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ABSTRACT 
Remote sensing (RS) scene classification using deep learning has become a rapidly advancing field, 
offering substantial improvements in accuracy and automation. Deep learning (DL) methods excel in 
extracting intricate features from RS imagery, eliminating the need for manual feature engineering 
required by traditional machine learning (ML) techniques. Unlike ML, where domain-specific features 
must be handcrafted, DL algorithms learn relevant features automatically during training. Convolutional 
neural networks (CNNs) are widely used in RS scene classification for their ability to capture spatial 
dependencies and local patterns within images. This paper introduces a novel approach, the Sparrow 
Search Algorithm with Deep Learning Assisted Remote Sensing Scene Detection and Classification 
(SSADL-RSSDC). The SSADL-RSSDC method automates the identification and classification of multiple 
scene labels in RS images. It begins with preprocessing using a median filtering (MF) approach, followed 
by feature extraction using a deep residual network (ResNet) to learn hierarchical representations of 
input data. The Sparrow Search Algorithm (SSA) is employed to optimize the hyperparameters of the 
ResNet model. For the final detection and classification, the Extreme Learning Machine (ELM) is used. The 
SSADL-RSSDC technique's performance is evaluated on a benchmark RS dataset, demonstrating superior 
results compared to other models. 
 
Keywords: Remote Sensing Image; Scene Detection; Deep Learning; Sparrow Search Algorithm; 
Computer Vision 
 
1. INTRODUCTION 
Remote sensing images (RSIs) are a useful data source for earth monitoring that will support us in 
measuring and observing comprehensive structures on the Earth's surface [1]. With the developments of 
earth observation technology, the amount of RSIs is extremely increasing. It will give a specific emergency 
in the exploration of how to create all usage of ever-increasing RSIs for intelligent earth observation [2]. 
Therefore, it is tremendously significant to comprehend large and difficult RSIs [3]. For example, a main 
and challenging problem for efficiently analysing the RSIs, scene classification of RSIs will be an active 
research domain. RSI scene classification is to properly label specified RSIs with predetermined semantic 
types [4]. In recent years, wide-ranging research under RSI scene classification has been undertaken 
driven by its real-time applications.   
Developments in computer vision (CV) comprise finding particular features that will be efficient in 
memory utilization and computational time [5]. The classifiers are needed to have significant ability of 
generalisation, yet accomplish higher performance rates [6]. RSI properties develop a major exploration 
domain. The feature-based technique will be added step from data mining approaches to specify high 
proportion of implementation under analysis of RSI [7]. Image classification is an important application in 
the CV complex field. This research's main aim is to increase methods for RSI classification employing 
Machine learning (ML)-based methods. Satellite images can be categorized and features in the images like 
buildings, landscapes, deserts, and buildings have been analyzed with time-relevant modifications [8]. 
Among the subdivisions of Artificial Intelligence (AI), machine learning (ML) has gained remarkable 
accomplishments, and is presently employed in remote detection [9]. Advancing by the usage of deep 
convolutional features, the approaches rely on deep learning (DL) is achieve higher effectiveness in image 
classification and the accuracy is continuous existence of progressive with the enhancement of innovative 
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techniques. DL method can also be familiar with cloud detection in satellite-based images in currently 
continuing research [10]. 
This article introduces Sparrow Search Algorithm with Deep Learning Assisted Remote Sensing Scene 
Detection and Classification (SSADL-RSSDC) technique. The focus of the SSADL-RSSDC technique lies in 
the automated identification and classification of multiple scene labels in the RS images. For initial 
preprocessing step, the SSADL-RSSDC technique applies median filtering (MF) approach. Besides, the 
SSADL-RSSDC technique involves deep residual network (ResNet) model for learning hierarchical 
representations of the input data. Moreover, the SSA can be applied to selecting the optimum values of the 
Deep ResNet’shyperparameter. Finally, extreme learning machine (ELM) model is applied for the 
detection and classification process. The performance assessment of the SSADL-RSSDC technique takes 
place using benchmark RSI dataset. 
 
2. LITERATURE WORKS 
Zhang and Wang [11] introduced a progressive feature fusion (PFF) architecture dependent upon GCN 
system comprising two components such as a multiscale contextual information fusion (MCIF) and 
multilayer feature extraction (MFE). The MFE method was employed for extraction, and the MCIF 
technique was designed to capture significant contextual data. In MCIF, GCN was employed. By using the 
PFF approach, the graph features in every level have been combined with the subsequent level features. 
Moreover, collected GCN relies on channel combination was then developed. In [12], an efficient defense 
model for RSI scene classification, called reconstruction-enabled and distance-optimized adversarial 
training (RDAT) has been developed. Similarly, a distance-optimized (DO) approach was developed in 
adversarial training (AT). Additionally, a reconstruction-assisted (RA) block was designed. Particularly, in 
this block, by SwinT-MSC-UNet (SMUNet) and multiscale convolution (MSC) block, Swin Transformer 
(SwinT) block was built. Ye et al. [13] presented an innovative incremental learning model called effective 
channel attention-based multiscale depthwise network (ECA-MSDWNet) technique. Besides, in 
incremental learning method, the techniques increase the innovative components that rely on a dynamic-
structure technique. Lastly, this work focuses on the system for decreasing redundant features and 
feature sizes via an efficient knowledge distillation approach. 
Ahmed et al. [14] projected an IoT-enabled smart surveillance technique. The method offers an AI-based 
system employing the DL-based segmentation algorithm PSPNet to segment various objects. The method 
also employed an aerial drone database, executed the data augmentation methods, and leveraged DTL to 
improve the model’s effectiveness. In [15], a modified detection technique was developed that depends 
upon higher-resolution RSIs and DL. Primarily, the improved simple linear iterative clustering (SLIC) 
scheme was utilized. Then, annotated databases have been produced employing cropping-with-
inpainting, and multiscale extracting techniques. Afterwards, datasets obtained under posttemporal and 
pretemporal images could be employed. Lastly, an enriched object-oriented CNN method executes 
classification. 
Aljebreen et al. [16] developed an innovative Land Use and Land Cover Classification utilizing the River 
Formation Dynamics Algorithm with DL (LULCC-RFDADL) system. The dense EfficientNet algorithm can 
be employed for feature extraction. Likewise, the RFDA method was implemented for tuning. The system 
utilizes the Multi-Scale Convolutional AE (MSCAE) method for classification. Lastly, the seeker 
optimization algorithm (SOA) was employed. In [17], an innovative few-shot RSSC called multiple text-
task models directed dynamic contrast learning network (MPCL-Net) was introduced. Primarily, two RS-
based pretext tasks could be made on the self-supervised learning (SSL) technique. Secondarily, a 
simplified CNN was established for the deep feature learning subcomponent. Then, the three loss 
functions have been incorporated and developed into the combined optimization submodules. Lastly, the 
MPCL-Net must be trained for a meta approach. 
 
3. The Proposed Model 
In this article, we have introduced a novel SSADL-RSSDC method. The focus of the SSADL-RSSDC method 
lies in the automated detection and classification of multiple scene labels in the RS images. Fig. 1 depicts 
the workflow of SSADL-RSSDC technique. 
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Fig 1. Workflow of SSADL-RSSDC technique 

 
3.1 MF-based Preprocessing 
The SSADL-RSSDC technique applies MF approach for initial preprocessing step. MF is a classical image 
processing method used to remove noise while maintaining edges in digital images [18]. In this method, a 
sliding window (a rectangular or square neighbourhood) moves across the image, and the pixel values 
within the window are sorted. The median value is then assigned to the centre pixel of the window. This 
process efficiently eliminates outliers and decreases the effect of salt-and-pepper noise, making it 
particularly helpful in scenarios where maintaining fine details is important. MF is robust in handling 
impulse noise and is computationally efficient, making it a valuable tool for increasing image quality in 
various applications, such as computer vision and medical imaging. 
 
3.2. Feature Extraction 
The SSADL-RSSDC technique involves deep ResNet model for learning hierarchical representations of the 
input data. 𝐹𝑠𝑒𝑡  is the input of deep ResNet [19]. The main benefit of ResNet is it can construct deep 
networks with huge amounts of weighted layers. From loss function to the dissimilar layers, the gradients 
discover it very difficult to back transmit without declining to 0 or enlarging as the complexity of a 
network upsurge. ResNet empowers gradients to move over layers by using a skip connection. In Eq. (1), 
the residual function 𝐼(𝑃𝑠𝑒𝑡 ) is acquired from the residual block 𝐷(𝑢) that conveyed as: 

𝐷 𝑢 = 𝐼 𝑃𝑠𝑒𝑡  + 𝐹𝑠𝑒𝑡                                                 (1) 
 

 
Fig 2. Structure of ResNet 
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In order to train the weight layers 𝑆∗ by utilizing labeled data, the residual function 𝐼(𝑃𝑠𝑒𝑡 ) has been 
learned. Any neural network method like convolutional and fully connected (FC) layers are employed as a 
weight layer. The residual block permits the forward pass among the system to select to avoid those 
sections by stating 𝐷(𝑢) as zero for specific sections. By employing numerous layers of feature extractors, 
each can remove a dissimilar possible feature of the input. Now, it is highly probable to build deep 
networks. Only the system sections are needed for classifying an assumed input case which is initiated for 
that case. Fig. 2 depicts the framework of ResNet model. The applications of DL regularly experience the 
problem of overfitting which has a harmful result in forecasting new datasets. In this research, a hybrid 
classification technique termed CNNs and deep ResNet upsurges the number of passes on the current 
training data and amount of training data instances, which makes the method lightweight to defeat the 
problem of overfitting.  
 
3.3. SSA-based Hyper parameter Tuning 
At this stage, the SSA can be applied to selecting the optimum values of the Deep 
ResNet’shyperparameter. SSA is a recent swarm intelligence optimization technique motivated primarily 
by the anti‐predatory and foraging behaviors of natural sparrows [20]. The SSA technique is well-suited 
for applications in ML and artificial intelligence technologies. 
The key concept of SSA algorithm is given below: 
(1) Sparrow foraging activity: sparrows migrate in different directions looking for food while foraging. 

The solution space of the problem is considered a distribution of food, where individuals seek 
optimum solutions. 

(2) Individual sparrows and pops: each individual signifies a solution and looks for the optimum one 
using their unique action and interaction with others. There are several individuals in the pops that 
contribute jointly to improve the search performance. 

(3) Flight and position updates: Every individual flies based on their position and speed throughout 
each iteration, and the distance and direction of the flight are directly influenced by global optimum 
and individual solutions. Based on the flight outcome, the position of individual is adjusted and 
gradually comes closer to the optimum solution.  

(4) Adaptation assessment: The assessment of objective function is used for measuring fitness of the 
individual. The most suitable solution is the high fitness value and closer to the individual. 

(5) Knowledge transfer and upgrades: Each sparrow observes the fitness values and activities of others’ 
locations to upgrade their behaviors for extending their search through upgrade and knowledge 
transfer. 

𝑋 =  𝑥1
1𝑥1

2  … 𝑥1
𝐷𝑥2

1𝑥2
2  … 𝑥2

𝐷  ⋮ ⋮  ⋮  𝑥𝑁
1𝑥𝑁

2  … 𝑥𝑁
𝐷  

Where the location of each sparrow is 𝑋 =  𝑥1 , 𝑥2 , … , 𝑥𝐷 , 𝑁 denotes the amount of sparrows in the 
population, 𝐷 signifies the size of optimum solution. 
The discoverer, follower, and alert are the three components of SSA algorithm. The sparrow ratio of 
discoverer and followers is upgraded by the mean square error among true and prediction values as the 
fitness value. Next, the iteration upgrades are carried out based on the location upgrade: 
 
Discoverer 
The individuals who find superior food are answerable for delivering direction to their followers. In each 
generation, the top PN sparrows with best fitness value are selected as the discoverers. The formulation 
for location upgrading is given below: 

𝑋𝑖,𝑗
𝑡+1={𝑋𝑖,𝑗

𝑡 × 𝑒𝑥𝑝  −
𝑖

𝛼 × 𝑇
 𝑖𝑓 𝑅2 < 𝑆𝑇𝑋𝑖,𝑗

𝑡 + 𝑄 × 𝐿𝑖𝑓 𝑅2 ≥ 𝑆𝑇                                    (2) 

From above-mentioned equation, 𝑥 denotes the location of the 𝑖𝑡ℎ  sparrow in dimension 𝑗 at iteration 𝑡, 𝑖 
signifies the sparrow count,  𝑇 signifies the maximal amount of iterations about random number 𝛼 ∈
(0,1], 𝑆𝑇 ∈ [0.5,1] and warning values 𝑅2 ∈ [0,1] for security values; 𝑄 is the arbitrary value; and 𝐿 is a 
matrix of size 1 × 𝑑. If 𝑅2 ≥ 𝑆𝑇, scouts identify the existence of predators, and the cluster travels quickly 
near a secure region, If 𝑅2 < 𝑆𝑇, there are no predators, and finders do wide searches in the region. 
 
Follower 
Excepting for the discoverers, all lasting N‐PN individuals aid as followers and their location upgrade 
formula is as follows: 

𝑋𝑖 ,𝑗
𝑡+1={𝑄 × 𝑒𝑥𝑝  

𝑋𝑤𝑜𝑟𝑠𝑡
𝑡 − 𝑥𝑖 ,𝑗

𝑡

𝑡2
  𝑖𝑓 𝑖 > 0.5𝑛𝑋𝑝

𝑡+1 +  𝑋𝑖,𝑗
𝑡 − 𝑋𝑝

𝑡+1 × 𝐿 × 𝐴 + 𝑖𝑓 𝑖 ≤ 0.5𝑛                (3) 

𝑋𝑖 ,𝑗
𝑡+1  denotes the position with optimum alteration organized through the discoverer at the 𝑡 + 1𝑠𝑡 

iteration, 𝑋𝑤𝑜𝑟𝑠𝑡
𝑡  signifies the global worst location, 𝐴+ refers to random integer within [1,-1] and 
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𝐴+ =  𝐴𝐴𝑇 − 1. If 𝑖 ≤ 0.5𝑛, the 𝑖𝑡ℎ  accession will follow the discoverer’s foraging centre and arbitrarily 
feed near the middle location; if 𝑖 > 0.5𝑛, then 𝑖𝑡ℎaccession flops to attain food and has lower energy level 
to go to other regions to feed. 
 
Alert 
Picking an assured amount of signals to do investigation and initial cautionary task and give food when 
risks are complex, supposing every generation arbitrarily picks SD sparrows for reconnaissance and 
cautionary. The formulation for upgrading its location is given below: 

𝑋𝑖 ,𝑗
𝑡+1={𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝛽 ×  𝑥𝑖 ,𝑗
𝑡 − 𝑋𝑏𝑒𝑠𝑡

𝑡   𝑖𝑓 𝑓𝑖 > 𝑓𝑔𝑋𝑖 ,𝑗
𝑡 + 𝐾 ×  

𝑥𝑖 ,𝑗
𝑡 − 𝑋𝑤𝑜𝑟𝑠𝑡

𝑡

 𝑓𝑖 − 𝑓𝑤 𝜀
  𝑖𝑓 𝑓𝑖 = 𝑓𝑔                            (4) 

𝑋𝑏𝑒𝑠𝑡
𝑡  denotes the global optimum location; 𝛽 is a step switch parameter, 𝐾 ∈ [−1,1𝑓𝑖  is the fitness value of 

the 𝑖𝑡ℎ  individual sparrow; 𝑓𝑤  and 𝑓𝑔refers to the worst and best fitness values; and 𝜀 denotes the 

minimum constant. When 𝑓𝑖 > 𝑓𝑔 , sparrows are at the edge of the population and weak to hunters; when 

𝑓𝑖 = 𝑓𝑔 , sparrows are at the midpoint of the population and arbitrarily fall near other sparrows; and when 

𝑓𝑖 < 𝑓𝑔 , a spy is not moving. 

The SSA derives an FF to achieve higher classification outcomes. It determines a positive integer to 
represent the superior performance of the candidate solution. Here, the reduction of classifier error is 
assumed as the FF.    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥𝑖 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 𝑥𝑖  

=
𝑁𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                  (5) 

 
3.4. Classification using ELM technique  
Finally, the ELM model is applied to the recognition and classification process. The network of ELM 
generates voltage degradation features acquired by DBN in order to execute a more precise degradation 
forecast [21]. The ensemble of output and hidden layers (HL) (H1, H2) are considered a classic ELM 
system. The attained parameters of RBM2 {𝑊, 𝑎, 𝑏} have been employed to set the output weight vector 𝛽 
and the feature space 𝐻 of ELM is attained. So, entire parameter of the DBN‐ELM system is obtained. 
Assume 𝑥𝑗 (𝑗 = 1,… ,𝑚) signifies ELM input of network. 𝑡𝑗  denotes the training output, which is equivalent 

to 𝑥𝑡  in the entire DBN‐ELM system. The activation function of sigmoid is implemented and signified as 
(𝑊, 𝑏, 𝑥). The output function 𝑓𝑙(𝑥) is defined by: 

𝑓𝑙 𝑥 =  

𝑙

𝑖=1

𝛽𝑖𝐺 𝑊𝑖 , 𝑏𝑖 , 𝑥𝑗  = 𝑡𝑗 ,  𝑗 = 1,… ,𝑚                       (6) 

Here, the parameters {(𝑊𝑖 , 𝑏𝑖), 𝑖 = 1,2, … , 𝑙} have been acquired from the DBN (H2). 𝛽𝑖  signifies the output 
weight linking the 𝑖𝑡ℎ  output and HL. Eq. (6) is stated in a matrix form. 

𝐻𝛽 = 𝑇 
𝐻 =  𝐺(𝑊1, 𝑎1 , 𝑏1) ⋯  𝐺(𝑊𝑙 , 𝑎𝑙 , 𝑏𝑙) ⋯ ⋯ ⋯  𝐺(𝑊1, 𝑎1 , 𝑏𝑚 ) ⋯  𝐺(𝑊𝑙 , 𝑎𝑙 , 𝑏𝑚 )                            (7) 

𝛽 =  𝛽1
𝑇  ⋯  𝛽𝑙

𝑇 , 𝑇 =  𝑡1
𝑇  ⋯  𝑡𝑙

𝑇                                                  (8) 
Whereas, 𝐻 represents the HL output matrix that is called ELM feature space. The training procedure is to 
discover the optimum output weight 𝛽∗, which is attained by minimalizing the estimated error as follows. 

 𝑚𝑖𝑛 | 𝐻𝛽 − 𝑇 |2                                              (9) 
If 𝐻 is said to be non‐singular, then the best output weight 𝛽∗ is considered as below: 

𝛽∗ = 𝐻+𝑇                                                           (10) 
While, 𝐻+ denotes the Moore‐Penrose general reverse matrix of HL output. If 𝐻 is complete column rank, 
then 𝐻+ can be stated as below: 

𝐻+ =  
𝐼

𝐶
+ 𝐻𝑇𝐻 

−1

𝐻𝑇                                                (11) 

Where 𝐶 signifies the regularization co-efficient, which is presented to make the method more steady. To 
acquire a superior regularization co-efficient, it gets few values for 𝐶 at first. And then, these 
regularization co-efficient values were later switched to Eq. (9) to discover the optimal value of 𝐶 which 
can diminish the estimated error of ELM. 
 
4. Performance Validation 
The experimental analysis of the SSADL-RSSDC technique takes place using UCM [22] and AID [23] 
datasets. Fig. 3 demonstrates the sample images. 
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Fig 3. Sample images 

 
Fig. 4 illustrates the classifier results of the SSADL-RSSDC algorithm at UCM dataset. Figs. 4a-4b displays 
the confusion matrices obtained by the SSADL-RSSDC technique with 70%:30% of TRAPH/TESPH. This 
figure indicated that the SSADL-RSSDC technique can be identified and categorized with 21 class labels 
appropriately. Meanwhile, Fig. 4c indicates the PR result of the SSADL-RSSDC method. The figure 
described that the SSADL-RSSDC algorithm gives greater PR effectiveness with every class. In conclusion, 
Fig. 4d showcases the ROC result of the SSADL-RSSDC technique. This figure represented that the SSADL-
RSSDC method offers efficient outcomes with increased ROC values with diverse classes. 
 

 
Fig 4. UCM dataset (a-b) Confusion matrices (c-d) PR-curve and ROC-curve 
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Table 1 highlights the overall scene classification results offered by the SSADL-RSSDC technique on 70% 
of TRAPH under UCM dataset. These experimentation outcomes underline that the SSADL-RSSDC 
algorithm properly identified all types of scenes exist in the UCM dataset. It is also noticed that the 
SSADL-RSSDC technique has the ability to recognize the samples with maximum classifier results. 
 

Table 1. Scene classification of SSADL-RSSDC model with UCM dataset under 70% of TRAPH 
Classes 𝐴𝑐𝑐𝑢𝑦  𝑃𝑟𝑒𝑐𝑛  𝑅𝑒𝑐𝑎𝑙  𝐹𝑠𝑐𝑜𝑟𝑒  

TRAPH (70%) 
C1 95.65 55.41 56.94 56.16 
C2 95.71 58.82 53.33 55.94 
C3 95.31 52.17 33.80 41.03 
C4 95.71 54.55 60.00 57.14 
C5 94.97 42.86 52.38 47.14 
C6 95.85 55.41 59.42 57.34 
C7 94.83 42.86 40.30 41.54 
C8 94.42 35.85 28.36 31.67 
C9 94.56 44.30 49.30 46.67 
C10 95.44 47.14 52.38 49.62 
C11 95.24 49.21 44.93 46.97 
C12 95.37 53.57 60.81 56.96 
C13 95.51 53.52 53.52 53.52 
C14 95.17 52.04 68.00 58.96 
C15 96.26 60.34 52.24 56.00 
C16 95.58 54.43 59.72 56.95 
C17 94.69 45.59 43.06 44.29 
C18 94.90 46.48 47.14 46.81 
C19 95.10 49.02 35.21 40.98 
C20 94.63 42.86 38.57 40.60 
C21 94.97 48.19 56.34 51.95 
Average 95.23 49.74 49.80 49.44 

 
The overall scene classification results offered by the SSADL-RSSDC method at 30% of TESPH at UCM 
datasets as reported in Table 2. These accomplished outcomes emphasize that the SSADL-RSSDC method 
appropriately recognized all categories of scenes present in the UCM dataset. It is also perceived that the 
SSADL-RSSDC algorithm can be the ability to identify the samples with increased classifier outcomes. 
 

Table 2. Scene classification of SSADL-RSSDC model with UCM dataset under 30% of TESPH 
Classes 𝐴𝑐𝑐𝑢𝑦  𝑃𝑟𝑒𝑐𝑛  𝑅𝑒𝑐𝑎𝑙  𝐹𝑠𝑐𝑜𝑟𝑒  

TESPH (30%) 
C1 96.03 54.84 60.71 57.63 
C2 95.40 42.31 44.00 43.14 
C3 95.40 50.00 27.59 35.56 
C4 95.56 52.94 60.00 56.25 
C5 94.76 55.26 56.76 56.00 
C6 94.44 41.67 32.26 36.36 
C7 94.60 48.00 36.36 41.38 
C8 94.13 44.12 45.45 44.78 
C9 94.76 44.74 58.62 50.75 
C10 93.65 45.45 40.54 42.86 
C11 94.13 41.18 45.16 43.08 
C12 95.71 48.28 53.85 50.91 
C13 94.44 38.46 34.48 36.36 
C14 94.13 34.21 52.00 41.27 
C15 95.24 55.56 45.45 50.00 
C16 95.71 51.61 57.14 54.24 
C17 94.76 39.13 32.14 35.29 
C18 95.24 50.00 56.67 53.12 
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C19 95.40 50.00 41.38 45.28 
C20 95.08 48.15 43.33 45.61 
C21 94.13 39.47 51.72 44.78 
Average 94.89 46.45 46.46 45.94 

 
In Fig. 5, the average classifier analysis of the SSADL-RSSDC technique on the UCM dataset is revealed. 
The figure shows that the SSADL-RSSDC method accomplished enhanced results. With 70% of TRAPH, the 
SSADL-RSSDC technique attains average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑠𝑐𝑜𝑟𝑒  of 95.23%, 49.74%, 49.80%, and 

49.44%, respectively. Also, based on 30% of TESPH, the SSADL-RSSDC algorithm provides average 𝑎𝑐𝑐𝑢𝑦 , 

𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑠𝑐𝑜𝑟𝑒  of 94.89%, 46.45%, 46.46%, and 45.94%. 
 

 
Fig 5. Average of the SSADL-RSSDC system under UCM dataset 

 

 
Fig 6. 𝐴𝑐𝑐𝑢𝑦  curve of the SSADL-RSSDC method at UCM dataset 

 
The effectiveness of the SSADL-RSSDC algorithm with UCM dataset is graphically illustrated in Fig. 6 in 
the form of training accuracy (TRAA) and validation accuracy (VALA) curves. The figure exhibits useful 
interpretation of the behaviour of the SSADL-RSSDC method over varying epoch counts, representing its 
learning process and generalization capabilities. Considerably, the figure infers a constant improvement 
in the TRAA and VALA with progress in epochs. It makes sure of the adaptive nature of the SSADL-RSSDC 
technique with pattern recognition process under the TRA and TES data. The rising trend in VALA 
outlines the capability of the SSADL-RSSDC method to alter the TRA data and also excels in giving exact 
classification on unnoticed data, pointing out robust generalization abilities. 
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Fig. 7 shows an extensive representation of the training loss (TRLA) and validation loss (VALL) results of 
the SSADL-RSSDC method with UCM dataset over distinct epochs. The progressive reduction in TRLA 
highlights the SSADL-RSSDC technique optimizing the weights and minimizing the classification error on 
the TRA and TES data. The figure indicates a clear understanding of the SSADL-RSSDC model related to 
the TRA data, highlighting its proficiency in capturing patterns within both datasets. Remarkably, the 
SSADL-RSSDC system incessantly improves its parameters in decreasing the differences among the 
prediction and real TRA class labels. 
 

 
Fig 7. Loss curve of the SSADL-RSSDC model at UCM dataset 

 
The 𝐴𝑐𝑐𝑢𝑦comparison study of the SSADL-RSSDC technique on the UCM dataset is reported as displayed 

in Table 3 and Fig. 8 [24, 25]. These obtained outcomes highlighted that the SC+Pooling, SG+UFL, and 
CCM-BOVW algorithms have revealed decreased 𝑎𝑐𝑐𝑢𝑦  values of 81.67%, 86.64%, and 86.64%, 

respectively. Next, the PSR, COPD, and Dirichlet systems have reported closer 𝑎𝑐𝑐𝑢𝑦  values of 89.10%, 

91.33%, and 92.80%, correspondingly. Nevertheless, the SSADL-RSSDC technique reaches better results 
with maximum 𝑎𝑐𝑐𝑢𝑦  of 95.23%. 

 
Table 3. 𝐴𝑐𝑐𝑢𝑦  outcome of SSADL-RSSDC technique with other algorithms under UCM dataset 

UCM Dataset 

Method Accuracy (%) 

SC+Pooling 81.67 

SG+UFL 86.64 

CCM-BOVW  86.64 

PSR Model 89.10 

COPD Model 91.33 

Dirichlet 92.80 

SSADL-RSSDC 95.23 

 

 
Fig 8. 𝐴𝑐𝑐𝑢𝑦  outcome of the SSADL-RSSDC method under UCM dataset 
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Fig. 9 displays the classifier results of the SSADL-RSSDC technique in AID database. Figs. 9a-9b showcases 
the confusion matrices succeeded by the SSADL-RSSDC system with 70%:30% of TRAPH/TESPH. This 
figure specified that the SSADL-RSSDC method can be identified and categorized with 30 class labels 
correctly. Similarly, Fig. 9c specifies the PR result of the SSADL-RSSDC system. The figure displays that the 
SSADL-RSSDC algorithm provides excellent PR effectiveness with every class. In conclusion, Fig. 9d 
displays the ROC result of the SSADL-RSSDC technique. This figure represented that the SSADL-RSSDC 
method gives efficient outcomes with improved ROC values with diverse class labels. 
 

 
Fig 9. AID dataset (a-b) Confusion matrices (c-d) PR-curve and ROC-curve 

 
Table 4 highlights the overall scene classification outcome offered by the SSADL-RSSDC approach on 70% 
of TRAPH under AID dataset. These experimentation outcomes underline that the SSADL-RSSDC 
algorithm accurately identified all types of scenes that exist in the AID dataset. It is also detected that the 
SSADL-RSSDC technique can recognize the samples with higher classifier outcomes. 
 

Table 4. Scene classification of SSADL-RSSDC model with AID dataset under 70% of TRAPH 
Classes  𝐴𝑐𝑐𝑢𝑦  𝑃𝑟𝑒𝑐𝑛  𝑅𝑒𝑐𝑎𝑙  𝐹𝑠𝑐𝑜𝑟𝑒  

TRAPH (70%) 
C1 95.43 31.51 33.33 32.39 
C2 94.86 26.47 23.68 25.00 
C3 95.48 32.86 32.39 32.62 
C4 95.62 31.51 35.38 33.33 
C5 95.43 39.24 39.24 39.24 
C6 95.57 37.18 39.73 38.41 
C7 95.24 27.03 30.30 28.57 
C8 95.29 22.03 19.70 20.80 
C9 95.33 33.70 45.59 38.75 
C10 96.29 45.61 35.62 40.00 
C11 94.90 26.32 28.17 27.21 
C12 95.43 32.89 35.71 34.25 
C13 95.95 37.04 28.17 32.00 
C14 96.10 43.66 42.47 43.06 
C15 96.10 32.20 31.15 31.67 
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C16 96.14 42.37 34.72 38.17 
C17 95.10 22.97 26.98 24.82 
C18 96.05 39.71 39.13 39.42 
C19 94.95 30.86 33.33 32.05 
C20 94.57 26.19 29.73 27.85 
C21 95.24 29.58 29.58 29.58 
C22 95.29 21.43 17.91 19.51 
C23 95.95 38.98 31.94 35.11 
C24 95.19 30.38 34.29 32.21 
C25 95.76 30.65 29.23 29.92 
C26 95.29 33.33 41.43 36.94 
C27 95.95 34.48 29.85 32.00 
C28 96.24 49.25 42.31 45.52 
C29 96.14 41.79 40.00 40.88 
C30 95.81 33.33 35.38 34.33 
Average 95.56 33.49 33.22 33.19 

 
The overall scene classification outcomes succeeded by the SSADL-RSSDC method on the 30% of TESPH 
under AID dataset as shown in Table 5. These experimental findings emphasize that the SSADL-RSSDC 
algorithm appropriately recognized all categories of scenes existing in the AID dataset. It is also observed 
that the SSADL-RSSDC method can be the ability to recognize the samples with boosted classifier results. 
 

Table 5. Scene classification of the SSADL-RSSDC method with AID dataset under 30% of TRAPH 
Classes  𝐴𝑐𝑐𝑢𝑦  𝑃𝑟𝑒𝑐𝑛  𝑅𝑒𝑐𝑎𝑙  𝐹𝑠𝑐𝑜𝑟𝑒  

TESPH (30%) 
C1 95.11 15.79 09.68 12.00 
C2 95.67 25.81 33.33 29.09 
C3 96.44 44.00 37.93 40.74 
C4 95.67 41.67 28.57 33.90 
C5 96.22 31.43 52.38 39.29 
C6 96.11 31.82 25.93 28.57 
C7 95.00 32.26 29.41 30.77 
C8 95.89 44.00 32.35 37.29 
C9 95.67 38.71 37.50 38.10 
C10 95.44 28.12 33.33 30.51 
C11 95.78 35.48 37.93 36.67 
C12 94.78 27.03 33.33 29.85 
C13 96.78 50.00 44.83 47.27 
C14 95.78 31.03 33.33 32.14 
C15 94.67 33.33 23.08 27.27 
C16 95.89 26.32 17.86 21.28 
C17 94.78 36.84 37.84 37.33 
C18 95.67 35.71 32.26 33.90 
C19 95.67 29.41 40.00 33.90 
C20 96.44 41.67 57.69 48.39 
C21 96.00 34.78 27.59 30.77 
C22 96.11 46.15 36.36 40.68 
C23 95.44 31.43 39.29 34.92 
C24 95.11 31.58 40.00 35.29 
C25 95.56 41.94 37.14 39.39 
C26 95.56 33.33 33.33 33.33 
C27 96.33 50.00 45.45 47.62 
C28 94.89 22.73 45.45 30.30 
C29 95.33 31.25 33.33 32.26 
C30 95.56 41.94 37.14 39.39 
Average 95.64 34.85 35.12 34.41 
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In Fig. 10, the average classifier outcomes of the SSADL-RSSDC technique with AID dataset are revealed. 
The figure shows that the SSADL-RSSDC algorithm gets improved results. According to 70% of TRAPH, 
the SSADL-RSSDC technique attains average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑠𝑐𝑜𝑟𝑒  of 95.56%, 33.49%, 33.22%, 

and 33.19%. Besides, with 30% of TESPH, the SSADL-RSSDC method provides average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 

𝑟𝑒𝑐𝑎𝑙 , and 𝐹𝑠𝑐𝑜𝑟𝑒  of 95.64%, 34.85%, 35.12%, and 34.41%. 
 

 
Fig 10. Average of the SSADL-RSSDC method under AID dataset 

 

 
Fig 11. 𝐴𝑐𝑐𝑢𝑦  curve of the SSADL-RSSDC model at AID dataset 

 
The performance of the SSADL-RSSDC system with AID dataset is graphically demonstrated in Fig. 11 in 
the form of TRAA and VALA curves. This figure exhibits useful interpretation of the behaviour of the 
SSADL-RSSDC method over multiple epoch counts, signifying its learning process and generalization 
capabilities. Noticeably, the figure infers a constant enhancement in the TRAA and VALA with progress in 
epochs. It makes sure of the adaptive nature of the SSADL-RSSDC technique with pattern recognition 
process under the TRA and TES data. The rising trend in VALA outlines the capability of the SSADL-RSSDC 
method to alter the TRA data and excels in giving particular classification on unnoticed data, pointing out 
the robust generalization abilities. 
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Fig 12. Loss curve of the SSADL-RSSDC technique with AID dataset 

 
Fig. 12 shows a wide-ranging representation of the TRLA and VALL results of the SSADL-RSSDC system 
with AID dataset over distinct epochs. The progressive reduction in TRLA highpoints the SSADL-RSSDC 
system optimizing the weights and decreasing the classification error on the TRA and TES data. The figure 
indicates a perfect understanding of the SSADL-RSSDC model related to the TRA data, highlighting its 
proficiency in capturing patterns within both datasets. Significantly, the SSADL-RSSDC algorithm 
continually improves its parameters in decreasing the differences among the prediction and real TRA 
class labels. 
An extensive 𝐴𝑐𝑐𝑢𝑦comparative outcomes of the SSADL-RSSDC algorithm on the AID dataset is informed 

as shown in Table 6 and Fig. 13. These experimentation outcomes indicate that the GoogleNet and VGG-
VD-16 algorithms get diminished 𝑎𝑐𝑐𝑢𝑦  values of 86.39%, and 89.64%, correspondingly. Then, the 

ResNet50, ResNet-50+EAM, and LCNN-BFF methods are gained closer 𝑎𝑐𝑐𝑢𝑦  values of 92.57%, 93.64%, 

and 91.66%. However, the SSADL-RSSDC algorithm achieves excellent results with increased 𝑎𝑐𝑐𝑢𝑦  of 

95.64%. 
 

Table 6. 𝐴𝑐𝑐𝑢𝑦  outcome of the SSADL-RSSDC technique with other algorithms under AID dataset 

AID Dataset 

Methods Accuracy (%) 

GoogleNet 86.39 

VGG-VD-16 89.64 

ResNet50 92.57 

ResNet-50+EAM 93.64 

LCNN-BFF 91.66 

SSADL-RSSDC 95.64 
 

 
Fig 13. 𝐴𝑐𝑐𝑢𝑦  outcome of SSADL-RSSDC model under AID dataset 
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Thus, the SSADL-RSSDC technique can be applied for automated scene classification on the RSI. 
 
5. CONCLUSION  
In this article, we have introduced a novel SSADL-RSSDC algorithm. The focus of the SSADL-RSSDC 
method lies in the automated identification and classification of multiple scene labels in the RS images. 
For initial preprocessing step, the SSADL-RSSDC technique applies M) approach. Besides, the SSADL-
RSSDC technique involves deep ResNet model for learning hierarchical representations of the input data. 
Moreover, the SSA can be applied to selecting the optimum values of the Deep ResNet’shyperparameter. 
Finally, the ELM model is applied to the recognition and classification process. The performance 
assessment of the SSADL-RSSDC algorithm takes place using benchmark RSI dataset. The experimental 
values inferred that the SSADL-RSSDC technique demonstrates superior performance over other models. 
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