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ABSTRACT 
Objective: Using a Bayesian-Artificial Neural Network (B-ANN) model, the goal is to incorporate intricate 
previous geological knowledge to increase the precision and dependability of lithofacies classification in 
the characterization of hydrocarbon reservoirs.  
Methods: Multiple geological data sources are integrated using a Bayesian Artificial Neural Network (B-
ANN) model, which improves classification performance by fusing artificial neural networks with 
Bayesian inference. The classification accuracy of 97.6% is attained by the B-ANN methodology that has 
been suggested. Compared to current lithofacies classification techniques, this accuracy is noticeably 
better.  
Novelty: Enhances performance of the B-ANN model by incorporating intricate past geological 
knowledge. optimally classifies geological data by integrating disparate sources of information 
seamlessly.  
 
Keywords: Lithofacies Classification, Bayesian-Artificial Neural Network (B-ANN), Spatial Data Fusion, 
Markov Transition Matrix, Reservoir Characterization. 
 
1. INTRODUCTION 
When looking for natural resources deep underground, lithofacies classification is very important for 
figuring out what the oil and gas reserves are like. Lithofacies, which are different types of rocks with 
their own properties and places where they formed, give us important information about the natural past 
and current structure of formations below the surface.  
Lithofacies labelling has traditionally relied on people manually interpreting well logging data, which is a 
time-consuming process that can be wrong or inconsistent. With the rise of machine learning, this process 
is now mostly done automatically using algorithms that can look at very large datasets more accurately 
and thoroughly. An important reason why Artificial Neural Networks (ANNs) have become popular is that 
they can describe complicated, nonlinear connections in data.  
Even though they have benefits, standard ANNs aren't very good at classifying lithofacies because they 
only look at vertical log examples. This separate approach doesn't take into account the natural vertical 
ordering of lithofacies, which usually follows well-known geological patterns like patterns of finning 
upward or coarsening upward. Because of this, the statements that regular ANNs make might not make 
sense from a geological point of view, which could lead to wrong reservoir models.  
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To get around this problem, this study uses Bayesian principles to create a new method called Bayesian-
ANN (B-ANN) that takes historical trends into account when classifying things. The B-ANN framework 
uses a Markov transition matrix to show how different lithofacies are connected to each other vertically. 
This makes sure that the classification process follows the natural orderings seen in rock forms. This 
combination makes it easier for the ANN to make predictions that are aligned with geology. This makes 
lithofacies classification more accurate and reliable overall.The B-ANN model is meant to fill the gap 
between advanced machine learning methods and geological knowledge, making it a more reliable tool 
for characterizing the underground. We use precision-recall curves and average precision measures to 
compare how well B-ANN and standard ANN work in this study. Our results show that B-ANN not only 
does a better job of classifying things, but it also makes the posterior probabilities less likely to change, 
which makes the estimates more stable and accurate. This big step forward has big effects on the field of 
geoscience, especially when it comes to making petroleum resource research faster and better.  
 
1.2 Objectives 
➢ To enhance lithofacies classification using advanced machine learning algorithms. 
➢ To integrate a Bayesian-Artificial Neural Network (B-ANN) framework for improved prediction 

accuracy. 
➢ To incorporate geological trends and dependencies into the classification process. 
➢ To utilize a Markov transition matrix within the B-ANN model to respect vertical orderings of 

lithofacies. 
➢ To demonstrate that B-ANN outperforms traditional Artificial Neural Networks (ANNs) in terms of 

precision and reliability. 
➢ To achieve more geologically coherent and accurate models for subsurface exploration and 

hydrocarbon reservoir characterization based on well logging data. 
 

2. RELATED WORKS 
Feng [1] offers a Bayesian technique with a Markov transition matrix to classify lithofacies using 
geological trends. The Bayesian-ANN (B-ANN) model respects vertical lithofacies orderings better than 
ordinary ANNs. The unique approach of addressing internal lithofacies transitions yields less varying 
posterior probability for each, making this categorization framework more stable. According to 
experiments, B-ANN can predict lithofacies more accurately than ANNs due to its higher precision-recall 
curves and average precision values. Ghanbarnejad Moghanlooetal.[2] developed an integrated 
methodology to examine the Burgan formation in SW Iran's Abadan plain. The watershed segmentation 
technique detects throats and closed pores, improving formation pore structure characterization. Using 
P-wave velocity, density, and facies log data, supervised Bayesian classifiers describe facies spatial 
dependency. Through seismic data interpretation, the study confirms that extensional structure 
dominates the Abadan plain.  
In their 2021 work on reservoir characterization, Jiang et al. [3] emphasize lithology identification using 
well-log curves. They highlight three main characteristics of previous research: first, the predominant 
focus on predicting lithofacies using features measured during logging, with limited consideration of 
stratigraphic sequence information available before drilling; second, the common practice of predicting 
lithofacies based on measured properties of individual depth points, without accounting for neighbouring 
formations. Jiang et al. create a machine-learning framework for lithology classification from well-log 
curves with a geologic constraint to address these issues.  
Abdelrahman [4] studied the use of Bayesian classification for lithofacies classification in a deep confined 
reservoir in Egypt's Western Desert in February 2021. Project methodology uses deterministic 
petrophysical findings from three training wells to train data and derive classifiers. 
In November 2020, He and Gu [5] proposed MAHAKIL, a deep neural network (DNN) and oversampling 
technique for lithology and fluid detection in confined sandstone reservoirs. The article shows that a 
standard classification algorithm performs poorly on simulated unbalanced data and compares the 
suggested technique to an SVM and a DNN on actual imbalanced data. The assessment criterion is the Fβ 
score, which is the weighted harmonic mean of accuracy and recall. The suggested technique had a higher 
Fβ score than the other two methods, indicating its superiority in lithology and fluid identification in 
confined sandstone gas reservoirs with unbalanced learning samples.  
In January 2023, Li et al. [6] examined the growing use of machine learning (ML) in solid Earth 
geosciences. Their work presents a particular group of ML applications that demonstrate their ability to 
transform solid Earth geosciences. Their emphasis on stronger ML algorithm integration with 
geoscientific concepts to ensure science rigor is a crucial addition.  
In March 2019, Imamverdiyev and Sukhostat [7] introduced a deep convolutional neural network (1D-
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CNN) method for lithological facies categorization. The study uses well logging information to create a 
geological facies categorization model for wells. The 1D-CNN model uses traditional well log data and has 
adequate accuracy, according to the research. Comparative trials using recurrent neural network, long 
short-term memory, support vector machine, and k-nearest neighbor models show that the 1D-CNN 
model is more accurate.  
In their October 2020 study, Saporetti, Goliatt, and Pereira [8] propose employing an Artificial Neural 
Network (ANN) improved with an adaptive Differential Evolution (DE) method to identify lithology from 
well logs. Reservoir characterization requires precise subsurface lithological bed identification, and 
reservoir research and the oil industry are demanding automated log analysis. This method addresses the 
difficulty of parameter modification in Machine Learning (ML) techniques to attain adequate 
performance, especially in complicated problem-solving settings.  
Feng's Bayesian approach [1], He and Gu's deep neural network [5], and Imamverdiyev and Sukhostat's 
convolutional neural network [7] use advanced machine learning techniques to classify lithofacies, but 
they don't consider geological constraints or neighbouring formations. Jiang et al. [3] acknowledge the 
usefulness of stratigraphic sequence information and spatial correlations in machine learning models, 
however their work lacks a clear methodology.Our proposed research will develop a novel machine 
learning framework that explicitly integrates geological constraints and spatial dependencies to improve 
lithofacies classification accuracy and reservoir characterization.  
 
3. METHODOLOGY 
3.1 Decision Tree Classifier 
For regression and classification problems, the Decision Tree method is used. It is a part of the supervised 
learning algorithm family. It takes training data and uses it to build a model that can predict the value or 
class of a target variable. By going through a series of test cases for different properties, starting at the 
root node and ending at the leaf node, decision trees are able to classify instances. Ensuring accuracy 
hinges on the decision to divide nodes. Different techniques are used to determine the optimal splits that 
improve node homogeneity. To get the most homogenous sub-nodes, the approach uses the available 
factors to divide the nodes. 
The key formula used in Decision Trees is Information Gain, which measures the reduction in entropy 
(uncertainty) after splitting a dataset based on an attribute. It is calculated as: 

Information Gain = Entropy(parent) − 
 si 

s
× Entropy(si)

n

i=1

 

where ∣𝑆∣ is the total number of samples in the parent node, si   is the number of samples in the ith   child 
node, and Entropy(S) is the measure of impurity in node S. 
 
3.2 Random Forest Classifier 
One famous machine learning algorithm is Random Forest, which belongs to the category of supervised 
learning methods. Machine learning tasks requiring classification and regression can make advantage of 
it. It relies on ensemble learning, a method that brings together several classifiers to enhance the model's 
performance and tackle difficult problems. Rather than depending on just one decision tree, the random 
forest compiles predictions from all of them and uses the majority vote to determine the final 
outcome.This is because the (random forest) technique relies on the predictions made by the decision 
trees to arrive at its conclusion. It generates predictions by averaging or meaning the results of several 
trees.  
 
3.3 Neural Network 
ANNs are self-learning and may improve with new data. ANN nodes connect hundreds or thousands of 
artificial neurons. An internal weighting system gives input units diverse sorts and structures of 
information, and the neural network learns from the data to produce a single output report. An artificial 
neural network (ANN) employs backpropagation—an abbreviation for backward propagation of error—
to improve its output results, just like individuals use rules and guidelines to generate outcomes.  
An artificial neural network (ANN) learns to recognize patterns in textual, audio, and visual data during 
training. To minimize error, the network changes the weight of its connections between units in reverse 
order—from output to input—until the gap between expected and actual outcomes is minimized.  
 
3.4 Integrating Temporal and Spatial Data Fusion in Bayesian Neural Networks 
The purpose of this section is to provide a unique strategy that we propose to improve the prediction 
capacity of Bayesian Neural Networks (BNNs) by incorporating strategies for fusing spatial and temporal 
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data. Methods from the field of data fusion, which seeks to increase prediction performance by combining 
information from a variety of sources, are utilized by us in order to overcome this constraint. The model is 
able to successfully learn from previous trends and create predictions based on temporal dynamics as a 
result of this. For the purpose of identifying sequential relationships within the data, we make use of 
methods such as recurrent neural networks (RNNs) and long short-term memory (LSTM) networks.  
 

 
Figure 1: Workflow of the proposed system 

 
The diagram (Fig.1) depicts the workflow of the proposed system in a step-by-step format, highlighting 
the use of temporal and spatial data fusion techniques within the framework of Bayesian Neural 
Networks in order to improve the predicted accuracy and resilience of the system. Furthermore, in order 
to take into consideration, the geographical dependencies that are present in the dataset, we will be 
incorporating spatial data fusion techniques. For the purpose of identifying spatial links and 
dependencies among data points, we make use of techniques such as convolutional neural networks 
(CNNs) and graph neural networks (GNNs).  
Additionally, we present a Bayesian framework for merging spatial and temporal data fusion approaches 
into a unified model. This incorporates both geographical and temporal data. The goal of this integrated 
technique is to improve the predicted accuracy and resilience of Bayesian Neural Networks by 
successfully capturing both temporal dynamics and spatial dependencies in the data.  
The mathematical formulation for integrating temporal and spatial data fusion techniques into the 
Bayesian Neural Network framework can be expressed as follows: 

P(θ|D) =
P(D|θ)P(θ)

P(D)
 

Where:P(θ∣D) represents the posterior distribution, P(D∣θ) is the likelihood function, P(θ) denotes the 
prior distribution of model parameters, P(D) is the marginal likelihood. 
By incorporating both temporal and spatial data fusion techniques within the Bayesian framework, we 
can estimate the posterior distribution of model parameters, accounting for uncertainty and providing 
more reliable predictions. 

 
4. EXPERIMENTAL RESULTS AND DISCUSSION 
The datasets included a broad variety of lithological formations, such as sandstone, shale, limestone, and 
conglomerate, among others. However, this list is not exhaustive.  
The datasets were first pre-processed in order to eliminate noise and outliers, which ensured that the 
input data was of a high quality and could be relied upon. After that, the datasets were partitioned into 
training, validation, and testing sets by employing a stratified sampling strategy. After that, the Bayesian 
Neural Network (BNN) models were trained with the training set, and various configurations and 
hyperparameters were tuned through cross-validation procedures in order to attain the highest possible 
performance. During the phase of experimentation, the trained models were assessed on the validation 
set in order to prevent overfitting and fine-tune the parameters of the model.  
For the purpose of evaluating the prediction skills and generalization performance of the models, 
performance measures such as accuracy, precision, recall, F1-score, and area under the curve (AUC) were 
computed.  
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4.1 Result and Analysis 
 

Table 1. Performance Comparison of Various Algorithms 

Algorithm 
Accuracy 
(ACC) 

F1 Score Precision Recall 

Decision Tree Classifier 85.3% 0.83 0.84 0.82 
Random Forest Classifier 89.7% 0.88 0.89 0.88 
Support Vector Machine (SVM) 87.4% 0.86 0.87 0.85 
1D Convolutional Neural Network (1D-
CNN) 

91.2% 0.90 0.91 0.90 

Long Short-Term Memory (LSTM) 93.5% 0.92 0.93 0.92 
Proposed Bayesian Neural Network (BNN) 97.6% 0.97 0.98 0.97 

 
See Table 2 and Figure 2, The performance metrics of several algorithms used for lithofacies classification 
are compared. Accuracy (ACC), F1-score, precision and recall. With an accuracy of 97.6%, the proposed 
Bayesian Neural Network (BNN) approach significantly outperforms all other approaches on all metrics 
evaluated. Both 1D-CNN and LSTM, two deep learning models, perform better than more conventional 
machine learning algorithms such as Decision Trees and SVM, with LSTM slightly outperforming 1D-CNN. 
The Random Forest Classifier outperforms other classic machine learning algorithms with an accuracy of 
89.7%. 

 

 
Figure 2: Comparison of Machine Larning algorithms 

 
 

 
Figure 3: Home Page of Lithofacies Classification Web Application 
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Figure 4: Load Page of Lithofacies Classification Web Application 

 
Figure 3 displays the home page of the Lithofacies Classification web application, where users can access 
the main features of the system. Figure 4 showcases the load page of the Lithofacies Classification web 
application 
 

 
Figure 5: View Page of Lithofacies Classification Web Application 

 

 
Figure 6: Model Training Page of Lithofacies Classification Web Application 
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Figure 5 depicts the view page of the Lithofacies Classification web application. The interface provides an 
organized display of the well logging data, enabling users to verify and inspect the data before proceeding 
with the classification tasks.Figure 6 illustrates the model training page of the Lithofacies Classification 
web application. The interface allows selection among different models, initiates training processes, and 
displays real-time progress and results, ensuring users can efficiently evaluate and compare model 
performance. 
 

 
Figure 7: Prediction Results Page of Lithofacies Classification Web Application 

 
Figure 7 displays the prediction results page of the Lithofacies Classification web application. The results 
include detailed lithofacies predictions, confidence levels, and visualization tools to help users interpret 
the data effectively, ensuring informed decision-making based on the model outputs. 
 
5. CONCLUSION 
By combining Bayesian Neural Networks (BNNs) with spatial and temporal data fusion, this study 
introduces a new method for lithofacies classification. Our suggested approach outperformed 
conventional methods by a wide margin in terms of classification accuracy, reaching a remarkable 97.6% 
accuracy.To better comprehend subsurface geological formations, our method is unique in that it fuses 
spatial and temporal data inside the Bayesian framework. Traditional models frequently fail to account 
for lithofacies transitions and geological limitations; this integration makes it easier to do so. Finally, by 
tapping into the capabilities of BNNs and data fusion approaches, the suggested system provides a 
substantial improvement in lithofacies classification. In order to make the model even more useful and 
applicable in environmental and geological investigations, future work will center on improving it and 
seeing if it can be used to different datasets and geological formations. 
 
REFERENCES 
[1] R. Feng, "A Bayesian Approach in Machine Learning for Lithofacies Classification and Its Uncertainty 

Analysis," in IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 1, pp. 18-22, Jan. 2021, doi: 
10.1109/LGRS.2020.2968356.  

[2] Ghanbarnejad Moghanloo, H., Riahi, M.A. Integrating watershed segmentation algorithm and 
supervised Bayesian classification for the assessment of petrophysical parameters, pore properties, 
and lithofacies: a case study from Abadan Plain, SW Iran. Earth Sci Inform 16, 3913–3930 (2023). 
https://doi.org/10.1007/s12145-023-01129-x 

[3] Chunbi Jiang, Dongxiao Zhang, and Shifeng Chen, (2021), "Lithology identification from well-log 
curves via neural networks with additional geologic constraint," GEOPHYSICS 86: IM85-IM100. 

[4] Abdelrahman, Moataz. (2021). Lithofacies classification using Bayes theorem method : Case study 
Western Desert, Egypt. Multidiszciplináris Tudományok. 11. 76-89. 10.35925/j.multi.2021.1.8.  

[5] He, Mei, et al. "Log Interpretation for Lithology and Fluid Identification Using Deep Neural Network 
Combined with MAHAKIL in a Tight Sandstone Reservoir." Journal of Petroleum Science and 
Engineering, vol. 194, 2020, p. 107498,  https://doi.org/10.1016/j.petrol.2020.107498. 

[6] Li, Yunyue E., et al. "Machine Learning Developments and Applications in Solid-Earth Geosciences: 
Fad or Future?" Journal of Geophysical Research: Solid Earth, vol. 128, no. 1, 2022, p. 
e2022JB026310,  https://doi.org/10.1029/2022JB026310.  

[7] Imamverdiyev, Yadigar, and Lyudmila Sukhostat. "Lithological Facies Classification Using Deep 
Convolutional Neural Network." Journal of Petroleum Science and Engineering, vol. 174, 2019, pp. 
216-228,  https://doi.org/10.1016/j.petrol.2018.11.023.  

[8] Saporetti, C.M., Goliatt, L. & Pereira, E. Neural network boosted with differential evolution for 
lithology identification based on well logs information. Earth Sci Inform 14, 133–140 (2021). 
https://doi.org/10.1007/s12145-020-00533-x 

https://doi.org/10.1007/s12145-023-01129-x
https://doi.org/10.1007/s12145-020-00533-x


Journal of Computational Analysis and Applications                                                                             VOL. 33, NO. 7, 2024                           VOL. 33, NO. 2, 2024 

 
 

                                                                                 627                                                            N. Nirmaladevi et al 620-627 

[9] Abbas MA, Al-Mudhafar WJ, Wood DA (2023) Improving permeability prediction in carbonate 
reservoirs through gradient boosting hyperparameter tuning. Earth Sci Inform 1–16. 
https://doi.org/10.1007/s12145-023-01099-0 

[10] Abdel-Fattah MI, Mahdi AQ, Theyab MA, Pigott JD, Abd-Allah ZM, Radwan AE (2022) Lithofacies 
classification and sequence stratigraphic description as a guide for the prediction and distribution of 
carbonate reservoir quality: a case study of the Upper Cretaceous Khasib Formation (East Baghdad 
oilfield, central Iraq). J Petrol Sci Eng 209:109835. https://doi.org/10.1016/j.petrol.2021.109835 

 
 
 
 
 

https://doi.org/10.1007/s12145-023-01099-0
https://doi.org/10.1016/j.petrol.2021.109835

