ability to provide the values of options effectively. The key 
elements of the B-S equations are risk-free rate, expiration date, strike price, underlying stock price, and 
volatility. Fractional B-S equations are solved using various methods namely, Sunil Kumar et al. [33] 
solved the B-S equation using the homotopy perturbation technique. For the time-fractional B-S 
equations, Liaqat and Okyere [34] proposed a Laplace residual power series method (LRPSM). A finite-
difference technique was used by Song and Wang [35] to resolve the fractional B-S option pricing model. 
Vijayan et al. [36] solved the fractional B-S equations using the homotopy analysis method with the Shehu 
transform. Company et al. [37] employed a semi-discretization method to solve the partial differential 
equations that constitute the B-S option pricing. Morais and Grossinho have examined the existence and 
localisation results for generalised Block-Scholes models using the upper and lower solutions method 
[38]. The non-linear  B-S equation governing the European option pricing problem was solved by Wang 
and Lesmana using an upwind finite difference method [39]. Deriving the closed-form solution to the B-S 
equation relies on the fundamental solution of the heat equation. While the Black-Scholes model performs 
better at identifying closed-form solutions for European options, it is less successful for non-European 
options [40]. 
Here, we implement an efficient technique called an approximate analytical method (AAM) to solve 
fractional B-S equation and this method provides an approximate solution. AAM is a semi-analytical 
method that can be used to resolve highly non-linear problems since it provides a series solution, which 
enables us to analyze the answer more thoroughly. KDV equations, fluid flow models, and solute 
problems have all been resolved using AAM [41–44]. This paper has been presented in the following 
manner: Section 2 offers the definitions and properties of the Laplace transform and fractional calculus. 
In Section 3, we proposed the AAM algorithm to examine the solutions of Black-Scholes equations of 
fractional order in terms of the Caputo operator. In Section 4, using the projected method the solutions 
and their graphical representation of three different examples of fractional B-S equations have been 
presented. The obtained results and graphs have been discussed for considered problems in Section 5. 
Finally, the conclusions of our work are reported in Section 6. 
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2.  Preliminaries 
Fractional derivatives and integrals have many different definitions and characteristics. The definitions 
and preliminary statements of the FC that are utilised in the present study and found in [1–3]. 
Definition 1. Let α ∈ ℝ and α ≥ 0. The fractional integral operator of Riemann-Liouville (RL) sense is 
denoted by J α t for the function v ζ, t ∈ Cα ,  α ≥ −1  is defined as 
Definition 2. The fractional partial derivative of v ζ, t ∈ C−1

n  in the Caputo sense is defined as 

 

  Dt
αv ζ, t =

 
 
 

 
 dm v ζ, t 

dtm
,                                                      α = m ∈ ℕ,                     

1

Γ(n − α)
  t − ϑ n−α−1f (m) ϑ dϑ,   α ∈ (m − 1, m), m ∈ ℕ.

t

0

  (4) 

Definition 3. The Laplace transform (LT) of the Caputo fractional derivative Dt
αv ζ, t  is 

denoted as 
 L Dt

αv ζ, t  = sαV ζ, s −  sα−r−1m−1
r=0 f  r  0+ ,  n − 1 < α ≤ n , (5) 

where v ζ, s  denote the LT of the function v ζ, s ). 
 

Theorem 2.1.  Let b > −1 and α1, α2 ∈ ℝ, α1, α2 ≥ 0. Then, the RL fractional partial integral operator Jt
α

0  
satisfies the following properties for the function v ζ, t ∈ Cμ,μ > −1, 

Jt
α1

0 Jt
α2

0 v ζ, t = Jt
α1+α2

0 u(x, y, t), 

Jt
α1

0 Jt
α2

0 v ζ, t = Jt
α2

0 Jt
α1

0 u x, y, t ,                    (6) 

Jt
α

0 tb =
Γ(b + 1)

Γ(b + α + 1)
tα+b . 

 

Theorem 2.2.Let α, t ∈ ℝ, t ≥ 0, m − 1 < ∂ < m ∈ N.Then,  Dt
α Jt

α
0 v ζ, t = v ζ, t , 

Dt
α Jt

α
0 v ζ, t = v ζ, t −  

tk

k!

∂k v ζ,0+ 

∂tk
m−1
r=0 , (7) 

 
3. Methodology of Approximate Analytical Method (AAM). 
Aiming to demonstrate the reliability of this method, we will examine the nonlinear fractional partial 
differential equation with the following beginning conditions. 

   , , , , ,tD v x y t f x y t Lv Nv    1m m N    
 

 
, ,0

, .

i

ii

v x y
f x y

t






0,1,2,3,.... 1i m   

 
(8) 

where  v ζ, t is the source term and α is the order of the Caputo fractional partial derivative, which is an 

analytical function L is linear and Nis non-linear operators, and ζ =  ζ
1

, ζ
2
… ζ

n
 .To get the analytical 

solution of the problem that has been considered, a novel technique called the approximate analytical 
method can be used. This technique provides computational accuracy to offer appropriate piecewise 
analytical solutions, making it a useful tool for solving non-linear fractional differential equations. It's 
crucial to examine the results in order to illustrate AAM. 
Lemma 1.  For  v(ζ , t) =  rkv(ζ , t),∞

k=0 linear operator L(v) satisfies the given below property; 

L v(ζ , t) = L  rkv(ζ , t)∞
k=0  =  rk Lv(ζ , t).∞

k=0  (9) 

  

Theorem 3.1.  Let v ζ , t =  v ζ , t ,∞
k=0 and vλ ζ , t =  λkvλ ζ , t .∞

k=0 whereλ 
is the non-zero parameter such that 0 ≤  λ ≤ 1, subsequently, non-linear operator N(vλ ) satisfies the 
below conditions [38]: 

N uλ = N   λkuk 
∞
k=0 =   

1

n!

δ

δλn  N  λkuk
∞
k=0   

λ=0
 λn∞

n=0 .         (10)                    

Definition 3. The polynomials explained as follows Pn(v0 , v1 … vn) is defined as follows: 

  Jαv ζ, t =
1

Γ(α)
 (t − ϑ)α−1v ζ, t dϑ

t

0
, 

J0v ζ, t = v ζ, t .                                                           (3) 
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Pn u0, u1, u2 , … un =
1

n!

δn

δλn  N  λkvk
n
k=0   

λ=0
(11) 

 
Remark 3.1 Let Pn = Pn v0, v1 , v2, … vn be as in Definition 3. The nonlinear termN(vλ ) can      be defined 

in terms of nP  by using Theorem 3.2. as follows: 

N(vλ )  =  λn∞
n=0 Pn . (12) 

Now, we interpret the statements of existence, convergence and the maximum absolute error theorem for 
the considered equation Eq. (8) using AAM. 
 
Existence Theorem 
 
Theorem 3.2 By defining the functions f ζ , t , fi(ζ ) as in Eq.(8) and for m − 1 < α < m ∈ ℕEq.(8) gives  at 
least one solution, which is provided by[38] 

v ζ , t = ft
 −α  ζ , t +  

ti

i!

m−1
i=0 fi(ζ ) +  [ Lt

−αm−1
i=0 v k−1 + p k−1 t

 −α 
], (13) 

where p k−1 t
 −α 

 and Lt
−αv k−1  are the Riemann-Liouville partial fractional integral of order α for Pk−1and 

L(vk−1) with regard to t respectively. 
Proof: Let us consider the solution v ζ , t  of Eq (8) in analytical form  
v ζ , t =  vk ζ , t ∞

k=0 . (14) 
Let us take the given below expression to solve IVP  Eq. (8) 
Dt

αvλ ζ , t = λ f ζ , t + L vλ + N vλ  ,             0 ≤ λ ≤ 1, (15) 
 

with the starting solution 
∂iv ζ , t 

∂ti
= fi ζ  ,   i = 0,1,2,3, … . m − 1  i = 0,1,2,3 … . , m − 1. 

(16) 

Let us assume that Eq.(15) has the solution in the form  

vλ ζ , t =  λkvk ζ , t ∞
k=0 .   (17) 

Using Theorem 3.1 and taking Eq. (8) with Riemann-Liouville partial integral, we get 

vλ ζ , t =  
ti

i!

m−1
i=0

∂ i vλ ζ ,0 

∂ti + λ Jt
α

0 [f( ζ , t + L vλ + N vλ ].   (18) 

Using Eq (16)we can express Eq. (18), as follows: 

vλ ζ , t =  
ti

i!
gi ζ  + λ  ft

 −α  ζ , t + Jt
α L(vλ) + Jt

α N(vλ)  m−1
i=0 .   (19) 

Substitute Eq. (17) into Eq. (19), which gives 

 λk vk ζ , t =∞
k=0  

ti

i!
gi ζ  + λft

 −α  ζ , t +m−1
i=0

Jt
αλ   L λkvk  +                                               Jt

αλ   
1

n!

∂n

∂λn  N  λkvk
∞
k=0   

λ=0
 λn∞

n=0
∞
k=0 . 

  (20) 

With the help of Definition 4 and Eq (20), we arrive at 

 λk vk ζ , t =∞
k=0  

ti

i!
gi ζ , t + λft

 −α  ζ , t + Jt
αλ   L λkvk  + Jt

αλ  pn λn∞
n=0

∞
k=0

m−1
i=0 .   (21) 

We can obtain the following terms by equating the coefficients of identical powers of λ in Eq. (21) we get 
below terms 

vo ζ , t =  
ti

i!
gi ζ  m−1

i=0 , 

v1 ζ , t =  ft
 −α  ζ , t + Lt

 −α 
v0 + Pot

 −α 
, 

v2 ζ , t =  Lt
 −α 

vk−1 + P k−1 t
 −α 

, 

k = 2,3,…                                     (22) 
Substituting Eq.(22) in Eq(17),  which gives the solution of Eq(8) . By the help of Eq. (14) 
and Eq (17) gives 
v ζ , t = limλ→1 vλ ζ , t = v0 ζ , t + v1 ζ , t +  vk ζ , t ∞

k=2 .   (23) 

We can see that,
∂i v ζ ,0 

∂ti = limλ→1
∂i vλ ζ ,t 

∂ti ⟹ gi ζ  =  fi ζ  . Replacing Eq (22) in Eq (23).  

Ends the proof. 
 
4. Solution of equation using AAM. 
We consider the fractional Black-Scholes equation to evaluate the clarity precision of the proposed 
method. Here, we solve the fractional Black-Scholes equation in terms of Caputo fractional derivative. 
Example 1. 
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Contemplate the following time-fractional Black-Scholes equation as [36] 

Dt
α

0
c v ζ, t −

∂2v

∂ζ2 −  k − 1 
∂v

∂ζ
+ kv = 0,       0 < α ≤ 1,     (24) 

subject to the starting solution 
v(ζ, o) = eζ − 1.   (25) 

This equation contains only two dimensionless parameters such as k =
2r

σ2and the dimensionless time to 

expiry 
1

2
σ2T. These parameters represent the balance between the rate of interests and the variability of 

stock returns. Although there are four dimensional parameters E, T, σ2  and r in the original statements of 
the problem, the equation Eq. (24) can be written as 

∂αv

∂tα
=

∂2v

∂ζ2 +  k − 1 
∂v

∂ζ
− kv,       (26) 

with the assistance of the AAM solutions method. Assume Eq. (24) has the following solution form: 

  v ζ, t =  vk

∞

k=0

 ζ, t .       (27) 

Consider Eq. (26) to get an approximate solution. 

Dt
α

0
c v ζ, t = λ  

∂2v

∂ζ2 +  k − 1 
∂v

∂ζ
− kv ,   (28) 

using the assumed starting condition 
uλ ζ, 0 = g(ζ).   (29) 
Let us suppose that, Eq. (28) has the solution in the following series form 

vλ(ζ, t) =  λkv∞
k=0 (ζ, t).   (30) 

Implementing the RL fractional partial integral on both sides of the Eq. (28) and also using Eq. (29) and 
Theorem 2.2 to get the following equation 

uλ ζ, t = g x + λ Jt
α

0  
∂2v

∂ζ2 +  k − 1 
∂v

∂ζ
− kv .   (31) 

 Substituting Eq. (30) in Eq. (31), we get 

 λk∞
k=0 vλ ζ, t = g ζ +  λ Jt

α
0   λk∞

k=0
∂2vk

∂v2 +  k − 1  λk∞
k=0

∂vx

∂v
− k  λk∞

k=0 vk . (32) 

After equating the coefficients of identical powersλ in Eq. (32), we can obtain the coefficients: 
v0 ζ, t = g(ζ), 

v1 ζ, t = 0 Jt
α  

∂2v0

∂v2 +  k − 1 
∂v

∂v
− kv0 , 

v2 ζ, t = Jt
α

0  
∂2v1

∂ζ2 +  k − 1 
∂v1

∂ζ
− kv1 ,                                                                    (33)     k = 3,4, … 

From Eq. (27) and Eq. (30). We can get the solution to the considered problem as 
v ζ, t = limλ→1 vλ(ζ, t) =  vk

∞
k=0 (ζ, t).   (34) 

From Eq. (34) we can see that v x, 0 = vλ(x, 0) which implies g x = v(ζ, 0). 
Using the components which we found in Eq. (33) and with the assistance of Definition 3, and Eq. (34). 
We have found some terms for the solution of the considered Black-Scholes equation (Eq. 24). The 
computation of the solution and its graphical representations are performed using the Mathematica 
program. 
v0 ζ, t = eζ − 1, 

v1 ζ, t = k
 tα

Γα + 1
 , 

v2 ζ, t = −k2  t2α

Γ2α+1
, 

   (35) 
. 
. 
. 
Thus, the approximate results of Eq. (24) is given by 

v ζ, t = eζ − 1 + k
 tα

Γα+1
 − k2  t2α

Γ2α+1
+ ⋯                                                                          (36) 
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(a)                                                                                (b) 

 
(c) 

Figure 1.  3D plots of Example 1, when (a) AAM solution, (b) Exact solution, (c) Absolute error=

 uexact − uApp . , at α = 1. 

 

 
Figure 2. Nature of achieved outcomes for considered problem when ζ = 0.01, for distinct α values. 

 

 
Figure 3. Nature of the solution with respect to ζ at t = 0.01. 
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Table 1: |v exact-v AAM.| of Example 1 at ζ = 1.0 and k = 2.0 when α = 1.0 determined by AAM at feasible 
locations in the range t ∈ [0, 0.1]. 

t Exact solution 
(v exact) 

AAM Solution 
(v AAM) 

LRPSM Solution 
[34] 

Absolute error 
|v exact-v AAM| 

0.01 1.73808 1.73808 1.73808 6.64009 × 10−9 
0.02 1.75749 1.75749 1.75749 1.05819 × 10−7 
0.03 1.77652 1.77652 1.77652 5.33584 × 10−7 
0.04 1.79517 1.79517 1.79517 1.67972 × 10−6 
0.05 1.81344 1.81345 1.81344 4.0847 × 10−6 
0.06 1.83136 1.83137 1.83136 8.43672 × 10−6 
0.07 1.84892 1.84894 1.84892 1.55687 × 10−5 
0.08 1.86614 1.86616 1.86614 2.64556 × 10−5 
0.09 1.88301 1.88305 1.88301 4.22114 × 10−5 
0.1 1.89955 1.89962 1.89955 6.40864 × 10−5 

 
Example 2. 
Next, we consider the following fractional Black-Scholes equation as [36] 

Dt
α

0
c v ζ, t + ζ2 ∂2v

∂ζ2 + 0.5ζ
∂v

∂ζ
− v = 0,           0 < α ≤ 1,   (37) 

with the initial condition  

v ζ, 0 = ζ3 .   (38) 

The above Eq. (37) can be re-written as 
∂αu

∂t2 + ζ2 ∂2v

∂ζ2 + 0.5ζ
∂v

∂ζ
− v,      (39) 

with the assistance of the AAM solutions method. Assume Eq. (37) has the following solution form: 
v(ζ, t) =  vk

∞
k=0 (ζ, t).                                                              (40) 

Consider Eq. (39) to get an approximate solution. 

Dt
α

0
c v ζ, t = λ  −ζ2 ∂2v

∂ζ2 − 0.5 ζ
∂v

∂ζ
+ v , 

  (41) 

with the assumed starting solution  
v(ζ, t) = g(ζ).   (42) 
Assume that Eq. (41) has the following series of solutions: 

vλ ζ, t =  λkvk

∞

k=0

 ζ, t . 
      (43) 

Implementing the RL fractional partial integral on each sides of the Eq. (41) and also using Eq. (42) and 
Theorem 2.2 to get following equation 

vλ ζ, t = g ζ + λ Jt
α

0  −ζ2 ∂2v

∂ζ2 − 0.5 ζ
∂v

∂ζ
+ v .       (44) 

By substituting Eq. (43) in Eq. (44), we get 

 λk∞
k=0 vλ ζ, t = g ζ +  λ Jt

α
0  −ζ2  λk∞

k=0
∂2vk

∂ζ2 − 0.5 ζ  λk∞
k=0

∂vk

∂ζ
−  λk∞

k=0 uk . (45) 

After equating the coefficients of identical powers of λ  in Eq. (45), we can obtain the following 
coefficients: 
v ζ, t = g(ζ), 

v1 ζ, t = Jt
α

0  −ζ2 ∂2v0

∂ζ2 + 0.5ζ
∂v0

∂ζ
− v0 , 

𝑣2 𝑣, 𝑡 = 𝐽𝑡
𝛼

0  −𝜁2 𝜕2𝑣1

𝜕𝜁2 + 0.5𝜁
𝜕𝑣1

𝜕𝜁
− 𝑣1 , 

𝑘 = 3,4, …       (46) 
From the Eq. (40) and (43). We can get the solution to the considered problem as 
𝑣 𝜁, 𝑡 = 𝑙𝑖𝑚𝜆→1 𝑣𝜆(𝜁, 𝑡) =  𝑣𝑘

∞
𝑘=0 (𝜁, 𝑡).                                             (47) 

From Eq. (47), we can see that 𝑣 𝜁, 0 = 𝑣𝜆(𝜁, 0) which implies 𝑔 𝜁 = 𝑣(𝜁, 0). 
Using the components which we found in Eq. (46) and with assistance of  Definition 4, and Eq. (47). The 
computation of the solution and its graphical representations are performed using the Mathematica 
program. 
𝑣0 𝜁, 𝑡 = 𝜁3 , 

𝑣1 𝜁, 𝑡 = 6.5 𝜁
 𝑡𝛼

𝛤𝛼+1
, 

𝑣2 𝜁, 𝑡 = 42.25 𝜁3  𝑡2𝛼

𝛤2𝛼+1
,                                                                                                    (48) 
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. 

. 
Thus, the approximate solution of Eq. (37) is given by 

𝑣 𝜁, 𝑡 = 𝜁3 + 6.5 𝜁
 𝑡𝛼

𝛤𝛼+1
+ 42.25 𝜁3  𝑡2𝛼

𝛤2𝛼+1
+ ⋯                                                                 (49) 

 

 
(a) (b) 

 
(c) 

Figure 4. 3D plots of  Example 2, when (a) AAM solution, (b) Exact solution, (c) Absolute error=

 𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝐴𝑝𝑝 . , at 𝛼 = 1. 

 

 
Figure 5.Nature of achieved outcomes for considered problem when 𝜁 = 0.02, for distinct 𝛼 values. 

 

 
Figure 6. Nature of the solution with respect to 𝜁 at 𝑡 = 0.01. 
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Table 2: Numerical simulation for Example 2 at ζ = 0.003 when α = 1.0 for different values of t. 
t Exact solution 

(v exact) 
AAM Solution 
(v AAM) 

Absolute error 
|v exact-v AAM| 

0.01 2.53008× 10−8 2.53008× 10−8 3.51247 × 10−9 
0.02 2.37086× 10−8 3.07484× 10−8 7.03978 × 10−7 
0.03 2.22165× 10−8 3.28133× 10−8 1.05968 × 10−7 
0.04 2.08184× 10−8 3.50178× 10−8 1.41984 × 10−6 
0.05 1.95082× 10−8 3.7368× 10−8 1.78597 × 10−6 
0.06 1.82805× 10−8 3.98763× 10−8 2.15958 × 10−6 
0.07 1.71301× 10−8 4.25519× 10−8 2.54218 × 10−5 
0.08 1.60521× 10−8 4.54054× 10−8 2.93533 × 10−5 
0.09 1.50419× 10−8 4.84477× 10−8 3.34058 × 10−5 
0.1 1.40952× 10−8 5.16904× 10−8 3.75951 × 10−5 

 
Example 3. 
In this example, we consider the [36] time-fractional Black-Scholes equation, 

𝐷𝑡
𝛼

0
𝑐 𝑣 𝜁, 𝑡 + 0.08 (2 + 𝑆𝑖𝑛 𝜁)2𝜁2 𝜕2𝑣

𝜕𝜁2 + 0.06𝜁
𝜕𝑣

𝜕𝜁
− 0.06𝑣 = 0     0 < 𝛼 ≤ 1,       (50) 

with the starting solution 
𝑣 𝜁, 0 = 𝜁 − 25𝑒−0.06 .   (51) 

The above Eq. (50) can be re-written as 
𝜕𝛼𝑣

𝜕𝑡2 = 0.08 (2 + 𝑆𝑖𝑛 𝜁)2𝜁2 𝜕2𝑣

𝜕𝜁2 + 0.06𝜁
𝜕𝑣

𝜕𝜁
− 0.06𝑣,       (52) 

with the help of the AAM procedure, let us assume the solution of the Eq.  (50) in a below manner 
𝑣(𝜁, 𝑡) =  𝑣𝑘

∞
𝑘=0 (𝜁, 𝑡).   (53) 

Let us consider the following to obtain approximate solution of Eq. (52) 

𝐷𝑡
𝛼

0
𝑐 𝑣 𝜁, 𝑡 = 𝜆  0.08 (2 + 𝑆𝑖𝑛 𝜁)2𝜁2 𝜕2𝑣

𝜕𝜁2 + 0.06𝜁
𝜕𝑣

𝜕𝜁
− 0.06𝑣 ,   (54) 

with the assumed starting solution 
𝑢𝜆 𝜁, 0 = 𝑔(𝜁).                                                                 (55) 
Assume that Eq. (54) has the below series of results 
𝑢𝜆(𝜁, 𝑡) =  𝜆𝑘𝑣𝑘

∞
𝑘=0 (𝜁, 𝑡).                                                                 (56) 

Implementing the RL fractional partial integral on each sides of the Eq. (54) and also using Eq. (55) and 
Theorem 2.2 to get following equation 

𝑣𝜆 𝜁, 𝑡 = 𝑔 𝜁 + 𝜆 𝐽𝑡
𝛼

0  0.08 (2 + 𝑆𝑖𝑛 𝜁)2𝜁2 𝜕2𝑣

𝜕𝜁2 + 0.06𝜁
𝜕𝑣

𝜕𝜁
− 0.06𝑣 .  (57) 

Substituting Eq. (56) in Eq. (57), we get 

 𝜆𝑘∞
𝑘=0 𝑣𝜆 𝜁, 𝑡 = 𝑔 𝜁 +  𝜆 𝐽𝑡

𝛼
0  0.08 (2 + 𝑆𝑖𝑛 𝜁)2𝜁2  𝜆𝑘∞

𝑘=0
𝜕2𝑣

𝜕𝜁2 + 0.06 𝜁  𝜆𝑘∞
𝑘=0

𝜕𝑣

𝜕𝜁
−  0.06 𝑣 .                              

(58) 
After equating the coefficients of identical powers in Eq. (53), we can obtain the coefficients: 
𝑣0 𝜁, 𝑡 = 𝑔(𝜁), 

𝑣1 𝜁, 𝑡 = 𝐽𝑡
𝛼

0  0.08 (2 + 𝑆𝑖𝑛 𝜁)2𝜁2 𝜕2𝑣0

𝜕𝜁2 + 0.06 𝜁
𝜕𝑣0

𝜕𝜁
− 0.06𝑣0 , 

𝑣2 𝜁, 𝑡 = 𝐽𝑡
𝛼

0  0.08 (2 + 𝑆𝑖𝑛 𝜁)2𝜁2 𝜕2𝑣1

𝜕𝜁2 + 0.06 𝜁
𝜕𝑣1

𝜕𝜁
− 0.06𝑣1 , 

  (59) 

𝑘 = 3,4, … 
From the Eq. (53) and (56),we can get the solution to the considered problem as 
𝑣 𝜁, 𝑡 = 𝑙𝑖𝑚𝜆→1 𝑣𝜆(𝜁, 𝑡) =  𝑣𝑘

∞
𝑘=0 (𝜁, 𝑡).                                            (60) 

From Eq. (60), we can see that 𝑣 𝜁, 0 = 𝑣𝜆(𝜁, 0) which implies 𝑔 𝜁 = 𝑣(𝜁, 0). Using the components 
which we found in Eq. (59) and with the help of Definition 4 and Eq. (60). The computation of the solution 
and its graphical representations are performed using the Mathematica program. 
v0 ζ, t = ζ − 25e−0.06 , 

v1 ζ, t = 1.41265
 tα

Γα+1
, 

v2 ζ, t = −0.084759
 t2α

Γ2α+1
,                                                                                                (61) 

. 

. 
Thus, the approximate solution of Eq. (50) is given by 
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(a)                                                                                                  (b) 

 
(c) 

Figure 7. 3D plots of  Example 3, when (a) AAM solution, (b) Exact solution, (c) Absolute error=

 uexact − uApp . , at α = 1. 

 

 
Figure 8.Nature of achieved outcomes for problem when ζ = 0.02, for distinct α values. 

 

 
Figure 9.Nature of the solution with respect to ζat t = 0.01. 
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Table 3: Numerical simulation for Example 3 at ζ = 1, and α = 1 for different t. 
t Exact solution 

(v exact) 
AAM Solution 
(v AAM) 

Absolute error 
|v exact-v AAM| 

0.01 -2.253× 101 -2.253× 101 3.67845 × 10−7 
0.02 -2.25159× 101 -2.25159× 101 3.67845 × 10−7 
0.03 -2.25018× 101 -2.25018× 101 3.67845 × 10−7 
0.04 -2.24877× 101 -2.24877× 101 3.67845 × 10−7 
0.05 -2.24736× 101 -2.24736× 101 1.78597 × 10−7 
0.06 -2.24595× 101 -2.24595× 101 3.67845 × 10−7 
0.07 -2.24454× 101 -2.24454× 101 3.67845 × 10−7 
0.08 -2.248314× 101 -2.248314× 101 3.67845 × 10−7 
0.09 -2.24173× 101 -2.24173× 101 3.67845 × 10−7 
0.1 -2.24033× 101 -2.24033× 101 3.67845 × 10−7 

 
5. Numerical Results and Discussion   
In this article, we employed a newlyestablished analytical approximation technique to analyse the 
iterative process and properties of the Caputo and Reimann-Liouville integral operators. We have to solve 
some linear time fractional Black-Scholes equations. The solutions are shown via graphs to determine the 
nature of the considered fractional differential equation. Example 1: Figure 1 displays the solution to the 
equation in 3D plots at the value of, while Figure 2 illustrates the characteristics and behaviour of the 
solutions for changing alpha values. Example 2, Figure 3, displays the solution to the equation in 3D plots 
at the importance of, while Figure 4 illustrates the characteristics and behaviour of the solutions for 
changing alpha values. Example 3, Figure 5, displays the solution to the equation in 3D plots at the 
importance of, while Figure 6 illustrates the characteristics and behaviour of the solutions for changing 
alpha values. Overall, we note that the method is simple for nonlinear and linear fractional differential 
equations and requires less processing steps. The approximate analytical method (AAM) is particularly 
efficient in quickly getting the analytical solutions for the Black-Scholes equations without making any 
assumptions. 
 
6. CONCLUSION 
In this paper, an approximate analytical technique is based on iterative processes, Caputo and Reimann-
Liouville integral operator properties. The AAM for solving fractional Black-Scholes equations was 
introduced. The fractional partial differential equation that represents the Black-Sholes equation is being 
studied using the AAM method. We plotted 3D plots and alpha curves, which shows how accurate the 
results were. The results are compared with the exact solution to that problem, and we can see that they 
form the best match. The expected analytical solution for the fractional Black-Scholes equation is studied 
using AAM. This effective method requires less computational work to solve fractional differential 
equations. 
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