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ABSTRACT 
Glucose intolerance is a common catabolism ailment that can lead to serious consequences such as 
cardiovascular disease, renal failure, and blindness. Nearly 77 million people in India have type 2 
diabetes, and another 25 million are at risk of getting it. India has the second-highest rate of diabetes 
in the world. A lot of people still don't know about the health risks they face, which shows how 
important early detection is to lower death rates and improve patient health. The proposed methods 
deal with how well CNN, LSTM, and SimpleRNN models can forecast the early phase of diabetes. For 
this research, we collected live (primary source) data and preprocessed, we are making it as a 
standard dataset and we will publish it, tentatively named “Southern India Diabetes Dataset (SIDD)”. 
Our live dataset comprises 806 patient samples, of which 532 have diabetes patient samples and 274 
are nondiabetes patient samples. We primarily considered demographic and clinical factors, such as 
age, gender, and diabetes symptoms. Various neural network models have trained the dataset. The 
models have achieved accuracy of 96% for the CNN, 95% for the LSTM, and 99.99% for the 
SimpleRNN. We evaluated the algorithms' performance based on the F1-score, recall, and precision. 
This indicates that modern deep learning models are proficient at distinguishing between individuals 
with diabetes and those who are not diabetic. 
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1. INTRODUCTION 
Diabetes is a chronic form that stays frequently regarded as intractable and is primarily defined by the 
inability to regulate blood sugar. In this study, we collected live data and generated a standard dataset 
tentatively named "Southern India Diabetes Dataset (SIDD)" that includes 806 patient diabetic factors, 
focussing on demographic and clinical factors such as age, gender, and diabetes symptoms. It may result 
in lasting harm to different areas of the body, including the heart, blood vessels, eyes, and nerves among 
other regions of the body. The disease is caused by either inadequate insulin synthesis or cellular 
resistance to insulin [1]. This leads to inadequate glucose absorption by the body's cells, resulting in 
symptoms such as frequent urination, unexplained weight loss, excessive thirst, increased hunger, 
delayed wound healing, and dizziness. Neglecting diabetes may result in serious problems like 
cardiovascular disease, retinopathy, and renal failure [8]. The incidence of diabetes is rising rapidly, 
particularly in developing countries [4, 5, 6], where it significantly contributes to ailments such as renal 
disease, stroke, myocardial infarctions, blindness, and limb amputations. A considerable proportion of 
patients with diabetes stay undiagnosed, hence increasing the strain on healthcare systems when 
untreated problems arise [2, 11]. Diabetes is a substantial global public health concern, incurring 
considerable emotional, social, and economic burdens [9]. In India [3], the economic impact is especially 
alarming since diabetes is anticipated to rise among both younger and older demographics, exerting more 
pressure on the nation's healthcare system [13]. The World Health Organization specifies that beyond 
422 million people widespread agonize from diabetes, resulting in 1.6 million deaths annually. Recent 
research indicates that the prevalence of diabetes is increasing at a more rapid pace than in prior years. 
India now holds the second position worldwide for the prevalence of diabetes, with more than 77 million 
persons suffering from type 2 diabetes, with another 25 million afflicted by prediabetes [15–17]. 
Numerous people remain oblivious to the health dangers they encounter, underscoring the need for early 
identification to mitigate mortality and enhance patient outcomes [18]. glucose intolerance, a catabolism 
disorder, impairs the physical potential to effectively translate subsistence into energy. Meals provide 
glucose, an essential energy source, while the pancreas produces insulin, a hormone that facilitates 
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cellular glucose uptake. The rising occurrence of diabetes in countries like India underscores the need for 
public health measures focused on early detection, risk factor mitigation, and effective disease 
management to prevent complications [12]. Studies indicate that diabetes may be undiagnosed for a 
duration of 4 to 12 years prior to identification [22]. At the time of diagnosis, about fifty percent of people 
already exhibit diabetes-related problems [23]. Research demonstrates that early identification may 
mitigate serious consequences, including heart disease, blindness, vascular problems, stroke, renal 
failure, and amputations [24]. Therefore, timely diagnosis remains vital to improving the worth of 
lifespan for individuals through diabetes [11, 19, 20, 21]. Since their inception, deep learning algorithms 
have proven a formidable instrument in healthcare, especially for the early prediction of illnesses such as 
diabetes [25]. Some methods, like CNNs, LSTM, and SimpleRNN, can look at a lot of medical data and find 
patterns on their own, which can lead to more accurate predictions than regular ML methods [11, 26, 27]. 
Refat et al. [28] examined the early forecast of diabetes by assessing several ML and DL methodologies. 
They used a diabetic dataset from the UCI repository to evaluate nine different classification systems. 
Their findings demonstrated that all techniques were successful, with the XGBoost classifier attaining 
greater accuracy relative to the other algorithms and approaching perfect results in early-phase diabetes 
prediction. Laila, U. E., and colleagues erected a prognostic model for the early diabetes risk assessment 
via AdaBoost, bootstrap aggregation (Bagging), and random forests [29]. The field of healthcare makes 
extensive use of deep learning methods, particularly for predicting and evaluating the risk of diabetes. As 
a result, a number of researchers have developed unique methods for early diagnosis of this illness using 
a variety of ML and DL technologies. This literature review examines several research papers that employ 
ML and DL algorithms for diabetes prediction. They used a UCI dataset in their study to aid in the early 
prediction of diabetes. The random forest model demonstrated exceptional performance. Khafaga, D.S., et 
al. [30] created a model using the Apriority technique to analyse 12 features and generate association 
rules based on the lift matrix. The K Nearest Neighbour method in their study reached an accuracy of 
97.36%, sensitivity of 99.21%, specificity of 95.94%, and precision of 98.22%. Atif, M. et al. [31] created a 
prediction algorithm for early diabetes using the UCI dataset of 520 samples. They used many 
methodologies, including k-NN, Decision Tree, SVM, Stochastic Gradient Descent, Random Forest, ANN, 
Naive Bayes, Logistic Regression, Gradient Boosting, and AdaBoost. Gradient boosting performed 
exceptionally well, achieving an accuracy of 97.2%, a ROC curve score of 98.8%, an F-measure of 97.2%, 
and precision and recall of 97.2%. Yurttakal, A. H., et al. [32] examined early diabetes prediction 
employing a deep neural network methodology referred to as stacked ensemble based on the UCI dataset. 
Their model attained an exceptional ROC curve score of 99.19%, sensitivity at 100%, and specificity at 
98.39%. The integration of two deep neural networks (DNNs) had a success rate of 99.36%, surpassing 
configurations with three, four, or five DNNs and resulting in an F-measure of 99.47%. The proposed 
study recommends the following research directions: Section 2 is about impression of notable previous 
study towards early diabetes prediction via ML and DL methodologies. Section 3 outlines the 
methodology, including data collection, dataset characteristics, data processing, and the deep learning 
algorithms used in the study. Section 4 evaluates the algorithms accuracy, while the remainder of 5 
provides the results and discussion. 
 
2. Proposed Method 
The research will include essential phases such as live data collection, model training, model testing, and 
performance assessment. We divide the dataset into two predictive categories: "yes" (denoted by 1) and 
"no" (denoted by 0). Divided the dataset into an eighty percentage for training set and twenty percentage 
for testing set. We will use CNNs, LSTM, and SimpleRNN to forecast early-phase diabetes. We will train 
the models using the training set, assess their efficacy with the testing set, and further validate them using 
novel data. Fig. 2.1 delineates the procedure of the proposed method. 
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Fig 2.1: Flowchart of the Suggested Framework 

 
2.1 Primary Data Collection 
We have gathered real-time data from the Koppal Institute of Medical Sciences in Koppal for this 
study, which we have tentatively named the "Southern India Diabetes Dataset (SIDD)". This dataset 
includes 806 patient diabetic factors, primarily focusing on demographic and clinical factors such as 
age, gender, and symptoms associated with diabetes. We developed this dataset by leveraging the UCI 
early-stage diabetes risk prediction dataset and integrating its attributes. The dataset contains 17 
characteristics, which are as follows: age, gender, polyuria, sudden weight loss, weakness, polyphagia, 
genital thrush, visual blurring, itching, irritability, delayed healing, partial paresis, muscle stiffness, 
alopecia, obesity, polydipsia, and class. Table 2.1 provides a comprehensive list of these 
characteristics. 
 

Table 2.1. Characteristics of the Dataset 
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The dataset used in this study has many significant attributes for diabetes prediction. The characteristics 
are age, ranging from 21 to 80 years, and gender, denoted as male (1) and female (0). Polyuria (excessive 
urination), sudden weight loss, weakness, polyphagia (excessive hunger), genital thrush (yeast infection), 
visual blurring, itching, irritability, delayed healing, partial paresis (partial muscle paralysis), muscle 
stiffness, alopecia (hair loss), obesity, and polydipsia (excessive thirst) are all categorised as Yes (1) or No 
(0). The goal variable, class, signifies the presence (1) or absence (0) of diabetes in the person. The 
purpose of this dataset is to aid in the creation and evaluation of diabetes prediction models, which 
encompass a range of clinical symptoms and demographic data. 
 
2.2 Convolutional Neural Network 
The CNN is utilized to perform binary classification of numerical data. We divided the dataset into 
features and target variables, resulting in the formation of training and testing sets. We executed the 
standardisation procedure for feature scaling and restructured the data to meet the requirements of the 
Conv1D layers. There was a Conv1D layer with 32 filters in the CNN design, then MaxPooling1D, Flatten, 
and Dense layers, and finally an output layer with a sigmoid activation function. The model endured 
training for one hundred epochs, used a batch size of sixteen, and employed the Adam optimiser with 
binary cross-entropy loss. The evaluation of the system's performance used a confusion matrix, a 
classification report, and visual representations of training and validation accuracy and loss. The Fig. 2.2 
delineates the fundamental architecture of a Convolutional Neural Network (CNN). 
 

 
Fig 2.2: The fundamental architecture of a Convolutional Neural Network (CNN) 

 
2.3 Long Short-Term Memory 
Long Short-Term Memory networks, a kind of recurrent neural network, use memory cells and gating 
mechanisms to capture long-range dependencies in sequential input. Networks achieve this. This design 
enables LSTMs to excel in applications like sequence prediction and time-series forecasting. To complete 
this binary classification task, we had to change the shape of the LSTM's three-dimensional input features, 
make an LSTM model with fifty units and ReLU activation, and then add a dense layer with sigmoid 
activation. We constructed the model using the Adam optimiser with binary cross-entropy loss and 
trained it for one hundred epochs. The evaluation used a confusion matrix, a classification report, 
visualisations of accuracy and loss, and a heatmap of the confusion matrix. The Fig. 2.3 delineates the 
fundamental architecture of a Long Short-Term Memory networks. 
 

 
Fig 2.3: The fundamental architecture of a Long Short-Term Memory networks 

 
2.4 Simple Recurrent Neural Network 
A fundamental architecture for deep learning is the Simple Recurrent Neural Network, designed to 
manage sequential input by integrating temporal correlations. In contrast to feedforward networks, 
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SimpleRNN is characterised by its internal memory, which evolves concurrently with the processing of 
incoming inputs. This facilitates the model's ability to identify patterns inside sequences more efficiently. 
This design includes a SimpleRNN layer with fifty units, triggered by ReLU, to provide a probability score 
for binary classification. The sigmoid function triggers a dense layer with a single unit, succeeding this 
layer. The dense layer generates the final classification outcome, whereas the RNN layer processes 
feature sequences. We construct the model using the Adam optimiser and binary cross-entropy loss, with 
accuracy serving as the performance measure. We trained the model for one hundred epochs with a batch 
size of sixteen, and then conducted validation on a distinct test set. The Fig. 4 delineates the fundamental 
architecture of a Simple Recurrent Neural Network. 
 

 
Fig 2.4: The fundamental architecture of a Simple Recurrent Neural Network 

 
3. Experimental Results and Discussion 
This research used three deep learning algorithms: CNN, LSTM, and SimpleRNN. Real-world situations 
provided the dataset for this study. Data visualisation methods included in the dataset analysis comprise 
bar charts, line graphs, scatter plots, and heat maps. Figures 3.1, 3.2, 3.3, and 3.4 display the visualisation 
approaches. Table 3.1 illustrates the separation of the dataset into two separate sets: the training set and 
the testing set. We conducted an exhaustive taxation of the effectiveness of the deep learning algorithms, 
presenting the findings in Tables 3.2 and 3.3, along with Figures 3.5, 3.6, and 3.7. Table 3.8 illustrates that 
the models underwent further assessment using fresh data to forecast diabetes or non-diabetes 
outcomes. Table 3.9 delineates a comparison between the findings derived from the proposed model and 
those from prior studies. 
 

 
Fig 3.1: Correlation (Confusion) matrix 

 
Illustration in the Fig. 3.1: Age (0.43) demonstrates a strong positive connection with the class. Weakness 
(0.44) and muscular stiffness (0.33) exhibit moderate associations with the class. Symptoms such as 
visual blurring, pruritus, irritation, and protracted healing have a modest relationship to the 
classification. Gender, baldness, obesity, and polydipsia have minimal positive associations, while 
polyuria, abrupt weight loss, and partial paresis reveal negligible negative relationships with the class. 
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Data Visualization 

 
Fig 3.2: The Number of counts according to each feature in the dataset 

 

 
Fig 3.3: Diabetes distribution according to the ages 
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The pie chart shows the distribution of patients across many age categories, therefore stressing the 
diabetes incidence in the data of the whole patient group, the 40–50 age range is 29.3%; the 50–60 age 
range is 25.2%. The 50-60 age demographic is the second biggest group of patients. Individuals aged 60 
to 70 comprise 21.2% of the population, while those aged 70 to 80 comprise 10.9%. A decreased 
proportion of persons falls into the younger age of 30-40 years and 20-30 years, representing 6.74% and 
6.62%, respectively. The medical data indicate 532 instances of diabetes, far exceeding the 274 instances 
of non-diabetes. The gender distribution indicates that the sample comprises 539 male patients and 267 
female patients. Acquiring demographic and health data is crucial for understanding age- and gender-
specific trends in diabetes incidence, which may affect the deployment of focused healthcare 
interventions. 
 

 
Fig 3.4: Number of Diabetes and nondiabetic in dataset 

 
Illustration in Fig. 3.4: The Distribution of Diabetes and Nondiabetics Instances in the Dataset illustrates 
the proportions of diabetes (Yes-1) and nondiabetic (No-0) instances, with 79.3% classified as diabetic 
and 20.7% as nondiabetic. 
 

Table 3.1: Allocation of Data for Diabetes Classification 
Class Training Set Validation Set Test Set 

Diabetes      417        55     60 

Nondiabetes      227        26     21 

Total      644        81     81 

 
Table 3.1 illustrates the configuration of validation, test and training data used in a diabetic classification 
problem. From the total of 806 samples, we split into 3 sets: a training set including 644 samples and a 
test and validation set consisting of 162 samples. We extracted the educational goals from the training 
dataset. There are 532 diabetic samples, with 417 designated for training and 115 for testing and 
validation. The non-diabetes group consists of 274 samples, with 47 allocated to the test and validation 
set and 227 to the training set. 
 

Table 3.2: Performance of the CNN, LSTM and SimpleRnn classifiers 
Algorithms Accuracy Loss Validation 

Accuracy 
Validation 
Loss 

Time 

CNN 93.35% 0.1633 97.53% 0.0841 6ms/step 

LSTM 92.46% 0.1883 96.30% 0.0967 24ms/step 

SimpleRNN 98.80% 0.0462 99.99 % 0.0051 11ms/step 

 
We used three different deep learning classifiers CNN, LSTM, and SimpleRNN to determine which one was 
the best in diabetes classification. As shown in Table 3.2, all three models successfully aligned with the 
training data, achieving a training and validation accuracy of 93.35%, 92.46% and 98.80% and validation 
accuracy of 97.53%, 96.30% and 100%. While training, the CNN model had a loss of 0.1633, the LSTM 
model a loss of 0.1883, and the SimpleRNN model a loss of 0.0462. The validation losses are like 0.0841, 
0.0967 and 0.0051. The losses are like of 6ms/step, 24ms/step and 11ms/step. 
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Table 3.3: Algorithms Classification Report Performance 
Algorithms Class Precision Recall F1-score Support 

CNN 0 88% 100% 93% 21 
1 100% 95% 97% 60 

LSTM 0 95% 86% 90% 21 
1 95% 98% 97% 60 

SimpleRNN 0 100% 100% 100% 21 
1 100% 100% 100% 60 

 
Table 3.3 demonstrate the classification report for each model, along with the F1-score, accuracy, and 
recall for the two categories of 0 (non-diabetes) and 1 (diabetic). All algorithms demonstrated perfect 
accuracy, recall, and F1-scores, suggesting that they were all very proficient in classifying patients into 
those with and without diabetes. Although the support for the nondiabetic class was much smaller (21 
instances) than that for the diabetic class (60 samples), the classifiers managed this imbalance without 
any decline in performance. 
 

 

 
Fig 3.5: CNN Performance Metrics – Accuracy, Loss, and Confusion Matrix and Roc Curve 

 
Fig. 3.5 shows the model's gain and loss in accuracy over 100 epochs of training and evaluation. The 
validation accuracy is consistently improving, which is very similar to the training accuracy. The 
confusion matrix shows that the model correctly identified most cases of diabetes and non-diabetes. The 
area under the curve (AUC) of the ROC curve is 100%, which means that the classification works very well 
and there are no fake positives or negatives. 
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Fig 3.6: LSTM Performance Metrics – Accuracy, Loss, and Confusion Matrix and Roc Curve 

 
Fig 3.6 shows the model's gain and loss in accuracy over 100 epochs of training and evaluation. The 
validation accuracy is consistently improving, which is very similar to the training accuracy. The 
confusion matrix shows that the model correctly identified most cases of diabetes and non-diabetes. The 
area under the curve (AUC) of the ROC curve is 95%, which means that the classification works very well 
and there are 3 false negatives. 
 

 

 
Fig 3.7: SimpleRNN Performance Metrics – Accuracy, Loss, and Confusion Matrix and Roc Curve 
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Fig. 3.7 depicts the performance measures of the SimpleRNN model, together with accuracy, loss, 
confusion matrix, and ROC curve. The model attained almost flawless accuracy, with training and 
validation accuracy rapidly converging. The confusion matrix indicates 100% accuracy in classification, 
while the ROC curve reveals an AUC of 100%, signifying outstanding performance. Both training and 
validation losses decreased markedly, indicating successful model tuning. 
 

Table 3.4: Testing of algorithms prediction with test set 
CNN LSTM Simple RNN 
Actual  Predicted Confidence Actual  Predicted Confidence Actual  Predicted Confidence 
0 0 0.530593 0 0 0.834472 0 0 0.996326 
1 1 0.976719 1 1 0.875242 1 1 0.999300 
1 1 0.801012 1 1 0.863130 1 1 0.999303 
1 1 0.995636 1 1 0.883799 1 1 0.998057 
1 1 0.993566 1 1 0.465355 1 1 0.988812 
 
Table 3.4 illustrates the efficacy of CNN, LSTM, and SimpleRNN algorithms in forecasting diabetes using 
test set data. With high confidence, all three models accurately classified both "non-diabetic" and 
"diabetic" categories, with a projected probability of around 1 for the right classifications. The findings 
indicate that all evaluated neural network models can successfully differentiate between diabetes and 
non-diabetic patients. This illustrates the efficacy of these algorithms in medical predictive tasks, 
particularly with empirical datasets. 
 

Table 3.5: Comparison of the results for proposed algorithms for UCI dataset 
Authors Methods Dataset Accuracy 
Karthikeyini, S., et al. 
[3] 

KNN, DT, RF, SVM, NB, 
XGBoost, ANN, CNN 

UCI Dataset 
 

99.04% 

Teju, V., et al. [8] Stacked ensemble-
based deep neural 
network approach 

UCI Dataset 99.36% 
 

Proposed Method CNN, LSTM, 
SimpleRNN 

SIDD-806 99.99% 

 
Table 3.5 illustrates a relative investigation of the performance of several algorithms on the UCI 
dataset. The suggested technique, including CNN, LSTM, and SimpleRNN, has surpassed prior 
methodologies, attaining 99.99% accuracy on a primary dataset. Conversely, conventional ML 
techniques used on the UCI dataset, including KNN, SVM, and ANN, produced 99.04% accuracy and 
stacked ensemble deep learning methodology enhanced performance to 99.36%. The results illustrate 
the efficacy of sophisticated neural networks for precise predictions on fluctuating datasets. 
 
CONCLUSION 
Diabetes is becoming more common in countries like India, which shows that early diagnosis, lowering 
risk factors, and effective disease control are important for public health to avoid problems. In this study, 
we gathered real time data and created a standard dataset, tentatively named "Southern India Diabetes 
Dataset (SIDD)". This article aimed to evaluate the accuracy of deep learning algorithms, including CNN, 
LSTM, and SimpleRNN, in premature-phase diabetes forecast. Since diabetes is crucial for efficient 
treatment and the avoidance of severe consequences, since diabetes constitutes a global health issue. 
Appraised the models using an 806-patient records dataset and all achieved remarkable levels of 
accuracy. Concurrently the SimpleRNN achieved 99.99% accuracy. These results will be verified by the 
medicos. After the verification, we will check how well deep learning approaches are accurately 
forecasting diabetes with new samples, particularly in its earliest stages. This would provide medical 
professionals with strong tools to help quickly identify disease and helps in healthcare industry to 
facilitate prompt diagnosis, thereby enhancing patient outcomes and potentially reducing the incidence of 
diabetes-related comorbidities. In the future, we aim to broaden our SIDD dataset by incorporating we 
are not only focusing on diabetic data but also will focus on non-diabetes data, ultimately transforming it 
into a SIDD standard dataset, an open resource for researchers to explore and advance innovations in this 
field.  
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